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Abstract
Whole-genome sequencing of pathogenic bacteria Stenotrophomonas maltophilia from a less polluted environment of permafrost 
can help understand the intrinsic resistome of both antibiotics and metals. This study aimed to examine the maximum minimum 
inhibitory concentration (MIC) of both antibiotics and metals, as well as antibiotic resistance genes and metal resistance 
genes annotated from whole-genome sequences. The permafrost S. maltophilia was sensitive to ciprofloxacin, tetracycline, 
streptomycin, and bacitracin, and resistant to chloramphenicol, trimethoprim-sulfamethoxazole, erythromycin,  Zn2+,  Ni2+, 
 Cu2+, and  Cr6+, with a lower maximum MIC, compared with clinical S. maltophilia. The former strain belonged to the lower 
antibiotic resistance gene (ARG) and metal resistance gene (MRG) clusters compared with the latter ones. The permafrost strain 
contained no or only one kind of ARG or MRG on a single genomic island, which explained the aforementioned lower maximum 
MIC and less diversity of ARGs or MRGs. The result indicated that the co-occurrence of antibiotic and metal resistance was 
due to a certain innate ability of S. maltophilia. The continuous human use of antibiotics or metals induced selective pressure, 
resulting in higher MIC and more diverse ARGs and MRGs in human-impacted environments.
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Introduction

The World Health Organization has identified antibiotic 
resistance genes (ARGs) as one of the most important chal-
lenges to human health in the twenty-first century because 
ARGs are emerging environmental contaminants causing 
serious public health concerns (Sanderson et al. 2016). 
The annual number of human deaths due to antimicrobial 
resistance is expected to reach up to 10 million by 2050 
(de Kraker et al. 2016). However, natural antibiotics have 
existed for billions of years (Barlow and Hall, 2002; Hall and 
Barlow, 2004; Bhullar et al. 2012; Wright and Poinar 2012). 
Similar to antibiotics, ARGs are also ancient, as evidenced 
by the studies identifying various ARGs in ancient perma-
frost samples (D’Costa et al. 2011; Perron et al. 2015) and 
isolated cave microbiomes (Bhullar et al. 2012). Then, many 

studies combined polluted and nonpolluted environments 
to study the potential sources of ARGs and the influence of 
human activity on ARGs (Li, et al. 2017; Yuan et al. 2019). 
The results showed that the nonpolluted environments con-
tained fewer ARG subtypes than the polluted environments. 
However, a few studies focused on the antibiotic-resistant 
phenotypes and minimum inhibition concentration (MIC) to 
verify whether ARGs were expressed in environments with 
little human activity.

Whole-genome sequencing has become a powerful tool to 
recover ARGs from the same bacterial species from various 
sources, such as clinical and environmental settings. Steno-
trophomonas maltophilia, a ubiquitous pathogen in hospitals 
and natural environments (Brooke 2012), has evolved as one 
of the multidrug-resistant bacteria causing various nosocomial 
infections, especially in highly debilitated patients (Patil et al. 
2018). Some studies were undertaken on ARGs in S. malt-
ophilia from the natural environment and clinical origin. The 
results showed the absence of smeABC in environmental S. 
maltophilia (Youenou et al. 2015). Some environmental strains 
carried more efflux pumps than the clinical ones (Youenou 
et al. 2015). However, the information on ARGs in S. malt-
ophilia from natural environments with little human activity, 

Responsible Editor: Robert Duran

 * Shuhong Zhang 
 shuhongzhang_2013@163.com

1 College of Biology and Food, Shangqiu Normal University, 
Shangqiu, China

/ Published online: 13 September 2022

Environmental Science and Pollution Research (2023) 30:11798–11810

1 3

http://orcid.org/0000-0002-2739-6856
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-22888-y&domain=pdf


such as permafrost, is limited. Comparative genomic analyses 
are needed to show the diversity of different ARGs among 
pathogenic S. maltophilia from different sources.

Antibiotic-resistant bacteria can transfer to other bacteria 
(including potential human pathogens) the ARGs they har-
bor through mobile genetic elements (MGEs) (Pruden et al. 
2006; Zhu et al. 2013). For S. maltophilia, the researches about 
ARGs and MGEs focused on trimethoprim/sulfamethoxazole 
and class 1 integrons. The results showed that the most sig-
nificant contribution of the class 1 integron acquisition to S. 
maltophilia was the increased resistance to trimethoprim–sul-
famethoxazole through the sulI gene (Malekan et al. 2017; 
Song et al. 2010; Gallo et al. 2016). However, no other MGEs 
and ARGs were examined, which was important to understand 
the distribution of ARGs or multidrug resistance mechanism.

ARGs not only correlated with MGEs but also with metal 
resistance genes (MRGs), due to the potential association of 
antibiotic resistance and Cu, Zn, Ni, and Hg reported in vari-
ous environmental settings (Baker-Austin et al. 2006; Berg 
et al. 2010; Mazhar et al. 2021; Hu et al. 2017; Knapp et al. 
2017). MRGs, such as merR, arsR, copG, cadA, and cadC, 
existed in clinical S. maltophilia (Alonso et al. 2000; Kumar 
et al. 2020). No related research was undertaken for perma-
frost S. maltophilia. The comparative genomic analysis of S. 
maltophilia can reveal the difference in ARGs between human-
impacted and less human-impacted environments due to many 
genomic contents with S. maltophilia, whose whole-genomic 
sequence data could be downloaded from NCBI. In addition, 
the widespread occurrence of metals in the environment may 
facilitate antibiotic resistance via co-selection of ARGs and 
MRGs. Thus, this study aimed to investigate the relationship 
between ARGs and MRGs in permafrost S. maltophilia to 
show whether this co-selection occurred in the pre-antibiotic 
era.

In this study, an S. maltophilia strain was isolated from 
the bottom of a ~ 11.7-m deep permafrost core (#B site: 38° 
00′ 11.76″ N, 100° 54′ 24.66″ E; altitude 3615 m) of Eboling 
Mountain, from the Qilian Mountains of the Qinghai-Tibetan 
Plateau, to test its maximum MIC for both antibiotics and 
metals. The study then analyzed its whole-genome sequence. 
Considering the limited knowledge available on the S. malt-
ophilia intrinsic resistome, the aims of this study were to (1) 
to compare the maximum MIC for antibiotics and metals, (2) 
the differences in ARGs and MRGs, and (3) genomic islands 
(GIs) between the ancient and present S. maltophilia.

Materials and methods

Isolation and susceptibility profile characterization

The isolation site of the S. maltophilia strain dates back to 
5821 BP (Mu et al. 2014). One of the major features of the 

clinical isolates of S. maltophilia is their high resistance lev-
els toward most of the currently used antimicrobial agents, 
including macrolides, fluoroquinolones, aminoglycosides, 
chloramphenicol, and tetracyclines (Brooke 2012). Thus, the 
MIC of the strain was determined by broth microdilution, 
with 40 repeats for each condition tested, in the presence or 
absence of seven antibiotics [ciprofloxacin, streptomycin, 
tetracycline, erythromycin, chloramphenicol, bacitracin, and 
trimethoprim–sulfamethoxazole (TMP-SMZ); Sigma, MO, 
USA], corresponding to fluoroquinolone, aminoglycosides, 
tetracycline, macrolide, phenicol, peptide, and sulfonamide, 
respectively. The strain was grown overnight in Mueller Hin-
ton broth (MHB) using CLSI-recommended incubation con-
ditions. After that, 100 μL of bacterial suspensions, with 40 
repeats, and with a final optical density at 550 nm (OD550) 
of 0.005 were added to the wells containing the 2 × antibiotic 
dilutions. The clinical breakpoints for the seven antibiotics 
were established according to the European Society of Clini-
cal Microbiology and Infectious Diseases (ECOFF).

A previous study assessed the levels of 11 different heavy 
metals Fe, Mn, Zn, Ni, Cr, Cu, As, Co, Mo, Cd, and Hg 
(Zhang et al. 2021). The MIC of eight metals  Zn2+,  Mn2+, 
 Ni2+,  Sn2+,  Cu2+,  Cr6+,  Hg2+, and  Co2+ was determined. 
The metals were added as  ZnCl2,  MnCl2.4H2O,  NiCl2.6H2O, 
 SnCl2.2H2O,  CuCl2.2H2O,  K2Cr2O7,  HgCl2, and  CoCl2, 
respectively. The tubes containing R2A media were amended 
with increasing contents of metals (100, 200, 400, 800, and 
1600 μg/mL) and incubated at 15℃ for 1 week. The MIC 
was defined as the lowest concentration of the metal at which 
the bacterial pellets remained invisible at the bottom of the 
tubes (Konopka and Zakharova, 1999). The cell concentra-
tion was measured using a spectrophotometer  (OD600 = 0.2). 
Escherichia coli K-12, susceptible to many metals, was used 
as the control (Matyar et al. 2008; Akinbowale et al. 2007; 
Aleem et al. 2003; Malik and Jaiswal, 2000; Malik and 
Aleem, 2011). The strains were considered resistant if MIC 
values exceeded that of the control organism.

Genome sequencing and assembly

The total DNA of the bacterial colony was isolated using 
the Bacteria Genomic DNA Extraction Kit (TaKaRa Mini-
beast Ver.3.0, China) and the sample quality was ensured 
using NanoDrop ND-1000 microspectrophotometer (Nan-
oDrop Technologies, DE, USA). Whole-genome sequencing 
was performed on an Illumina HiSeq PE150 platform (San 
Diego, CA, USA). A-tailed ligated paired-end adaptors with 
polymerase chain reaction (PCR)-amplified 350-bp inserts 
were used for library construction at Beijing Novogene Bio-
informatics Technology Co., Ltd. From the Illumina PCR 
adapter reads, the low-quality reads were filtered as a quality 
control step by the sequencing company. All good-quality 
paired reads were assembled using the SOAP denovo (http:// 
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soap. genom ics. org. cn/ soapd enovo. html) into several scaf-
folds (Li et al. 2010). The filtered reads were subjected to 
gap closing. The whole-genome shotgun project was depos-
ited at GenBank (accession PRJNA504495, S. maltophilia).

Genome annotation

To find ARGs, the protein-coding sequences were searched 
against the comprehensive antibiotic resistance database 
(McArthur et al. 2013; Jia et al. 2017). A read was consid-
ered an ARG-like gene if the BLASTP identity was ≥ 40% 
(Liu et al. 2020).

MRGs in the metagenomic data were identified as previ-
ously described by Gupta et al. (2018). Experimentally con-
firmed MRGs were downloaded from the BacMet database 
(Version 2.0; Pal et al. 2014) as a reference source. Then, the 
clean MRG reads were matched against the reference source 
using BLASTX with the criteria of e-value <  10−5 and amino 
acid identity ≥ 90%.

The GIs were identified using Island Viewer 4 (Ber-
telli et al. 2017) and further analyzed using ICEfinder (Liu 
et al. 2019). The genes in the GIs were annotated using the 
Prokaryotic Genome Annotation Pipeline on NCBI3 and 
RASTtk server (Overbeek et al. 2014; Brettin et al. 2015). 
The insertion sequence transposases were detected using 
IS-Finder (Siguier et al. 2006). The integrons (ints) were 
predicted using the INTEGRALL database (Moura et al. 
2009). The sequence alignment was performed with BLAST 
server2.

Phylogenetic analysis of 16S rRNA gene sequences

The 16S rRNA gene sequence of the permafrost S. malt-
ophilia was extracted using Prokka. The 16S rRNA 
gene sequences from S. maltophilia NK-ST, BJ01, 
NRLFFD179, P4, and EN14ZR5 were downloaded from 
NCBI and used to construct a phylogenetic tree, with S. 
tumulicola T5916-2-1b, S. humi R-32729, and S. pictorum 
JCM 9942 as the members of the same genus. Escherichia 
coli was selected as an outgroup strain to determine the 

root of the tree. Multiple sequences were aligned using 
Clustal W 2.0 (Larkin et al. 2007) and MEGA7 (Kumar 
et al. 2016). The phylogenetic relationship was determined 
by phylogeny reconstruction analysis using the neighbor-
joining method in MEGA7.

Results

Bacterial taxonomy

The permafrost S. maltophilia formed a cluster with S. malt-
ophilia NK-ST, BJ01, NRLFFD179, P4, and EN14ZR5 
(Fig.  1), with sequence similarity of 99.73%, 99.68%, 
99.22%, 99.15%, and 99.06, respectively, based on pairwise 
alignments. This indicated that the permafrost strain was a 
member of the S. maltophilia group see Table 1.

Antibiotic and metal resistance profiles

The potential co-selections for antibiotic resistance were 
associated with Cu, Zn, Ni, and Hg in various environ-
mental settings (Baker-Austin et al. 2006; Berg et al. 2010; 
Mazhar et al. 2021; Hu et al. 2017; Knapp et al. 2017). In 
addition, the MIC of  Zn2+,  Ni2+,  Cu2+,  Cr6+, and  Hg2+ 
for E. coli K-12 was previously reported by Aleem et al. 
(2003), Malik and Jaiswal (2000), and Malik and Aleem 
(2011). Thus, the MIC of the aforementioned metals for 
the permafrost S. maltophilia was compared with that of 
E. coli K-12 to determine the metal resistance level. The 
MIC value for  Hg2+ in E. coli K-12 was 12.5 μg/mL, while 
the initial concentration for Hg resistance was 100 μg/mL. 
Thus, the permafrost S. maltophilia showed resistance to 
Hg, as well as to other four heavy metals, in the order of 
 Hg2+  >  Cr6+  >  Zn2+  =  Ni2+  >  Cu2+ (Table 2). Whether 
the permafrost S. maltophilia showed resistance to  Mn2+, 
 Sn2+, and  Co2+ is not clear due to the lack of MIC data for 
 Mn2+,  Sn2+, and  Co2+ from E. coli K-12.

Fig. 1  Neighbor-joining phy-
logenetic tree obtained from 
16S rRNA gene sequences. 
The scale bar shows the num-
ber of substitutions per site
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ARGs

In total, 32 ARGs were identified in the genome of 
permafrost S. maltophilia, including aminoglycoside 
resistance genes AAC(6')-Iz and APH(3')-Iic; aminocou-
marin resistance genes alaS and mdtC; fluoroquinolone 
resistance genes emrR and mfd; antibacterial free fatty 
acid resistance gene farB; β-lactam resistance gene L1 
β-lactamase; macrolide resistance genes macA and macB; 
nitroimidazole resistance gene msbA; triclosan resistance 
gene gyrA; fosfomycin resistance gene murA; penam 
resistance gene mecA; peptide resistance gene rosB; elfa-
mycin resistance gene EF-Tu; pleuromutilin resistance 
gene TaeA; triclosan resistance gene TriC; multidrug 
resistance genes adeA, adeC, and adeG conferring resist-
ance to tetracycline and glycylcycline; mexJ, mexK, and 
mexW conferring resistance to tetracycline, macrolide, 
and triclosan; oprN conferring resistance to phenicol, 
diaminopyrimidine, and fluoroquinolone; oqxA confer-
ring resistance to tetracycline, nitrofuran, glycylcycline, 
diaminopyrimidine, and f luoroquinolone; and smeA, 

smeC, smeD, smeF, smeR, and smeS conferring resist-
ance to ciprofloxacin, tetracycline, chloramphenicol, and 
erythromycin. These had an amino acid sequence identity 
of 40.5%–99.2% (Table S1).

MRGs

A total of 36 MRGs were identified in the genome of per-
mafrost S. maltophilia (Table S2), including arsenic resist-
ance genes arsB and arsC; gold resistance genes golS and 
golT; chromate resistance gene chrR; copper resistance 
genes copA, copC, pcoB, pcoD, cutA, cutC, cusA, cusB, 
cueR, and cusS; iron resistance genes fecA and fur; mer-
cury resistance genes merD, merE, and merT; manganese 
resistance genes mntH and mntR; molybdenum resistance 
genes modA, modB, modC, moeA, moaE, and mobA; tel-
lurite resistance genes terC; silver resistance genes silA 
and silB; and cobalt-zinc-cadmium resistance genes czcA, 
czcB, czcC, and czcD. These had an amino acid sequence 
identity of 91.1–100.0%.

Table 1  Antibiotic MIC profiles for permafrost S. maltophilia 

n refers to 40 repeats. Asterisk indicate the ECOFFs set by the EUCAST

Antibiotics n Number of tubes with MIC (μg/ml) of MIC50 MIC90 ECOFF breakpoint Number of 
isolates above 
ECOFF

Categorization

0.5 1 2 4 8 16 32 64
Ciprofloxacin 40 1 4 9 17 7 2* 4 8 16 0 S
Chloramphenicol 40 2 3 3 7 20* 5 32 64 2–32 5 R
TMP-SMZ 40  * 31 7 2 16 32 2 40 R
Tetracycline 40 5 32 3* 8 8 16 0 S
Streptomycin 40 1 1 1 4 4 26 3* 32 32 4–512 0 S
Erythromycin 40 5 5 2* 25 3 32 32 0.25–16 28 R
Bacitracin 40 16 19 3 3* 8 32 32 0 S

Table 2  Metal tolerance of 
permafrost S. maltophilia 

n refers to 40 repeats. *Minimal inhibition concentration of standard strain E. coli K12. The MIC for Hg 
was 12.5 μg/mL, which was lower than the initial concentration of 100 μg/mL

Metals n Metal concentrations (μg/ml) with number of tolerant isolates Resistant  
isolates

100 200 400 800 1600 n %

Zn2+ 40 4* 14 20 2 36 90
Mn2+ 40 1 12 22 5
Ni2+ 40 4* 13 22 1 36 90
Sn2+ 40 3 12 23 2
Cu2+ 40 2 11* 24 3 27 67.5
Cr6+ 40 2* 10 25 3 38 95
Hg2+ 40 6 15 19 40 100
Co2+ 40 14 23 3 3
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Genomic islands (GIs)

A total of 12 GIs were identified from 9 scaffolds (Table S3), 
ranging from 7288 to 40,192 bp (average 15,108 ± 8558 bp). 
Among these, two GIs contained both resistance genes and 
MGEs. For instance, GI3 encodes for six Hg resistance genes 
(merP, merA, merD, merE, merR, and merT), a transposase, 
and a transposon tnpR. GI4 contained a tetracycline suppres-
sor gene tetR, a transposon tnpA, and two integrases. Three 
GIs contained only one ARG. For instance, GI2, GI7, and 
GI11 contained β-lactamase class C gene, acrifervin resist-
ance protein (acr), and aminoglycoside N-acetyltransferase 
AAC (6′), respectively (Fig. 2). The other 7 GIs contained 
no resistance genes.

Discussion

This study brings together data on both antibiotic and 
metal resistant genes, and antibiotic and metal resistant 
phenotypes, in an environmental organism. This provides 
mechanistic insights above studies that only consider either 
genes or phenotypes.

Little is known about antibiotic and metal resistance 
phenotypes, which is more important than studying ARGs 
and MRGs only in an environmental context with little 
human activity. This study showed that metal resistance 
co-occurred with antibiotic resistance in GIs.

MIC of antibiotics and ARGs

The permafrost S. maltophilia showed resistance to chlo-
ramphenicol, erythromycin, and TMP-SMZ, and sensitivity 
to ciprofloxacin, tetracycline, streptomycin, and bacitracin, 
which was consistent with the report showing that the cul-
turable bacterial consortiums isolated from Antarctic soils 
were consistently susceptible to most of the tested antibiot-
ics frequently used in clinical therapies (Yuan et al. 2019). 

However, Pankuch et al. (1994) showed that S. maltophilia 
was resistant naturally toward aminoglycosides. They 
recovered S. maltophilia from the environmental species 
of captive snakes. Further investigation is still needed to 
verify whether S. maltophilia from more environments 
with little human activity was resistant naturally toward 
aminoglycosides.

Previous MIC studies for S. maltophilia were performed 
on four antibiotics, including ciprofloxacin, tetracycline, 
chloramphenicol, and TMP-SMZ. Thus, the MIC results 
were compared with the findings on these four antibiotics 
(Table S4). TMP-SMZ has traditionally been considered the 
treatment of choice for S. maltophilia (Biagi et al. 2020), 
with increasing reports of resistance and adverse drug 
effects causing great concern for S. maltophilia treatment 
(Hand et al. 2016; Bostanghadiri et al. 2019; Gajdacs and 
Urban, 2019). Few studies showed the sensitivity of clinical 
S. maltophilia isolates to TMP-SMZ, with an MIC range 
of 0.125–2.375 μg/mL (Nakamura et al. 2021; Khan et al. 
2021; Krueger et al. 2001). However, the maximum MIC 
of 304, 608, and 2432 μg/mL was 9.5, 19, and 76 times 
higher than the MIC of the permafrost strain, respectively, 
as reported by many researchers (Hejnar et al. 2001; Tatman-
Otkun et al. 2005; Nakamura et al. 2021; Zhanel et al. 2008; 
Weiss et al. 2000; Fung-Tomc et al. 2002; Valdezate et al. 
2001). Thus, the MIC of the permafrost S. maltophilia to 
TMP-SMZ was at the medium level. The maximum MIC 
of tetracycline (García-León et al. 2015) was > 256 μg/
mL for S. maltophilia clinical isolates and 16 μg/mL for 
the permafrost S. maltophilia. For chloramphenicol, the 
clinical S. maltophilia isolates could resist up to 96 (Spierer 
et al. 2018), 152 (Carvalhais et al. 2021), and > 256 μg/mL 
(García-León et al. 2015), while the permafrost S. malt-
ophilia could resist only 64 μg/mL. The maximum MIC of 
ciprofloxacin for clinical S. maltophilia isolate was > 32 μg/
mL (Grillon et al. 2016; García-León et al. 2015; Spierer 
et al. 2018), while the permafrost S. maltophilia could resist 
only 16 μg/mL of ciprofloxacin. Overall, most clinical S. 

Fig. 2  Genetic structure of 
genomic islands from the 
permafrost Stenotrophomonas 
maltophilia. The orientation 
of transcription is indicated by 
arrowheads merA
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maltophilia isolates had higher resistance (higher MICs) to 
ciprofloxacin, chloramphenicol, trimethoprim/sulfamethoxa-
zole, and tetracycline compared with the permafrost strain. 
These results were consistent with the findings of Pankuch 
et al. (1994), showing that the S. maltophilia isolates from 
captive snakes were either identically or more susceptible 
to antibiotics than strains acquired from patients, as well 
as Balbin et al. (2020), showing that the urban isolates of 
E. coli showed higher resistance to chloramphenicol, cip-
rofloxacin, streptomycin, trimethoprim–sulfamethoxazole, 
and tetracycline than those from the natural area. It was 
speculated that antibiotic resistance was an innate ability 
of S. maltophilia. The continuous human use of antibiotics 
induced selective pressure on antibiotic-resistant bacteria, 
causing higher MIC compared with less human-impacted 
environments.

The aforementioned antibiotic resistance phenotypes 
were related to antibiotic resistance genotypes. For instance, 
the presence of macA and macB was consistent with the 
resistance of the permafrost S. maltophilia to erythromycin. 
The constitutive expression of macABCsm contributed to 
the intrinsic resistance of S. maltophilia to macrolides (Lin 
et al. 2014), which verified the result of this study. However, 
the macABCsm pump also played a physiological role in 
protecting S. maltophilia from the attack of oxidative and 
envelope stresses and biofilm formation (Lin et al. 2014), 
which was also important under permafrost conditions. 
Therefore, further exploration is still needed with the gene 
deletion method to show the exact role of macAB in the 
permafrost S. maltophilia. mexVW usually combined with 
oprM to form a tripartite multidrug efflux pump (Li et al. 
2003). However, mexV and oprM were not recovered from 
the permafrost S. maltophilia. The smeDEF in the perma-
frost S. maltophilia was probably related to chloramphenicol 
resistance (Sánchez and Martínez, 2018). However, smeE 
and the regulator gene of smeT were not recovered from our 
permafrost S. maltophilia. In addition, it was reported that 
smeDEF was an ancient element that evolved over millions 
of years in S. maltophilia. Quinolone resistance is a recent 
function of smeDEF and that colonization of plant roots is 
likely one original function of this efflux pump (García-
León et al. 2014). Thus, the mechanism of chloramphenicol 
resistance is still unexplored and needs further investigation. 
One way or another, the multidrug efflux systems of macAB, 
mexW, smeDF could still contribute to antibiotic resistance 
and their conservation even in environmental strains would 
cause human risk for therapeutic intervention (Poole 2001).

The aforementioned findings showed the antibiotic resist-
ance phenotypes and the presence of corresponding ARGs. 
However, the present study showed antibiotic sensitivity 
and the absence of corresponding ARGs. The smrA con-
ferring resistance to fluoroquinolones and tetracycline (Al-
Hamad et al. 2009) was absent, which was consistent with 

its sensitivity to tetracycline and ciprofloxacin. The qnrB 
and qnrR conferring resistance to quinolones were absent. 
Furthermore, oqxAB is a member of the resistance–nodula-
tion–cell division (RND) family of multidrug efflux pumps 
(Hansen et al. 2004), which can pump out nalidixic acid, 
flumequine, ciprofloxacin, and norfloxacin, causing an 8- to 
64-fold increase in respective MICs (Périchon et al. 2007). 
The absence of oqxB, as well as the aforementioned qnrB and 
qnrR, in the permafrost S. maltophilia was consistent with its 
sensitivity to ciprofloxacin. However, qnrB, qnrR, and smrA 
were present in clinical isolates (Esposito et al. 2017; Patil 
et al. 2018; Zhang et al. 2020). oqxB was found in an isolate 
from the Norwegian University campus pond (Finton et al. 
2020) and clinic (Esposito et al. 2017). It was reported that 
smrA was an acquired and not an intrinsic gene (Al-Hamad 
et al. 2009), which further demonstrated the natural origin of 
the permafrost strain with little human influence from anti-
biotic use. No bcrABC was recovered in the present study, 
which was consistent with the sensitivity of the strain to baci-
tracin. strA and strB were absent in the permafrost strain but 
present in the clinical isolate (Ma et al. 2020; Esposito et al. 
2017). The result was consistent with the streptomycin sensi-
tivity of the permafrost strain. Hence, it was speculated that 
the diversity of ARGs could reflect the risk caused by the 
human use of antibiotics. This speculation was supported by 
the promotion and diversification of ARGs under the release 
of large quantities of anthropogenic antibiotics (Liu et al. 
2021, 2018; Tan et al. 2018; Chen et al. 2013, 2016; Ouyang 
et al. 2015; Sandner-Miranda et al. 2018).

However, a certain discrepancy between phenotype and 
genotype was also found. Although adeA, adeC, and adeG 
were recovered, no tetracycline resistance was reported. 
Also, mfd, gyrA, and emrB were recovered, but no fluoro-
quinolone resistance of ciprofloxacin was observed. For the 
recovery of rosB, the permafrost S. maltophilia did not show 
resistance to bacitracin from peptides. For the recovery of 
AAC(6′)-Iz, AAC(6′)-31, and APH(3′)-Ic, the permafrost S. 
maltophilia did not show resistance to streptomycin from 
aminoglycosides. The difference between the displayed 
antibiotic resistance phenotypes and the associated ARGs 
(Smith et al. 2014; Xia et al. 2017; González-Santamarina 
et al. 2021; Duy et al. 2021) was probably due to the lack of 
function and expression of ARGs. The observed phenotypic 
resistance could be a product of additional resistance mecha-
nisms such as multidrug efflux pumps or other unidentified 
ARGs (Smith et al. 2014).

The study then compared ARGs from the permafrost S. 
maltophilia with those from the clinical ones (Table S5). mrcA 
and mrcB were absent in the permafrost S. maltophilia but pre-
sent in a patient’s isolate (Ma et al. 2020). blaL1 and blaL2 
discovered in a clinical isolate (Esposito et al. 2017; Patil et al. 
2018; Crossman et al. 2008) were absent in the permafrost 
strain. All four ARGs were related to β-lactamase expression 
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(Huang et al. 2017). sul1 and sul2 were present in a clinical 
S. maltophilia isolate (Youenou et al. 2015; Patil et al. 2018) 
but not in the permafrost strain. This seemed coherent, given 
the fully synthetic origin of sulfonamide antibiotics (Czekalski 
et al. 2015). However, sul2 was recovered from an ice core, 
representing the pre-antibiotic era (Okubo et al. 2019). This was 
probably because the authors used total DNA and PCR primers 
targeting sul2, which could better reflect ARG profiles in less 
human-impacted environments. MacAB, along with a member 
of the tolC family, formed a tripartite efflux pump. macAB was 
present in both the permafrost S. maltophilia and the clinical S. 
maltophilia (Zhang et al. 2020; Esposito et al. 2017; Patil et al. 
2018), while tolC was present only in the clinical isolate (Zhang 
et al. 2020; Esposito et al. 2017; Patil et al. 2018). The absence 
of tolC in the permafrost S. maltophilia could have affected the 
function of the macAB-TolC efflux pump (Lu et al. 2018). TolC 
interacts with a variety of inner membrane transporters, such as 
acrB, acrD, mdtABC, and mdtEF (Nishino et al. 2003). Among 
these, only mdtC was present in the permafrost S. maltophilia, 
while tolC, acrB, acrD, mdtB, and mdtC were found in an iso-
late from a lung with cystic fibrosis (Esposito et al. 2017). It 
is known that multiple deletions of acrB, acrD, and mdtABC 
significantly decrease the export of enterobactin (Horiyama and 
Nishino, 2014), whether the permafrost S. maltophilia resists 
enterobactin needs further exploration. The aforementioned 
results further demonstrated higher ARG diversity in envi-
ronments with more human activities than those with lesser 
activities. However, it was reported that no major variation in 
ARG content was observed from environmental and clinical S. 
maltophilia. Some environmental S. maltophilia even carried as 
many multidrug-resistant efflux pumps as the clinical strains or 
more efflux pumps than the clinical ones (Youenou et al. 2015), 
which was contrary to the results of this study. That is prob-
ably because of different ARGs annonation method. We used 
CARD, while Youenou et al. (2015) used InterPro database.

MIC of metals and MRGs

Either antibiotics or metals may select both kinds of genes. 
Thus, much attention has been given to metal resistance, 
which influences antibiotic resistance in human-impacted 
environments (Cesare et al. 2016; Che et al. 2019; Ma et al. 
2016; Yang et al. 2019; Luo et al. 2017). This study investi-
gated whether metal MIC was lower and MRGs were lesser 
in the permafrost S. maltophilia than in other environments, 
just like antibiotic MIC and ARGs.

The permafrost S. maltophilia showed resistance to  Hg2+, 
 Cr6+,  Zn2+,  Ni2+, and  Cu2+, which was consistent with the 
resistance of S. maltophilia to  Hg2+,  Zn2+,  Ni2+,  Cu2+, and 
 Cr6+ (Pages et al. 2008; Naguib et al. 2019; Holmes et al. 
2009; Baldiris et al. 2018; Nath et al. 2020). A previous study 
assessed the levels of 11 different heavy metals Fe, Mn, Zn, 
Ni, Cr, Cu, As, Co, Mo, Cd, and Hg, in which only the As 

level was higher compared with the upper continental crust 
(Zhang et al. 2021). The high level of As induced As-resistant 
bacteria, which could resist not only As but also other metals 
(Altimira et al. 2012). This explained the resistance of the per-
mafrost S. maltophilia to  Hg2+,  Cr6+,  Zn2+,  Ni2+, and  Cu2+.

Next, the study compared the MIC of four metals  Zn2+, 
 Ni2+,  Cu2+, and  Cr6+ from the permafrost S. maltophilia with 
that from other environments because previous MIC studies 
focused on these four metals (Table S4). The maximum MIC 
of  Zn2+ for the permafrost S. maltophilia was 800 μg/mL, 
which was much lower than the MIC of those (515,200 μg/
mL) recovered from metal-contaminated soil (Chien et al. 
2007). The maximum MIC of  Ni2+ for the permafrost S. 
maltophilia was 800 μg/mL, which was lower than that 
(1000 μg/mL) from the industrial wastewater (Aslam et al. 
2018) and much lower than that (495,232 μg/mL) recovered 
from the metal-contaminated soil (Chien et al. 2007). The 
maximum MIC of  Cu2+ for the permafrost S. maltophilia 
was 800 μg/mL, which was lower than that (1248.45 μg/
mL) from East Fork Poplar Creek (Holmes et al. 2009) and 
much lower than that (448,000 μg/mL) recovered from the 
metal-contaminated soil (Chien et al. 2007). The maximum 
MIC of  Cr6+ for the permafrost S. maltophilia was 800 μg/
mL, while that recovered from the tannery effluent–contami-
nated soil, metal-contaminated soil, East Fork Poplar Creek, 
and industrial wastewater could resist up to 4854 μg/mL 
(Alam and Ahmad, 2012), 35,280 μg/mL (Chien et al. 2007), 
2647.66 μg/mL (Holmes et al. 2009), and 1000 μg/mL of 
 Cr6+ (Aslam et al. 2018), respectively. Overall, the perma-
frost S. maltophilia showed worse resistance (lower MICs) 
to the four metals than those from human-impacted envi-
ronments. The result of this study was consistent with the 
report showing that the nonpolluted and metal-polluted soils 
had different responses for metal resistance (Schaeffer et al. 
2016). A higher concentration of any metal at a particular 
site may lead to higher MIC values (Bhardwaj et al. 2018) 
due to the long-term selective pressure on microbial popula-
tions. Importantly, S. maltophilia with metal resistance can 
be used as an indicator of metal pollution. Since metal pol-
lution exerts both metal and antibiotic resistance (Li et al. 
2017; Knapp et al. 2011), special attention must be paid to 
increasing heavy metal levels in any kind of environment.

For the metal resistance phenotypes and genotypes,  Cu2+ 
resistance was consistent with the recovery of cueR and 
copA. The cueR switch could activate the S. maltophilia cop-
per transport gene of copA (Baya et al. 2021). The expres-
sion of both regulator gene cueR and structure gene copA 
was related to  Cu2+ resistance. In the czcCBA operon, czcC 
was an outer membrane protein, czcB was a membrane 
fusion protein, czcA was responsible for Co-Zn-Cd trans-
portation, and czcD was a regulatory protein. Thus, the czc-
CBA operon combined with its downstream gene of czcD 
mediated the detoxification of  Zn2+ and was consistent with 

11804 Environmental Science and Pollution Research  (2023) 30:11798–11810

1 3



the resistance of the permafrost S. maltophilia to  Zn2+ (Sun 
et al. 2021). Chromate reductase, chrR, is significant because 
it not only reduces  Cr6+ (Ackerley et al. 2004) but also pro-
vides protection against  Cr6+ toxicity by reducing the con-
centration of reactive oxygen species (Ahemad 2014). The 
recovery of chrR was consistent with the resistance of the 
permafrost S. maltophilia to  Cr6+. Hg resistance genes merT, 
merD, and merE were recovered. The three genes probably 
controlled Hg resistance in the permafrost S. maltophilia 
because strains with any mer locus were more likely to be 
resistant compared with strains without mer (Wireman et al. 
1997). This showed consistency between the metal resist-
ance phenotypes and genotypes. Some inconsistency was 
also noted. For instance, the permafrost S. maltophilia was 
resistant to  Ni2+, but no  Ni2+ resistance genes were found. 
This was probably because some efflux pumps were involved 
in detoxifying toxic compounds such as heavy metals and 
solvents, besides antibiotics naturally produced by other 
microorganisms (Alvarez-Ortega et al. 2013).

Some other MRGs were recovered, but the present study did 
not analyze the MIC of the corresponding metals, such as resist-
ance genes arsB and arsC, Au resistance genes gold and golT, 
Fe resistance genes fecA and fur, Mn resistance genes mntH 
and mntR, Mo resistance genes modA, modB, modC, moeA, 
moaE, and mobA, Te resistance gene terC, and Ag resistance 
genes silA and silB. Much more metal MIC standards should 
be given to E. coli K-12 so that the resistance of the permafrost 
S. maltophilia to As, Au, Fe Mn, and Mo can be speculated.

Then, MRGs from the permafrost S. maltophilia were 
compared with those from other environmental isolates 
(Table S6). Both chrA and chrR were present in the S. malt-
ophilia of wastewater (Naguib et al. 2019), while the perma-
frost S. maltophilia contained only chrR. Furthermore, copA 
and copC were present in both the clinical and permafrost 
S. maltophilia, while copABCD was present in the clinical 
S. maltophilia D457R (Alonso et al. 2000). The cadmium 
efflux determinant cadA, together with its transcriptional 
regulator gene cadC, was identified in the clinical S. malt-
ophilia D457R (Alonso et al. 2000), while these were absent 
in the permafrost S. maltophilia. merT was found in both the 
permafrost S. maltophilia and clinical S. maltophilia 279a 
(Crossman et al. 2008), while merA and merR were present 
in the clinical S. maltophilia 279a (Crossman et al. 2008) and 
isolates from seawater, soil (Ge and Ge 2016), and wastewater 
(Naguib et al. 2019). Hence, it was speculated that S. malt-
ophilia from human-impacted environments contained more 
MRGs compared with the permafrost S. maltophilia, which 
was consistent with the report that higher numbers of MGEs 
existed at the polluted sites compared with their control sites 
(Jacquiod et al. 2018; Yang et al. 2019). Some other studies 
reported higher MGE abundance in metal-polluted environ-
ments than in nonpolluted ones (Chen et al. 2018; Yang et al. 
2019), probably due to a higher number of metal-resistant 

bacteria (Hemmat-Jouet al. 2021). However, whole-genome 
sequencing could not reflect the abundance of MRGs. Fur-
ther exploration with real-time quantitative PCR as well as 
the standard-curve method of absolute quantification is still 
needed to show the difference in MRG abundance between the 
permafrost S. maltophilia and those from other environments.

Genomic islands

GIs are frequently associated with a particular microbial 
adaptation, such as antibiotic resistance or metal resistance 
(Hsiao et al. 2005). They also harbor genes coding for an 
integrase or transposons, contributing to the mobilization 
of gene clusters (AL-Jabri et al. 2018). This study aimed 
to investigate whether GIs in the permafrost S. maltophilia 
contained both ARGs and MRGs, and to demonstrate 
whether the combination of ARGs and MRGs occurred 
during the pre-antibiotic era.

Only one kind of resistance gene cluster was located on a 
single GI in the permafrost S. maltophilia. On the contrary, S. 
maltophilia from other environments exhibited a minimum of 
two kinds of antibiotics or MRG clusters on a single GI. For 
instance, ARGs of aadA2, qacE, sul1, strA, strB, tetA, and 
tetR, as well as two ints, were all located on a single GI of S. 
maltophilia GZP-Sm1 from porcine (He et al. 2015). In addi-
tion, cop, cus operons, and czc genes were all located on the 
GI K25 of the clinical S. maltophilia strain isolated from the 
blood of a cancer patient K279a (Rocco et al. 2009). Thus, 
it was speculated that S. maltophilia from human-impacted 
environments showed more multi-resistance to antibiotics or 
metals than those from less human-impacted environments. 
The result of this study also explained less diversity of ARGs 
and MRGs in the former than in the latter due to the pos-
sibility of horizontal gene transfer (Youenou et al. 2015). 
However, ARGs and MRGs present in GIs still pose a threat 
to human health and can not be ignored (Martinez 2009).

Conclusion

To conclude, the permafrost S. maltophilia exhibited lower 
ARG or MRG cluster components and only one kind of 
ARG or MRG in GIs compared with the strains from human-
impacted areas, which confirmed the lower maximum MIC 
of antibiotics and metals. The present study suggested that 
the clinical S. maltophilia developed higher antibiotic and 
metal resistance due to the horizontal gene transfer of GIs. 
However, only one permafrost S. maltophilia strain was 
recovered and sequenced from the study site. In addition, 
complete genome sequences could not be generated due 
to the constraints inherent in using short-read Illumina 
sequencing data. Further analyses supplemented with long-
read sequencing technology, such as PacBio sequencing, 
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along with more S. maltophilia strains from more per-
mafrosts and a broad range of antibiotics and metals, are 
required to precisely determine the role and mechanism 
ARGs and MRGs in permafrost S. maltophilia.
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