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Abstract
Agricultural waste residues (agro-waste) are the source of carbohydrates that generally go in vain or remain unused despite 
their interesting morphological, chemical, and mechanical properties. With rapid urbanization, there is a need to valorize this 
waste due to limited non-renewable resources. Utilizing agro-waste also prevents the problems like burning and inefficient 
disposal that otherwise lead to immense pollution worldwide. In addition, conversion of biomass to value-added products 
like earthen cups, weaving baskets, and bricks is equally beneficial for the rural population as it provides secondary income, 
creates jobs, and improves rural people’s lifestyles. This review paper will discuss an overview of different applications uti-
lizing agro-waste residues. In particular, agro-wastes used as construction material, bio-fertilizers, pulp and paper products, 
packaging products, tableware, heating applications, biocomposites, nano-cellulosic materials, soil stabilizers, bioplastics, 
fire-retardant additive, dye removal, and biofuels will be summarized. Finally, several commercially available agro-waste 
products will also be discussed, emphasizing the circular economy.
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Introduction

Agricultural activities lead to the generation of some wastes 
or by-products known as agro-waste (Afolalu et al. 2021). 
These agro-wastes include residual straws, shells, stalks, 
manures, leaves, seeds, bedding, hulls, roots, husks, vegeta-
ble matter, and many other significant sources of agro-waste 
(Koul et al. 2022). Millati et al. reported that around 2 bil-
lion tons of agro-waste are generated worldwide annually, 
containing cellulose, hemicellulose, lignin, and extractive in 
different quantities (Millati et al. 2019). This lignocellulosic 
biomass is generally discarded by farmers and industrialists 
(Adeolu and Enesi 2013). Agro-waste is classified into two 
categories based on the origin of the waste, i.e., agro-resi-
dues (from agriculture fields) and industrial-residues (from 

industries after raw material processing). Agro residues can 
further be divided into field and process residues. Field resi-
dues are waste left on fields after crop harvesting, includ-
ing husks, stalks, leaves, and stems. Process residues are 
field residue leftovers after the crop is converted to its final 
form, for example, seed leftovers from cotton linters. On the 
other hand, industrial residues are waste generated during 
any industrial or manufacturing activity, including potato 
peel, soybean oil cake, tea processing waste, and coconut oil 
cake; for example, the beverage industry generates waste like 
orange peels (Vandamme 2009; Sadh et al. 2018).

Several techniques are used to handle agro-waste, includ-
ing burning, unplanned disposal, and feed supplements for 
ruminants and poultry (Kapoor et al. 2016). These waste dis-
posal techniques impose numerous negative consequences: 
Burning agro-waste causes the generation of pollutants, 
emission of greenhouse gases, generation of aerosols like 
N2O, CH4, CO, NOx, huge loss of microbial population, 
and soil nutrients (Porichha et al. 2021). At the same time, 
unplanned dumping of waste in open areas leads to rotting 
and associated environmental issues (Kapoor et al. 2016). 
The failure to manage waste can lead to water, air, and land 
pollution and become another reason for climate change 
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(United Nations Environmental Programme (UNEP) 2009; 
Deshwal et al. 2021). Using agro-waste provides double 
benefits: it provides low-cost biodegradable raw materials, 
creates income, generates jobs, and prevents the harmful 
effects of agro-waste if left untreated, such as stubble burn-
ing, greenhouse gas emissions, and pollutants.

New era innovations make it possible to utilize this bio-
mass as a raw material source for numerous value-added 
products that nourish the circular economy concept. The 
previous study showed that only 8.6% of the world’s econ-
omy was circular by 2020, which means only a small frac-
tion of waste was cycled (de Wit et al. 2020). The circular 
economy concept is based on a production and consumption 
model, which encompasses sharing, renovating, repairing, 
reusing, and recycling existing products as far as possible 
(Hamam et al. 2021). This approach minimizes waste and 
proposes a sustainable alternative to the current practices 
for handling waste. Researchers are making continuous 
efforts to valorize the agro-waste for producing value-added 
products like bio-diesel, bio-hydrogen, biogas, bricks, bio-
degradable cutlery and tableware, biochar, wall panels, 
biofertilizers, particle boards, baskets, earthen cups, can-
dies, and juice by the banana stem (Sonite 2007; Eco India 
2008; Green Science 2011; PaperWise 2015; Bio-lutions 
2017; Varden 2020). Nevertheless, the waste valorization 
is limited to the lab-scale or small-scale businesses and can 
be further explored for novel applications that directly ben-
efit the farmers and achieve a circular economy (Myclimate 
2019; Paul and Sahni 2019).

Few researchers have recently reviewed articles on agro-
waste utilization for human health and everyday lifestyle 
improvement (Dey et al. 2021), bioenergy (Chandra et al. 
2021), and value-added chemicals (Kover et al. 2022). This 
review paper provides detailed studies utilizing agro-waste 

in different applications and value-added products. Valori-
zation potential of agro-waste is presented in construction 
materials (Madurwar et al. 2013), energy production (Maha-
war et al. 2015), pulp production of papermaking (Rousu 
et al. 2002), biofuel (Lee et al. 2019), packaging (Pratiwi 
et al. 2017), composites (Sanyang et al. 2017), cellulose 
nanomaterials (Mateo et al. 2021), biofertilizer (Chojnacka 
et al. 2020), dye removal (Bharathi and Ramesh 2013), and 
soil stabilizers (Kaur and Singh 2018). Moreover, various 
advantages of using agro-waste are also discussed. Some 
commercialized products utilizing agro-waste and their 
selection criteria as raw materials according to their mor-
phological, chemical, and mechanical properties are also 
reviewed. Lack of awareness about technology and envi-
ronmental concerns is critical, and this review attempts to 
provide techno-economic analysis of using agro-waste for 
environmental sustainability.

Selection criteria of agro‑waste for different 
applications

There could be many selection criteria for agro-waste materi-
als utilizing different applications depending on the chemi-
cal composition, morphological characteristics, and calorific 
value. The selection criteria based upon chemical compo-
sition are discussed. Agro-wastes include rice straw, wheat 
straw, banana stem, cotton stalks, sugarcane bagasse, hemp, 
reed, sugar beet waste, rye, cotton linters, corn stalks, and 
pineapple leaf. In Table 1, chemical composition of some 
agricultural wastes is mentioned and is divided into two 
groups, i.e., group A and group B.

Group A contains agro-waste materials with less than 
40% cellulose, and group B contains raw materials with 

Table 1   Chemical composition of the different agro-waste materials

Group Agro-waste residues Chemical composition (%) References

Cellulose Hemicelluloses Lignin Ash Moisture

Group A Sugar beet waste 26.3 18.5 2.5 4.8 12.4 El-Tayeb (2012)
Sugarcane bagasse 30.2 56.7 13.4 1.9 8.34 El-Tayeb (2012)
Sunflower 34.06 5.18 7.72 9.78 - Raud et al. (2015)
Rice straw 39.2 23.5 36.1 12.4 1.83 El-Tayeb (2012)
Silage 39.27 25.96 9.02 - - Raud et al. (2015)

Group B Amur silver grass 42 30.15 7 5.37 - Raud et al. (2015)
Rye 42.83 27.86 6.51 5.21 - Raud et al. (2015)
sawdust 45.1 28.1 24.2 1.2 1.12 El-Tayeb (2012)
Banana stem 49.33 12.04 13.88 4.95 12.43 Subagyo and Chafidz (2020)
Reed 49.4 31.5 8.74 - - Raud et al. (2015)
Hemp 53.86 10.6 8.76 5.25 - Raud et al. (2015)
Corn stalks 61.2 19.3 6.9 10.8 1.92 El-Tayeb (2012)
Pineapple leaf fiber 66.2 19.5 4.2 4.5 81.6 Daud (2014)
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more than 40% cellulose. The raw material can be selected 
from this table depending upon the application. For exam-
ple, if the product is designed to be used as cushioning 
material for packaging or in filling applications to retain 
the shape of products like shoes and bags, a high cellulose 
content is not needed. Hence, material can be selected from 
group A. Whereas, if the end-use of the product is designed 
to have high strength like carton boxes, printing, and writ-
ing papers, then it must have high cellulose content (Bri-
tannica 2017); in that case, the material must be selected 
from group B (El-Saied et al. 2012; Bharimalla et al. 2017). 
However, cellulose content is not the only selection criteria; 
morphological characteristics also play an important role in 
the final strength of the product. As mentioned in Table 1, 
banana fibers should have more strength than bagasse fibers 
due to higher cellulose content, but contradicting results 
were obtained in one study (Guimarães et al. 2009). Banana 
fibers cells were shown to be thick-walled, irregular, and 
non-spherical (Fig. 1a and b), whereas, in contrast, the 
cells of bagasse fibers (Fig. 1c and d) were shown to be 
thin-walled, regularly arranged, and nearly spherical. Thick-
walled fibers are not conformable as they retain their tubu-
lar structure even after pressing. Due to this phenomenon, 
thick-walled fibers of banana possess lower surface area for 
bonding and hence achieved lesser tensile and burst strength 
in the developed paper. In contrast, thin-walled fibers of 
Bagasse do not retain their tubular structure after pressing 
and hence possess a higher surface area for bonding result-
ing in higher tensile and burst strength (Malik et al. 2004). 
It should be noted that other parameters will also play a 
significant role in the properties of the final product, but 
this shows how the material can be analyzed based on only 

its chemical composition and morphological characteristics 
for end-use application.

There are many similarities between wood and agro-
waste, implying that agro-waste can replace woody raw 
material for paper making. In Table 2, numerous proper-
ties of fibers of different raw materials are shown like 
fiber length, fiber diameter, slenderness ratio, alpha-
cellulose, and pentosan content. It can be observed 
that materials on the left resemble hardwood as their 
fiber length is mostly ranging between 1.3 and 2 mm 
is approximately the fiber length range of hardwoods 
(Riley 2012), whereas materials on the right resemble 
softwood as their fiber length ranges between 2 and 
3 mm that is approximately the fiber length range of 
softwoods (Riley 2012). Therefore, one possible way to 
utilize this agro-waste would be to replace hardwoods 
and softwoods in producing papers with required end-
use properties. In the past, several attempts were made to 
replace hardwoods and softwoods with agro-waste (Leão 
et al. 2012; Jani and Rushdan 2016).

Another selection criteria of agro-waste depend on the 
thermo-chemical properties used specifically for energy 
applications. One study found that raw materials contain-
ing a high fraction of fixed carbon can be utilized for char-
ring operation. In contrast, raw materials containing high 
volatile matter, ash content, and fusion temperature may be 
used for combustor/gasifiers to generate energy (Jha 2010). 
Calorific value is also an important factor for combustion, 
and it was reported to be in the range of 14.3–25.4 MJ/kg 
for agro-waste residues (Gravalos et al. 2016). This range 
is due to differences in moisture, ash, and carbon content 
in different raw materials.

Fig. 1   Scanning electron micro-
graphs of fiber cross-sections: 
banana (a and b, magnification); 
bagasse (c and d, magnification) 
(Guimarães et al. 2009)
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Pretreatment of agro‑waste

Agro-waste materials are suitable to replace common fuels 
used in several applications (Saleem 2022). It has enormous 
promise as a feedstock for bioconversion processes used to 
produce energy, fuels, and a wide range of chemicals. It is 
a renewable resource that is widely accessible, and the car-
bon dioxide released during its combustion does not affect 
atmospheric carbon dioxide because of its biogenic origin 
(Mankar et al. 2021). Despite these advantages, one of the 
biggest obstacles to its broad usage has always been its resis-
tive nature in terms of its inherent qualities, which hinders its 
employment in conversion to value-added products. There-
fore, agro-waste pretreatment is necessary as it involves 
structural alteration to overcome its recalcitrant character 
required for its conversion (Zhao et al. 2012). Additionally, 
pretreatment must not interfere with the native structure of 
biomass components. In this regard, the effectiveness of a 
pretreatment method depends on its ability to delignify the 
biomass without much alteration in the native structure of 
components, energy consumption, cost-effective operation, 
reduction in particle size of biomass, etc. (Park et al. 2016).

Generally, the pretreatment approaches can be catego-
rized into physical, chemical, and biological approaches 
(El-Dalatony et al. 2017). The physical pretreatment con-
cerns reducing the particle size of the biomass by employ-
ing millers, extruder screws, grinders, and ultraviolet or 
microwave radiations (S. Agu et al. 2019). The chemical 
pretreatment disrupts biomass structure by disrupting intra- 
and interpolymer bonds within the primary organic compo-
nents (Norrrahim et al. 2021). Various studied compounds 
for chemical pretreatment were acid, organic solvent, alkali, 
and ionic liquids. In biological pretreatment, cellulose, 
hemicellulose, and lignin content of biomass are degraded, 
depolymerized, and cleaved by enzyme-producing fungi 
(Nadir et al. 2020). Assessing the effects of pretreatment 

on agro-waste biomass using cutting-edge analytical tools 
is essential to determining the best method for pretreatment 
(Anukam and Berghel 2021).

Agro‑waste utilization for different 
applications and products

Some of the possible applications of agro-waste in different 
fields are shown in Fig. 2. Agro-waste can be used in heat-
ing applications after combustion and converted to biofuel 
using different enzymes. This biofuel can be further used in 
heat engines as a fuel source and produce mechanical work 
(Steeneken et al. 2011).

Moreover, this heat engine can be associated with a gen-
erator and produce electricity. In addition, agro-waste can 
undergo pulping and be converted to paper and packaging 
products like cartons, paper bags, and tableware (Kumar 
Sinha 1982; Vigneswaran et  al. 2015). Agro-waste can 
also be used to produce biofertilizers that can nurture plant 
growth by supplying the primary nutrients (Chew et al. 
2019) and they are also environmentally friendly compared 
to chemical fertilizers (Chew et al. 2019). When used with a 
binder, agro-waste makes it suitable for manufacturing bio-
bricks (Gupta et al. 2020). Natural fiber polymer composites 
can also be produced by adding agro-waste as reinforcement 
in the polymer matrix. Agro-waste is also utilized to pro-
duce biopolymers like polylactic acid (PLA), which is used 
further in 3D printing applications (Green Science 2011). 
Table 3 summarizes the applications of agro-waste materials 
that are mentioned in this review paper.

Combusting agro‑waste for energy applications

Fossil fuel is used for energy production but is not a long-
term solution for increasing energy demand. Agro-waste is 

Table 2   Similarity between woody and non-woody raw materials (Sridach 2010)

Properties Unit Rice straw Wheat straw Bagasse Reed grass Bamboo Jute Hemp Kenaf
Resembles hardwood Resembles softwood

1% NaOH solubility % 57.7 43.6 33.9 34.8 24.9 28.5 - 28.4
Alcohol benzene soluble % 0.6 4 1.7 6.4 2.3 2.4 2.6 2.1
Ash % 15–20 4–9 1.5–5 3 1.7–5 1.6 5–7 2–5
Fiber diameter mm 8 13 20 20 8–30 18 22 20
Fiber length mm 1.41 1.48 1.7 1.5 1.36–4.03 2.5 2.0 2.74
Hot water soluble % 7.3 12.3 4.4 5.4 4.8 3.7 20.5 5.0
L/d ratio 175:1 110:1 85:1 75:1 135–175:1 139:1 100:1 135:1
Lignin % 12–16 16–21 19–24 22 21–31 11.5 2–4 15–18
Pentosans % 23–28 26–32 27–32 20 15–26 24 4–7 21–23
Silica % 9–14 3–7 0.7–3 2 1.5–3  < 1  < 1 -
α-Cellulose % 28–36 29–35 32–44 45 26–43 61 55–65 31–39
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an excellent renewable energy resource that can work with 
various energy conversion technologies. Apart from working 
as an energy source, agro-wastes can also generate employ-
ment for farmers and work as a carbon neutralizer (Singh 
and Raghuwanshi 2015). Mahawar et al. depicted that effi-
ciently using 150 million tons of biomass can reduce CO2 
emissions by over 250 million tons each year. This study 
used coal and agro-waste (mustard crop residue) to produce 
energy, but both had different consequences (Mahawar et al. 
2015). It was found that there is less emission to air in the 
form of NOx, SOx, and CO2 in the case of mustard crop 
residue, hence supporting a clean environment. Moreover, 
the generation of ash content and water consumption in the 
power plant is lesser in this case. Furthermore, corn cobs 
were also utilized with tropic starch as a binder to produce 
briquettes in different concentrations of 6, 10, 14, and 19% 
and studied properties like moisture content, ash content, 
fixed carbon content, and bulk density from each of four 

samples (Zubairu and Gana 2014). A comparison was made 
between produced briquette with the briquette made from 
sugarcane bagasse and wood charcoal. It was found that the 
moisture in corn cobs briquettes was more than in wood 
charcoal briquettes and lesser than in sugarcane bagasse 
briquettes. Also, the heating value of corn cobs (32.43 MJ/
Kg) briquette was higher than both wood charcoal briquette 
(8.27 MJ/Kg) and sugarcane bagasse (23.43 MJ/Kg) bri-
quette. Another study incorporated cotton plant waste resi-
dues and pecan shells to produce briquettes (Coates 2000). 
Consequently, agro-waste converted to briquettes could be 
used in heating applications with promising results.

Biofuels

Biofuels may be in the form of solid, liquid, or gaseous 
fuel, and it consists of briquettes, bioethanol/bio-diesel, 
and bio-hydrogen/biogas, respectively. Biofuel is produced 

Fig. 2   Agro-waste utilization 
for various end-use applications
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by thermochemical or biochemical conversion of biomass 
(Sarkar et al. 2012). When agricultural waste is used to 
produce biofuel, it is known as second-generation biofuels. 
First-generation biofuels are produced from starch, sugar, or 
oil extracted from vegetable oil and are not considered sus-
tainable as they are directly competing with the food mate-
rials, but for second-generation biofuels, leftovers of agro-
waste are used (Mohammed et al. 2018). Bioethanol from 
renewable feedstock sources such as rice straw, corn straw, 
sugarcane bagasse, and wheat straw (Sarkar et al. 2012) is a 
potential substitute for petroleum-derived fuels (Demirbas 
2008). As depicted in Fig. 3, the bioethanol production pro-
cess generally consists of pretreatment, enzymatic hydroly-
sis, and fermentation of biomass. Pretreatment is done with 
water, steam, and acid to ensure the delignification of the 
biomass, and a base may be added to maintain the ideal pH 
for maximizing the activity of the enzymes (da Silva et al. 
2012). In the next step, enzymatic hydrolysis occurs, where 
cellulose and hemicellulose are broken down to glucose 
and xylose, respectively. Finally, the sugars produced are 

fermented where microorganisms (e.g., yeast and bacteria) 
metabolize plant sugars, forming alcohol and CO2 follow-
ing the distillation (Bayer et al. 2010). During distillation, 
ethanol emerges from the fermented mixture of ethanol and 
water (because ethanol evaporates faster than water), rises 
through a tube, collects, and condenses into another con-
tainer. Finally, the bioethanol gets separated and can be used 
in further applications (Pocock 2008).

Sugarcane bagasse was utilized to produce biofuels 
(Buaban et al. 2010). Bagasse was ball milled so cel-
lulose structure could become amorphous and easily 
attackable by hydrolytic enzymes. It was reported that 
saccharification yield for glucose was 84% and 70.4% 
for xylose. After enzymatic hydrolysis, fermentation 
of obtained sugar units resulted in ethanol with a con-
centration of 8.4 g/l and a conversion yield of 0.29 g 
ethanol per gram of fermentable sugars. In another 
study, wheat straw was utilized for ethanol production, 
implementing overliming with Ca(OH)2 followed by 
boiling treatment, which enhanced the fermentability of 

Table 3   Summary of all the applications of agro-waste mentioned in the review paper

Material Application References

Rice straw and husk Biofuel, packaging films, conducting paper, cellulose 
nanofibrils, cellulose nanocrystals, ceiling boards, soil 
stabilizer, paper, paperboard, tableware

Ajiwe et al. (1998); Abe and Yano (2009); Youssef et al. 
(2012); Lu and Hsieh (2012); Rosa et al. (2012); Wi 
et al. (2013); Harikumar et al. (2016); Pratiwi et al. 
(2017); Jayashree and Yamini Roja (2019); Liu et al. 
(2019); Rizal et al. (2020); Rattanawongkun et al. 
(2020); Saini et al. (2021)

Wheat straw Biofuel, cellulose nanofibrils, cellulose nanocrystals, 
bricks, paper

Helbert et al. (1996); Nigam (2001); Deniz et al. (2004); 
Vargas et al. (2012); Hassan et al. (2018)

Sugarcane bagasse, rind Biofuel, conducting paper, cellulose nanofibrils, cel-
lulose nanocrystals, bricks, soil stabilizer, paper, 
tableware

Buaban et al. (2010); Youssef et al. (2012); Ali et al. 
(2014); Rahimi Kord Sofla et al. (2016); Liu et al. 
(2018); Novo et al. (2018); Srisuwan et al. (2018); 
Varghese et al. (2020)

Mustard crop residue Energy Mahawar et al. (2015)
Corn cobs, corn stalk Energy, paper Jahan and Rahman (2012); Zubairu and Gana (2014)
Cotton plant residues Energy, biocomposite, building materials Coates (2000); Algin and Turgut (2008); de Souza et al. 

(2020)
Cotton linters Cellulose nanofibrils, cellulose nanocrystals Montanari et al. (2005); Oun and Rhim (2015)
Pecan shells Energy Coates (2000)
Coconut shell Packaging films, dye removal Ahmadpour and Do (1996); Bernardo et al. (1997); 

Hayashi et al. (2000); Tanwar et al. (2021)
Coconut husk Cellulose nanowhiskers, bricks, soil stabilizer Nascimento et al. (2014); Srisuwan et al. (2018); Jagwani 

and Jaiswal (2019)
Pineapple peels and leaves Packaging films, biocomposite Hammajam et al. (2019); Kumar et al. (2021)
Banana pseudostem Packaging films, cellulose nanofibrils, cellulose 

nanocrystals, soil stabilizer, paper
Mueller et al. (2014); Gobinath et al. (2020); Othman 

et al. (2020); Rattanawongkun et al. (2020)
Cassava waste Biofertilizer, dye removal Ogbo (2010); Isiuku et al. (2014)
Kenaf bast fibers Cellulose nanocrystals Kargarzadeh and Ahmad (2012)
Cocoa pod husk Biocomposite Sanyang et al. (2017)
Peach palm waste Biocomposite Leão et al. (2012)
Grape peels Dye removal Ma et al. (2018)
Dragon fruit peels Dye removal Jawad et al. (2018)
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hydrolysate as overliming was responsible for chemical 
conversion of inhibitors which inhibits enzymes activ-
ity and reduces their rate of reaction which resulted in 
2.4 ± 0.1 fold increment in ethanol yield (Nigam 2001; 
Horváth et al. 2005; Sheikh and Bramhecha 2019). Rice 
straw was also utilized to produce ethanol and studied 
the effect of popping pretreatment in sugar recovery 
before enzymatic hydrolysis and fermentation, which 
resulted in yield increment from 0.270 g/gram of bio-
mass to 0.567  g/gram of biomass (Wi et  al. 2013). 
Changes in the surface area of rice straw after pop-
ping pretreatment were investigated. The surface area 
was increased twofold after pretreatment, making the 
substrate more accessible for enzymes and leading to 
more efficient hydrolysis of cellulose. Hence, ferment-
ability of raw materials was improved. A comparison 
of sugar recovery was made between pre-treated and 
untreated rice straw. It was observed that sugar recovery 
was higher in pre-treated rice straw because cellulose to 
glucose conversion efficiency was increased due to pop-
ping treatment. It can be observed from these studies 
that milling, overliming, and popping treatments make 
the enzymes accessible for enzymatic hydrolysis is an 
important step in the formation of bioethanol. More 
attempts have been made to assess the availability of 
agro-waste for the production of bioenergy in Romania 
(Scarlat et al. 2011), Nigeria (Iye and Bilsborrow 2013), 
Zimbabwe (Shonhiwa 2013), Colombia (Gonzalez-Sala-
zar et al. 2014; Patiño et al. 2016; Eras et al. 2019), 
China (Jiang et al. 2012; Qiu et al. 2014), etc.

Pulp production

For environmental and socio-economic issues, the use of 
agro-waste in papermaking is essential. Moreover, some 
agro-waste shows similar properties to woody raw materials, 
which justifies its utilization in papermaking (see Table 2). 
Figure 4 shows the typical pulp production by agro-waste 
using chemical pulping, but other pulping methods like 
mechanical pulping and Organosolv pulping can also be 
employed (Rodríguez et al. 2008; Saini et al. 2021). Gener-
ally, the agro-waste is collected and transported to the pulp-
ing facility, followed by the chemical pulping. After pulping, 
the pulp undergoes different bleaching sequences depending 
upon the final brightness required for the end-use applica-
tions, and finally, paper is produced on the paper machine. 
Chemical recovery of useful chemicals and wastewater treat-
ment works simultaneously to improve the cost-effectiveness 
of the papermaking process and the compliance with the 
government norms for environmental concerns.

Many studies have been carried out by considering agro-
waste as raw material for pulp, like rice straw (Rodríguez 
et al. 2008), canola (Kiaei et al. 2014), wheat straw (Berg 
et al. 2014), abaca (Jiménez et al. 2005), bagasse (Ferdous 
et al. 2020), kash (Ferdous et al. 2020), corn stalks (Fer-
dous et al. 2020), cotton linters (Abd El-Ghany 2009), Mis-
canthus x giganteus (Brosse et al. 2009), and pineapple leaf 
(Daud et al. 2015). Both writing and printing grade paper 
can be produced from agro-waste. Ruchira Papers Limited, 
India, founded in 1980 produces writing and printing grade 
papers with agro-waste residues like wheat straw, bagasse, 

Fig. 3   Production process of bioethanol by agro-waste

73628 Environmental Science and Pollution Research  (2022) 29:73622–73647

1 3



and Tripidium bengalense (Ruchira Papers 1980). Agro-
waste can also be used to manufacture paper bags with good 
strength properties (Willamette Falls 2020).

Chemical pulping covers a major part of all pulping 
methods, so many studies have been reported. Jiménez 
et al. reported pulping conditions of abaca (Manila hemp) 
as soda concentration of 5–10%, pulping time 15–45 min, 
and temperature of 150–170 °C (Jiménez et al. 2005). The 
pulp’s optimum properties were achieved at soda concen-
tration, time, and high temperature of 7.5%, 30 min, and 
170 °C, respectively. Pulp produced had a high kappa num-
ber (28.34), high yield (77.33%), and good strength prop-
erties like tear index, stretch, and breaking length. This 
pulp can have application in paper bags where strength is 
important, and the color is not a governing factor. In another 
study, chemical pulping on pineapple leaves was studied, and 
mechanical properties were compared with date palm rachis 
and palmyra fruit (Daud et al. 2015). The results revealed 
that the tensile index of pulp obtained by pineapple leaf was 
better than date palm rachis but lower than palmyra fruit. 
This difference could be due to cellulose content and/or 
morphological characteristics as explained in the selection 
criteria of raw material. Cellulose content and fiber length 
are as follows: palmyra fruit (53.4%, 50 mm) (Srinivasa-
babu et al. 2014; Reddy et al. 2016); pineapple leaf (62.5%, 
6 mm) (Asim et al. 2015; Mahardika et al. 2018); date palm 
rachis (41.2%, 1.3 mm) (Mahdavi et al. 2010; Ammar et al. 
2012). Clearly, both cellulose content and fiber length are 
important in the final selection of the raw material for a 
specific application. Neutral sulfite semi-chemical (NSSC) 
pulping of the Canola plant was also studied, and properties 

like breaking length, tear index, burst index, stiffness were 
compared with mixed hardwood NSSC pulp (Kiaei et al. 
2014). It was reported that the tensile and burst strength 
properties of canola NSSC pulp were enhanced than mixed 
hardwood NSSC pulp when they were used in corrugation 
application. Due to a lower Runkel ratio (0.47), the ratio of 
fiber cell wall thickness to lumen diameter, canola pulp fib-
ers have good bonding ability since they collapse in ribbon-
like structure and provide more surface area for bonding. 
NSSC pulping of sugarcane bagasse was also investigated 
and found that this raw material has promising properties to 
be used in conjunction with hardwoods, and softwoods and 
can be utilized in corrugated boards application (Samariha 
and Khakifirooz 2011).

Organosolv pulping is also excessively used on various 
raw materials to produce pulp as this is an environmentally 
benign process. In one study, the mechanical properties 
of sunflower stalks were determined after employing dif-
ferent pulping methods like soda, ASAE (alkaline sulfite-
anthraquinone-ethanol), neutral sulfite, and peracetic acid 
(Barbash et al. 2016). Studies revealed that pulp obtained 
from ASAE is best because it had the lowest kappa num-
ber (i.e., an indication of remaining lignin content) at the 
same yield due to efficient delignification. The described 
reason for this delignification was the prevention of lignin 
condensation by the organic solvent and fragmentation of 
lignin by alcohol alkylation of hydroxyl groups in the alpha 
position. In another study, wheat straw and rye straw were 
taken as raw materials, and their pulp characteristics were 
compared after monoethanolamine/anthraquinone (MEA/
AQ), soda, and soda/AQ pulping (Salehi et al. 2014). For the 

Fig. 4   Utilization of agro-waste 
in pulp and paper making 
(Chakraborty et al. 2019)
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different MEA/water and bath ratios, delignification behav-
ior was observed, and the effect of the addition of KOH 
in pulping liquor was also observed. It was revealed that 
adding KOH to pulping liquor has no significant effect. For 
an equal degree of delignification, MEA/AQ pulp showed 
10% more yield than soda and soda/AQ pulp due to the high 
selectivity of monoethanolamine. As the MEA/water ratio 
decreased, yield and kappa number increased, but optimum 
results were obtained at a ratio of 50/50. Rye straw pulp was 
found superior in mechanical properties, yield, and bleach-
ability to wheat straw pulp. Additionally, solvent pulping 
with pre-hydrolysis of cotton linter was studied and com-
pared to commercial softwood pulp (Abd El-Ghany 2009). 
It was concluded that prehydrolyzed cotton linter pulp had 
lower hot alkali solubility, higher α-cellulose content, and 
higher crystallinity than the commercial softwood pulp. It is 
depicted in these studies that pulps produced by agro-waste 
incorporating Organosolv pulping undergo efficient deligni-
fication, show good mechanical properties, and contribute to 
a greener approach to pulp production.

Tableware

Plastic products are extensively used in several fields, such 
as the food industry, packaging, electronics, and construc-
tion (Gu and Ozbakkaloglu 2016). A report stated that peo-
ple use 500 billion single-use plastic cups every year, and 
this data is sufficient to know the dependency on plastics for 
producing tableware (Fact sheet 2018). The disadvantage of 
using plastic is that it takes many years to degrade; that is 
why agro-waste, a biodegradable material, is getting popu-
lar for producing tableware (Leblanc 2021). These table-
wares are produced by the pulp thermoforming technique, 
consisting of steps like mixing, forming, drying, pressing, 
and trimming (SPI 2018). In this manufacturing technique, 
raw materials are first diluted in water and deposited on the 
porous mesh via applied vacuum to form a pulp preform of 
the desired shape. The preforms are dried in molding dies 
under high temperature, pressure, and trimmed if neces-
sary, to achieve the required features in the final pulp-based 
tableware. In a study, rice straw was suggested to produce 
food carrying bowl (Saini et al. 2021). Refiner mechanical 
pulping (RMP) and chemical pulping were used to produce 
paperboard, later pressed into bowls. Paperboard made up of 
RMP was of lower mechanical strength, better smoothness, 
and porosity than chemical pulping. Although the tensile and 
burst index of the RMP paperboard was equivalent to that of 
grade III kraft paper as specified in IS 1397:1990. Even after 
being lower in mechanical strength, bowls produced through 
RMP were suitable for food serving applications. Sugarcane 
bagasse was also utilized for pulp-based tablewares (Liu 
et al. 2018). The strength properties of bagasse-based table-
ware were reported to be increased with the bamboo fibers 

as reinforcement by interwinding with bagasse fibers (Liu 
et al. 2020). The degradation time of tableware was expected 
to be 60 days, whereas this degradation time for plastic is 
way more than this. As a concluding remark, biodegradable 
tableware is not only utilizing the otherwise burned waste 
but is also good for the environment as it degrades very fast 
compared to synthetic plastics. However, currently, the cost 
of biodegradable tableware is more than the conventional 
plastic tableware, which is a huge concern for consumers, 
and researchers must work on the economic viability of the 
tableware (YutoEco 2022).

Packaging industry

Packaging plays an important role in commercializing any 
product, especially in the consumer-packed goods indus-
try, and significantly affects consumers’ buying decisions 
(Mohebbi 2014). Various commercial packaging products 
are cartons, films, paperboards, containers, corrugated film 
boards, kraft bags, etc. Molded pulp packaging is in huge 
demand due to its environmental advantages and is synthe-
sized by fibrous materials like recycled paper and natural 
fibers. This molded pulp packaging makes thermoformed 
products like egg cartons, fruit trays, food packaging, shoe 
inserts, glass bottle packaging, and electronic appliances 
packaging (QTM 2018; Pulp2Pack 2021). Out of these 
packaging, food packaging is the most crucial packaging 
application as it directly affects consumer health. Food 
packaging must provide mechanical support to food prod-
uct and defends foods from external influences like micro-
bial contamination, light, insects, water vapor, oxygen, and 
dirt and dust particles (Lee and Rahman 2014). The most 
commonly used technique for producing films in labscale 
is solvent casting, as shown in Fig. 5a (Suhag et al. 2020). 
Also, the tradition of active compounds obtained from natu-
ral resources (agro-waste) is in trend now as chemical com-
pounds like BHA (butylated hydroxyanisole) and BHT (but-
ylated hydroxytoluene) can cause health risks that are toxic 
for human consumption. Various bioactive compounds are 
responsible for the antioxidant properties in different waste, 
such as extracts from pineapple peel and coconut shells, as 
shown in Fig. 5b. In a study, agro-food waste, i.e., coconut 
shell, was successfully valorized in packaging applications 
as an active antioxidant agent (Tanwar et al. 2021). Polyvinyl 
alcohol and starch were used as a biocomposite matrix and 
incorporated coconut shell extract in 3, 5, 10, and 20%. For 
increasing barrier and mechanical properties, sepiolite clay 
was also added. Films were developed using the solution 
casting technique, and fabricated films showed enhanced 
antioxidant activity due to the catechin and phenolic com-
pounds in coconut shell extract. These films were used as 
antioxidants for lipid-based food, fried products, and food 
vulnerable to oxidation. In another study, Pineapple peel 
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extracts were also utilized in polyvinyl alcohol (PVOH) and 
corn starch (ST) packaging films (Kumar et al. 2021). The 
films were developed using the solution casting by adding 
5, 10, 15, and 20% (v/v) pineapple peel extracts into the 
PVOH/ST matrix. Films obtained possess antioxidant activ-
ity confirmed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) 
radical scavenging assay. Compounds such as catechins, fer-
ulic acid, and gallic acid were responsible for the antioxidant 
activity. The thermal stability in developed films was also 
enhanced due to the incorporation of pineapple peel extracts.

The utilization of rice straw was analyzed as a potential 
material for packaging applications (Pratiwi et al. 2017). 
Chitosan and cellulose extracted by rice straw in different 
proportions were selected to produce a bioplastic using 
phase inversion and solvent casting technique. Mechani-
cal properties like tensile strength, modulus of elasticity, 
elongation at break, and water absorption were studied. 
It was found that at a chitosan/cellulose ratio of 3:10, the 
water absorption of produced bioplastic is highest. This 
property will help bioplastic degrade quickly compared 
to synthetic plastics like polyethylene terephthalate and 
polypropylene. At the same time, the mechanical prop-
erties were found to be highest at ratio 4:10. In another 
study, banana pseudostem was incorporated with starch 
in different percentages (0, 10, 20, 30, 40%) to produce 
a biocomposite film for food packaging (Othman et al. 

2020). Films were made using solvent casting, and films’ 
optical, mechanical, and barrier properties were analyzed. 
The film’s mechanical and optical properties increased 
when the percentage of banana waste increased from 10 
to 40%, but it is always lower than neat starch film. This 
effect was attributed to the weak intermolecular interac-
tion between banana waste and starch in lower percent-
ages of banana pseudostem (Shapi’i and Othman 2016). 
However, favorable results were found in barrier properties 
like WVTR (water vapor transmission rate) and OTR (oxy-
gen transmission rate). Both OTR and WVTR decreased 
with an increase in banana pseudostem waste, which vali-
dates their use as a replacement for non-biodegradable 
food packaging material. In a study, conducting paper was 
synthesized by agro-waste (rice straw and bagasse) coated 
with conductive polymers (polyaniline, PANi) via In-situ 
emulsion polymerizations. Obtained hybrid product was 
also suggested as an anti-bacterial packaging material 
(Youssef et al. 2012). As the ratio of PANi increased, the 
electrical conductivity of paper increased, but on the other 
hand, mechanical properties decreased. The reason for this 
decrement was the inherent brittleness of PANi, so when 
it intercalates between cellulosic fibers, it decreases the 
mechanical properties (Youssef et al. 2012). Hence, it is 
clear that agro-waste was used in almost all kinds of pack-
aging like cartons, packaging films, and paper packaging.

Fig. 5   a Solution casting tech-
nique for production of films. b 
Incorporation of agro-waste in 
production of active packaging 
films (Peighambardoust et al. 
2021)
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Biofertilizers

Biofertilizers consist of living microorganisms that increase 
soil fertility and plant growth by supplying the required 
nutrients to the plant. As shown in Fig. 6, many conver-
sion methodologies of agro-waste into biofertilizers like 
anaerobic digestion, chemical hydrolysis, in-situ degrada-
tion, and direct burning, resulting in products like digestate 
soil conditioner, soluble biowaste substance, degraded crops, 
and minerals, respectively. These products can be used as 
biofertilizers in soil (Du et al. 2018). Anaerobic digestion 
(AD) is a natural organic matter degradation process in the 
absence of oxygen in environments such as the bottom of 
lakes and the intestines of animals. The key objective of 
AD is to treat waste streams and generate biogas. In addi-
tion, the solid residue of AD could be further processed 
into a biofertilizer or soil conditioner (Tampio et al. 2016; 
Ndubuisi-Nnaji et al. 2020). In chemical hydrolysis, bio-
mass is treated via acid or alkaline hydrolysis at moderate 
temperature, resulting in a soluble bio-waste substance. This 
soluble bio-waste substance is then dried to form a solid 
product used as a biofertilizer (Rosso et al. 2015; Du et al. 
2018). In-situ degradation is a low-cost option to generate 
an organic fertilizer as it returns all nutrients to soil on site. 
In-situ degradation uses only indigenous microorganisms 
that take considerable time, generally 3–6 months. This long 
decaying period restricts the amount of residue loaded into 
the field (Du et al. 2018). In contrast, the direct burning of 
agro-waste is the fastest way of transferring the nutritional 
content of agro-waste to the soil (like potassium), which 
transforms almost all organic matter into gaseous oxides and 
a few mineral elements, but its benefits are limited in soil 
nutrient enrichment and cause severe air pollution, erosion, 
soil organic matter loss, and loss of microbial population 
(Du et al. 2018).

In a study, biofertilizers were produced from five agro-
wastes (Kanmani et al. 2009; Lim and Matu 2015), utilizing 

watermelon, papaya, pineapple, citrus orange, and banana. 
Fermentation was done in two batches, and analysis was 
done separately to observe the effect. The fermentation time 
of the second batch is lower than the first batch because 
the first batch’s precursor increases the reaction rate. After 
applying the biofertilizer of different agro-wastes to a mus-
tard plant, potassium content, pH, average weight, and the 
average length of the longest root were analyzed. Citrus 
orange waste had the lowest pH and potassium content. High 
acidity affected plant growth, and hence citrus orange waste 
was not suggested to be used as a biofertilizer. Conversely, 
bananas, papaya, and melon had higher pH and potassium 
content, so they were advised to be used as biofertilizers. 
Due to lower acidity and higher potassium content, gain in 
plant weight and increased average longest root length was 
reported compared to untreated plants. In another study, 
banana pseudostem was reported to synthesize bioferti-
lizer incorporating cellulolytic bacteria (Mahalakshmi and 
Naveena 2016). It was discovered that cellulolytic bacteria 
degraded banana pseudostem and released the bound potas-
sium, an essential nutrient for plant growth. In another study, 
cassava waste was valorized to biofertilizer using different 
fungi incorporating semi-solid fermentation (Ogbo 2010). It 
was reported that biofertilizer produced by fungi Aspergil-
lus niger improved the growth of pigeon pea significantly, 
but fungi Aspergillus fumigatus failed to show this growth. 
It is depicted that biofertilizers are always preferred over 
chemical fertilizers, and agro-wastes are used with or with-
out fungi to produce the biofertilizers.

Cellulose nanomaterials

Nanocellulose is a natural nanomaterial extracted from 
the plant cell wall, with one or two dimensions (length or 
diameter) ranging from 1 to 100 nm. There are two main 
nano-cellulose materials: cellulose nanofibrils (CNF) and 
cellulose nanocrystals (CNC). Due to several interesting 
properties such as high aspects ratio, high strength, high 
surface area, and excellent stiffness (Phanthong et al. 2018), 
they are utilized in applications like paper and packaging, 
hygiene products, food sector, skincare products, health-
care, paints, artificial kidneys, sensors, and tissue engineer-
ing applications (Mishra et al. 2018). Some of the recent 
applications of nanocellulose are shown in Fig. 7, consist-
ing of applications in emulsifiers (Goi et al. 2019), carbon 
dots anchoring (Jiang et al. 2016; Gea et al. 2018), biomedi-
cines (Lin and Dufresne 2014), biocomposites (Omran et al. 
2021), etc. Nanocellulose works as a particle stabilizer in 
emulsions, and it attracted huge attention among all-natural 
biomacromolecules due to its renewable, economic, and 
non-toxic characteristics. In addition, it is also readily acces-
sible to physical or chemical modifications (Li et al. 2021). 
CNF can be synthesized by agro-waste and incorporated as 

Fig. 6   Conversion methodologies of agro-waste to biofertilizer (Du 
et al. 2018)
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reinforcing filler in biocomposites (Alemdar and Sain 2008). 
In transparent nano cellulosic film, the carbon dots enhance 
UV blocking characteristics and protect from microbial 
growth (Feng et al. 2017). A recent study developed a fluo-
rescent hydrogel of nanocellulose based on carbon dots for 
enhanced adsorption and sensitive sensing of heavy metals 
(Guo et al. 2019; Kousheh et al. 2020). Nanocellulose also 
has application in the development of biomedical materials 
from the molecular level of cellular cultivation to macro-
scopic biomaterials consisting of substitute implants, drug 
delivery, tissue repair, regeneration, etc. (Lin and Dufresne 
2014).

Sugarcane bagasse was suggested to extract cellulose 
nanofibrils (CNF) and cellulose nanocrystals (CNC) (Kumar 
et al. 2014; Rahimi Kord Sofla et al. 2016). The process 
employed to extract CNF was ball milling; for CNC, it was 
conventional acid hydrolysis. It was revealed that CNC had 
higher crystallinity than CNF because most of the amor-
phous region was eliminated from microfibrils during acid 
hydrolysis. It was also depicted that CNC and CNF had 
higher crystallinity than raw bagasse due to the removal of 
lignin and hemicellulose. CNC was found to have a needle-
like structure and a low aspect ratio, whereas CNF was a 
rope-like structure having a higher aspect ratio. CNCs were 
observed to have higher thermal stability when compared to 
native cellulose fibers. Kenaf bast fibers were also used for 
extracting cellulose nanocrystals (Kargarzadeh and Ahmad 
2012). It was reported that crystallinity increases during 
early durations of hydrolysis, but as this duration increases 
beyond 40 min, crystallinity reduces along with thermal 
stability. Unripe coconut husk fibers were also exploited to 
extract cellulose nanowhiskers (CNW) (Nascimento et al. 
2014), utilizing the Organosolv pulping, alkaline bleach-
ing of pulp with H2O2 and NaOH, and finally hydrolyzing 
with sulfuric acid. Other than the mentioned raw materials, 
researchers also extracted CNC and CNF from agro-wastes 
like soy hulls (Pires et al. 2013), rice straw and potato tuber 

(Abe and Yano 2009), rice straw (Lu and Hsieh 2012), rice 
husk (Rosa et al. 2012), cotton linters (Montanari et al. 2005; 
Oun and Rhim 2015), banana plant (Mueller et al. 2014), 
pineapple leaf (Cherian et al. 2010), and wheat straw (Hel-
bert et al. 1996).

Biocomposites

Composites are generally produced by combining two or 
more different materials with different properties to get 
the combined properties in the same material. Waste plas-
tics can be incorporated with natural materials like coco-
nut, banana, sisal, bamboo, curaua, jute, and pineapple, to 
produce low-cost, superior, and biodegradable composites 
(Leão et al. 2012). Figure 8a shows the possible ways to 
utilize organic waste and residues in natural fiber polymer 
composites (NFPCs). It is shown that fiber reinforcement 
is done in the polymer matrix; these fibers can be used 
directly or processed by anaerobic digestion. The digestion 
releases biogas, which produces energy for thermal conver-
sion. In addition, agro-waste can be directly burned to pro-
duce energy for thermal conversion and generate biochar, 
which is sometimes added to increase the thermal stability 
of NFPCs (Väisänen et al. 2016). For extracting polymer, 
the fiber digestate is gone under thermal conversion in which 
the polymeric materials are dissolved in liquid and can be 
fragmented and purified for further use. The synthesized 
polymer is then reinforced with fibers and additives, produc-
ing NFPC. Figure 8b shows the typical dog bone-shaped 
composites produced by reinforcing latania natural fiber 
in polypropylene (PP)/ethylene-propylene-diene-monomer 
(EPDM) (Nasihatgozar et al. 2016).

In a study, cotton waste and paper industry waste were 
used to produce nanocellulose (de Souza et al. 2020). Cotton 
waste nanocellulose (CW-N) and industrial waste nanocel-
lulose (IW-N) were integrated with poly(lactic acid) matrix, 
and mechanical properties were analyzed. Both CW-N and 
IW-N showed similar physiochemical properties, but mor-
phology was very different; CW-N was found to be nano 
fibrillar with a mean diameter of 30 nm, and IW-N was 
spherical and irregular structure having a mean diameter 
in the range of 60–200 nm. Biocomposite synthesized from 
both CW-N and IW-N was obtained with enhanced tensile 
strength due to efficient stress transfer to the filler. This bio-
composite was advised to be used in food packaging and 
biomedical applications. Cocoa pod husk (CPH) was also 
used as a natural filler in many studies with polymer matrix 
of polylactic acid (Sanyang et al. 2017), polypropylene 
(Chun and Husseinsyah 2016), polyurethane (El-Shekeil 
et al. 2014), and epoxy resins (Imoisili 2013). For CPH/PLA 
composite films with 0, 5, 10, and 15 wt% fillers (Sanyang 
et al. 2017), tensile strength increased with the fillers from 
0 to 10% (good dispersion of filler in the polymer matrix) 

Fig. 7   Applications of nanocellulose in different domains
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and decreased when filler loading increased to 15%, pos-
sibly due to agglomeration of CPH in the polymer matrix 
and bad interfacial adhesion between CPH (hydrophilic) 
and polymer matrix (hydrophobic) (Chun and Hussein-
syah 2016). Whereas, for corn husk flour/PLA composites 
(Jagadeesh et al. 2013), only flexural modulus increased, 
and other mechanical properties like impact, tensile, and 
flexural strength were reduced. This reduction in tensile 
strength was attributed to the irregular shape of filler as 
moderate spaces were generated in interfacial bonding of 
polymer matrix and fiber, and they become unable to sup-
port stresses that are transferred from the polymer matrix. 
One more possible reason for reduced tensile strength in the 
case of corn husk composites could be the high ash content 
(24.9%) in comparison to cocoa pod husk with lower ash 
content (12.3%). Ash is an inorganic material that does not 
contribute to bonding. Plastic waste was also utilized along 
with peach palm waste (shells and sheaths) as reinforce-
ment for synthesizing composite panels (Leão et al. 2012). 
It was deduced that fraction of added peach palm waste was 
crucial in determining the suitability of composites, as the 
sample where the percentage of natural material was less 
than plastic waste (60% plastic waste + 40% natural material) 
showed good physical properties and thickness swelling was 

also in the acceptable range that is maximum 8% for high-
density panels. Pineapple leaf fibers (Munawar et al. 2015) 
and millet husk fiber (Hammajam et al. 2019) were also 
utilized as reinforcement in PLA. Referring these studies, 
it can be observed that many kinds of agro-waste are being 
used as reinforcement in biocomposites and performing well 
in terms of strength.

Construction materials

As the population increases, the need for more and more 
construction is arising, due to which more cement, bricks, 
mortar, and other related materials are required. The cement 
industry, for example, causes a lot of greenhouse gas emis-
sions and CO2 footprints, i.e., 5–8% (Zhang et al. 2014; 
Kajaste and Hurme 2016); hence, there is a need to use 
some other raw materials for construction purposes, and 
agro-waste is studied extensively for this work. In Fig. 9, 
it is shown that agro bricks and agro cement can also be 
produced by agro-waste, which can be further used in con-
struction applications.

Different agro-wastes (coconut husk, grass, and sugar-
cane bagasse) were used to produce fired clay bricks in dif-
ferent fractions from 0 to 7.5 wt% (Srisuwan et al. 2018). 

Fig. 8   a Possible ways to utilize organic waste and residues in natural fiber polymer composites (NFPCs) (Väisänen et al. 2016). b Picture of dog 
bone shape composite made up of agro-waste (Nasihatgozar et al. 2016)
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The concept was to create some porosity in the structure 
(during firing of bricks at high temperatures, agro-waste is 
sacrificed), so lattice vibration in brick can be minimized, 
making its thermal conductivity less and working as a ther-
mal insulator. However, due to the open structure of agro 
residues, the porosity of brick was more; therefore, it can 
result in more water absorption, which is a question of the 
durability of bricks. It was reported that there is a significant 
decrement in the compressive strength of bricks after mix-
ing this agricultural waste. In addition, it was revealed that 
as the waste percentage increases in bricks, shrinkage also 
increases due to more pores and more space available for 
grain growth of particles during firing, and simultaneously 
bulk density was decreased due to more porosity. In another 
study, bagasse and wheat straw were utilized as an additive 
in the fired bricks up to 5% together with 0.5% polystyrene 
(PS), and then bricks were fired at 1250 °C for 2 h (Hassan 
et al. 2018). Unlike the previous study, polystyrene is added 
with agro-waste to increase the porosity further, resulting in 
a large decrease in thermal conductivity, enabling it to work 
as a lightweight thermal insulator.

Besides bricks, agro-waste also found its application in 
agro-cement, ceiling boards, and other building materials. In 
a study, agro-waste was represented as sustainable pozzolans 
in cement, and filler in the concrete mixture, which partially 
replaced the cement used in construction (He et al. 2020). It 
was reported that agro-cement could be produced by burning 
the crushed agro-waste to ash and mixing it with cement. 
Ceiling boards were also manufactured with agro-waste 
(rice husk, as a matrix material) in two categories (Ajiwe 
et al. 1998; Rizal et al. 2020). In the first category (C1), 
sawdust was used as filler and glue as a binder, whereas 
glue was only used in the second category (C2). Properties 
like water absorption, tensile strength, and moisture con-
tent of produced ceiling boards were compared with com-
mercial ones. The tensile strength of C1 was higher than 
both C2 and commercial ceiling boards. This increment 
was explained by higher silica content due to sawdust in C1 
as small silica particles provide a higher surface area that 
enhances interfacial adhesion between matrix and filler, so 

better load transfer and results in increased tensile strength. 
Limestone waste (LSW) and cotton waste (CW) were also 
reported to manufacture lightweight and cheap building 
materials (Algin and Turgut 2008). Properties like flex-
ural strength, compressive strength, unit weight, and water 
absorption were reported to satisfy international standards. 
It was observed that if CW largely replaces LSW, its energy 
absorption capacity increases. Hence, the composite does 
not fail due to brittle fracture even after surpassing the fail-
ure stress limit. This strategy reduces the weight of build-
ing material and increases smoothness compared to existing 
concrete bricks. It was advised to use this building material 
to replace wooden blocks, ceiling panels, concrete bricks, 
etc. Agro-waste also finds application in floor and roof tiles 
using sawdust, rice husks, palm fibers, and corn cob (Sara-
vanan 2017; Zulkefli et al. 2017; Tayade et al. 2019).

Dye removal

As anthropogenic activities increase, industrial growth 
occurs, but the industry generates much wastewater par-
allelly. This wastewater sometimes contains dyes and has 
harmful effects if not removed. To treat wastewater, adsorp-
tion of the dyes is necessary, and activated carbon is an 
excellent adsorbent for this purpose, but it has limited use 
due to its higher cost (Salleh et al. 2011; Yagub et al. 2014; 
Chikri et al. 2020). Many researchers have converted agri-
cultural waste like coconut shells and sawdust into activated 
carbon by physical and chemical activation (Ahmadpour and 
Do 1996; Bernardo et al. 1997; Hayashi et al. 2000) and 
found satisfying results. In a study, grape peels were incor-
porated for methylene blue (dye) adsorption, where the peel 
was treated by microwave hydrothermal process at 180 °C 
for 3 min (Ma et al. 2018). Optimum operating conditions 
were achieved at an adsorbent dosage of 250 g/L. The effect 
of dragon fruit peels in methylene blue removal was also 
studied, and the optimum conditions were achieved at an 
adsorbent dosage of 600 mg/L (Jawad et al. 2018). Methyl-
ene blue was also removed using raw sawdust (agro-waste) 
and treated sawdust (enzyme + NaOH) (Bhikhu and Gaurav 

Fig. 9   Utilization of agro-waste 
in construction applications
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2016). The treated sawdust provided better dye adsorption 
than untreated sawdust, which might be due to the increased 
porosity of sawdust upon hemicellulose and lignin removal. 
Similarly, sawdust was utilized with chemical activation 
with phosphoric acid (H3PO4) for dye removal (Zhang et al. 
2008). In further studies, chemical activation of sawdust was 
done by impregnating it in zinc chloride (Zhang et al. 2008). 
Moreover, other dyes like Methyl orange dye were removed 
by using Pisum sativum peels (Prasad et al. 2017). In this 
study, the dye was degraded for its removal, where magnetic 
nanoparticles of Fe3O4 were responsible for the reaction. 
Tao et al. used the activated carbon synthesized from the 
shaddock (pomelo) peel to adsorb the methyl orange (Tao 
et al. 2019). In this study, biomass waste was carbonized at 
high temperatures and activated with phosphoric acid. The 
Methylene red dye removal was done by Isiuku et al. by 
employing NaOH-activated carbon made from cassava peels, 
and optimum conditions were achieved at 200 mg/L feed 
concentration and 13 ml/min flow rate (Isiuku et al. 2014). 
The mentioned literature depicted that agro-waste can be 
utilized for dye removal with or without chemical activation 
and enzymatic treatment.

Soil stabilizers

Soil stabilization can be defined as the physical or chemical 
treatment of soil that may increase or maintain soil sta-
bility, leading to enhanced engineering properties such as 
improved strength, fatigue strength, higher resistance to 
fracture, enhanced resilience, reduction in swelling, and 
resistance to the bad effects of moisture (Arroyo Torralvo 
et al. 2017; Firoozi et al. 2017). Some parameters to judge 
soil properties are expansive index and plasticity index. 
The expansive index represents the swelling and shrink-
ing potential of soil when water volume variation occurs, 
and the plasticity index represents the water range where 
soil exhibits plastic properties, and if the plasticity of soil 
increases, it becomes weak and can cause structural damage 
to lightweight structures such as sidewalks hence the soil 
is stabilized to decrease the plasticity and expansive index 
of soil (Viswanadham et al. 2009). In a study, bagasse ash 
was utilized as stabilizing soil material for expansive soil. 
Bagasse ash was used in proportions of 0, 4, 8, and 12%, 
and properties like expansive index and plasticity index 
were determined (Ali et al. 2014). It was found that adding 
bagasse ash in any proportion decreased expansive index 
and plasticity index as bagasse ash reduced the uplifting 
pressure of soil. In another study, bagasse ash was utilized 
as an admixture in lime (costly soil stabilizer) for soil stabi-
lization (Srinivasa Reddy et al. 2017). Three samples were 
made, where 15% bagasse ash, 3% lime, and 15% bagasse 
ash along with 3% lime were taken, and maximum dry den-
sity (MDD), California bearing ratio (CBR), and plasticity 

index were determined. It was depicted that the MDD was 
decreased in each case, which means the soil is less sus-
ceptible to settlement when used as filling material because 
bagasse ash has decreased the number of voids in the soil. It 
was also revealed that the combination of lime and bagasse 
ash had dramatically increased CBR value which is a meas-
ure of soil strength, and hence, bagasse ash was also ben-
eficial to increasing soil strength. Similarly, rice husk ash 
and lime (Harikumar et al. 2016; Jayashree and Yamini Roja 
2019; Liu et al. 2019), banana fiber (Gobinath et al. 2020), 
coconut husk (Jagwani and Jaiswal 2019) were also studied 
in soil stabilizing. These studies confirm the utilization of 
agro-waste as a cheap and effective soil stabilizer.

Miscellaneous applications

Today, plastic materials have a wide range of applications in 
every field, but the problem with plastic is its non-biodeg-
radability. Here, bioplastics come into the picture and can 
be described as either bio-based or biodegradable plastics 
(Chan et al. 2021). Polylactic acid is a bioplastic derived 
from lactic acid, and its global demand is increasing with 
an expected reach of 1.96 megatons by 2025 (Azaizeh et al. 
2020). Lactic acid was derived from agro-waste like sug-
arcane bagasse (Rojan et al. 2005; Wischral et al. 2019), 
cassava bagasse (John et al. 2006), wheat bran (Naveena 
et al. 2005), corn fiber (Saha and Nakamura 2003), banana 
peduncles, sugarcane, and carob (Azaizeh et al. 2020).

Vegetable scraps and spent brewer’s yeast were utilized as 
a nucleic acid (NA) source and used as a fire-retardant addi-
tive in cotton fabric (Bosco et al. 2017). NAs were extracted 
from both wastes and performed a flammability test, and 
their fire behavior was compared. It was found that NAs 
recovered from spent brewer’s yeast performed better as it 
provided self-extinction and fire retardant characteristics that 
can only be achieved by expensive purified DNA.

In a study, graphene oxide (GO) was synthesized using 
sugarcane bagasse via an oxidation process (Somanathan 
et al. 2015). It was reported that the synthesized graphene 
oxide had a well-graphitized structure and the method 
used was also environmentally friendly. Application of the 
derived GO may be found in functional devices or sensors.

Benefits of incorporating agro‑waste 
in the valorization of value‑added products

There are many advantages of using agro-waste as raw 
material for different value-added products, as listed in 
Fig. 10. As stated earlier, agro-waste produces secondary 
income for farmers and reduces dependency on woody bio-
mass. Also, incorporating agro-waste makes it possible to 
produce biodegradable products, reinforcing the circular 
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economy concept. Moreover, it contributes to the evolu-
tion of new green markets, conversion of agro-waste to 
animal feed, the foundation for more jobs, and bioenergy 
production (McCormick and Kautto 2013; Scarlat et al. 
2015; Oluseun Adejumo and Adebukola Adebiyi 2021). 
There are various disadvantages also if agro-waste is left 
unused (Fig. 10). Stubble burning is the major issue as rice 
straw, and wheat straw are generally burned after crop har-
vesting. Indian Ministry of New and Renewable Energy 
(MNRE) revealed that India generates 500 million tons of 
agricultural waste annually and a massive loss of nutrients 
occurs due to burning agricultural waste. For example, 
if 1 tonne of rice straw is burned, there will be a loss of 
2.3 kg phosphorus, 1.2 kg sulfur, 5.5 kg nitrogen, and 25 kg 
potassium (Porichha et al. 2021). Moreover, crop burning 
is also responsible for the emission of greenhouse gases, an 
immense amount of particulates, pollutants, aerosols like 
N2O, CH4, CO, and NOx, and many other hydrocarbons. It 
was found that upon rice straw burning, 70% of carbon in 
rice straw is emitted as CO2, 7% as CO, and 0.66% as CH4 
(Jain et al. 2014). Due to the burning of crop residues, soil 
temperature also increases, causing a huge loss of micro-
bial population in the soil, which is necessary for the root 
development of plants.

Energy shortages for countries in Africa and Asia are a 
big hurdle in their socio-economic development. Accord-
ing to the current report, approximately 660 million people 
will still not have electricity in 2030 (Li et al. 2021). In this 
modern era, agro-waste is available as a resource that can 
be utilized as biofuel and can fill this huge gap in energy 
shortage and reduce the dependency on imported crude 
oil. Biofuels are carbon–neutral, as the amount of carbon 
dioxide consumed by plants throughout their life cycle is 
almost equal to carbon dioxide released when the plant is 
burned as fuel; hence, agro-waste in biofuel can reduce 

CO2 emissions (Paul and Sahni 2019). There is a substan-
tial agricultural waste generation in family farms that are 
neither utilized nor treated, which causes severe environ-
mental pollution. This waste may be used as fertilizer and 
can help farmers both environmentally and economically. 
The incorporation of manure biogas digestor was suggested 
to be very helpful for family farms to improve sustainabil-
ity by reducing pollution and decreasing input and resource 
losses (Yang et al. 2021). Besides all the environmental 
advantages of utilizing agro-waste, the nation also gets 
huge economic benefits. Nassar et al. reported the com-
parison in economics when bagasse is used in conjunction 
with either banana stem or softwood for papermaking. It 
was analyzed that if 80% of bagasse pulp is used in con-
junction with 20% of banana stem pulp (in contrast to 80% 
bagasse pulp + 20% softwood pulp), it can result in sav-
ings of 6.256 million dollars per year (Nassar et al. 2021) 
also obtained with higher double fold and tensile properties 
with a manageable decrease in brightness.

Commercialized products from agro‑waste 
material

Many agro-wastes are already valorized into useful products, 
as listed in Table 4, which are either commercialized or await-
ing commercialization. The raw material used for the specific 
product and the benefits is also discussed, giving a brief idea 
about the product usage. These value-added products include 
handmade paper, biocomposite tiles, earthen cups, biochar, 
fortified baked products, candies and cookies, banana central 
core stem juice, decorative wall panels, tableware, biofertilizer, 
green particle boards, porous bricks, and baskets. Jute waste 
and mulberry bark have been used to produce handmade paper, 
requiring approximately 50% less energy and 75% less water 

Fig. 10   Advantages of using 
agro-waste and disadvantages 
of not using agro-waste in the 
valorization of value-added 
products
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Table 4   Valorization of agro-waste into commercialized or awaiting commercialized products

*All figures indicated in the table are provided as examples and are not taken from the references mentioned

Value-added product Source of raw material Picture Reference 

Handmade Paper Jute Waste (Kimothi et al. 2020; Varden 2020)

Kulhad (Earthen cups) Making Corn Cob Powder (Kimothi et al. 2020)

Biocomposite Tiles Rice husk (Sonite 2007)

Biochar Agricultural Waste Material (Kimothi et al. 2020)

Oyster Mushroom Cultivation Coconut waste (Kimothi et al. 2020)

Paper Plates Natural Fiber Biomass (Kimothi et al. 2020; PaperWise 2015; 
Phillipson 2015; Bio-lutions 2017)

Fortified Baked Products Cabbage waste (Kimothi et al. 2020)

Candy and Cookies Banana Central Core Stem (Kimothi et al. 2020)

Banana Central Core Stem Juice Banana Central Core Stem (Kimothi et al. 2020)

Biofertilizer Sugarcane and sugarbeet (Al-Aees 2019)

Decorative Wall Panels Banana Pseudo-stem Fibers and Natural Binders (Al-Aees 2019)

Porous bricks paddy straw, wheat straw, sawdust, and hemp (Kimothi et al. 2020; GreenJams 2019)

Weaving Baskets Cymbidium Orchids Leaves (Kimothi et al. 2020)

Green Particle Board Cassava Stems using Bioadhesives (Kimothi et al. 2020)
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than by incorporating virgin fiber (India, Thailand) (Eco India 
2008; Varden 2020; HMPC 2021). These handmade papers have 
aesthetic value and help in resource conservation, generate fewer 
pollutants, reduce deforestation, and require less energy in pro-
duction than virgin paper. Earthen cups are very popular and 
manufactured using corn cub powder with mud (Kimothi et al. 
2020). Agricultural waste, in conjunction with mud, is utilized to 
make these cups, which is an alternate solution for the problem 
of corn cob residues (India). More than 100 million tons of husk 
are produced globally and take a long time to decompose, and 
thus are not appropriate for composting or manure. As a solu-
tion, biocomposite tiles are made by Sonite Surfaces (Thailand) 
using rice husk (Sonite 2007). Biochar is a fine-grained, carbon-
rich, and porous material produced by pyrolysis of agro-waste. 
This biochar can be further used as a carbon sequestration agent 
and fertilizer (India) (Kimothi et al. 2020; Amin et al. 2016). 
Agro-waste is also commercialized as a substrate for cultivat-
ing edible oyster mushrooms with many health benefits (India) 
(Kimothi et al. 2020). Paper plates are fabricated from different 
agro-waste traditionally made of plastic (Germany and Nether-
lands) (PaperWise 2015; Phillipson 2015; Bio-lutions 2017). 
This is a biodegradable product with an aesthetic look that safely 
stores food items. Fortified baked products like biscuits, bread, 
and rusk are also produced by cabbage waste, whose protein 
and crude fiber content increase by replacing refined wheat flour 
with a powdered cabbage leaf (India) (Kimothi et al. 2020). 
Moreover, total antioxidant activity increases due to fortification. 
The banana’s central core stem produces candies/cookies and 
juice, which is a good source of nutrition and helps dissolve kid-
ney stones (Kimothi et al. 2020). Biofertilizers are manufactured 
using sugarcane and sugar beet, increasing crop yield and add-
ing nutrients to the soil (India) (Kimothi et al. 2020). Also, the 
decorative wall panels are manufactured by the pseudo banana 
stem, which provides a great acoustic property that confirms 
the good response of panels to sound waves and excellent work-
ability to be cut in any shape and size (Africa) (Al-Aees 2019). 
Bricks are manufactured using different agro-waste raw materi-
als with higher porosity, lower weight, density, labor charges, 
and transportation than conventional bricks (India) (GreenJams 
2019). In rural areas, baskets are made with the help of cymbid-
ium orchids leaves (India) (Kimothi et al. 2020). Green particle 
boards have been manufactured by cassava stems using bioad-
hesives which is traditionally made up of synthetic polymers 
that cause formaldehyde emission, which creates environmental 
issues (India) (Kimothi et al. 2020).

Challenges during waste transformation

There are many challenges regarding agro-waste transfor-
mation to value-added products. The density of agro-waste 
biomass is lesser than woody biomass; hence, it needs huge 

transportation facilities and more manpower for the same 
amount of raw material. But at the same time, it is easily 
available in every region, which again makes the transporta-
tion cost less, so there should be some efforts to make pellets 
of this kind of biomass before transporting them to regions 
where the agro-waste raw materials are unavailable (Greinert 
et al. 2019). After reaching the conversion facility, agro-
waste pretreatment is also necessary as it involves structural 
alteration to overcome its recalcitrant nature required for 
its transformation, so it is a challenge to find suitable and 
economic pretreatment methods for a particular raw mate-
rial. Also, agro-waste raw materials contain a high amount 
of moisture, negatively affecting their calorific value for 
heating purposes (Burubai and Okpala 2017). Moreover, 
the food and beverage industry generates a sizable quantity 
of bio-waste that may be used to create energy, but in most 
cases these feedstocks have a high moisture content and are 
not appropriate for thermo-chemical conversion processes 
(Mahro and Timm 2007). Nevertheless, certain companies 
in this industry have a lot of low-moisture solid biomass 
resources that are ideal for burning (e.g., rice husks, olive 
stones, nut shells, or pine cones). Another challenge is yield; 
researchers reported that agro-waste raw materials consist 
of silica and other inorganic constituents than woody raw 
materials, so the yield of final products is also low. The 
research is going on to meet these challenges and make the 
agro-waste raw material easy to transform in every aspect.

Future perspectives of biomass conversion 
of agricultural waste residues

A variety of technological, environmental, social, and eco-
nomic factors should be taken into account while promot-
ing the industrial use of biomass. For the continued use of 
solid biomass energy, each industrial sector has its unique 
difficulties. The pulp and paper companies can expand their 
conventional raw material to agro-waste and torrefied bio-
mass to boost the efficiency and profitability of their tradi-
tional core business (Proskurina et al. 2017). Better energy 
intensity and use of by-products can lead to a carbon–neutral 
situation (Wesseling et al. 2017), and new separation and 
drying technologies can be used to lower the energy inten-
sity of the pulp and paper business. Developing and testing 
biomass gasification systems to produce energy more effec-
tively is one of the main research fields. Additionally, waste 
heat recovery is an energy-efficient method, and utilizing 
remaining ash after burning biomass might help reduce the 
environmental effects of cement manufacturing (Rajamma 
et al. 2009; Carrasco et al. 2014; Paris et al. 2016). Gasifi-
cation of biomass or co-gasification of biomass with coal 
is another way to boost biomass usage in the non-metallic 
mining industry. High capital costs, appropriate feedstock, 
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and on-site biomass storage are major obstacles. Further-
more, biomass availability and supply are not assured, and 
the supply infrastructure is poor or non-existent. The sole 
renewable carbon source is biomass, which is required for 
producing iron, but there is still much to learn about many 
ways to use biomass in the iron and steel sector (Mousa et al. 
2016). Because of its chemical, physical, and mechanical 
characteristics, raw biomass cannot be effectively used in the 
steel industry. Therefore, it is preferable to employ torrefied 
biomass, semi-charcoals, or charcoals. To reduce the cost 
of using biomass and increase CO2 reductions, steel mills 
might be combined with the production of chemicals and 
upgrading of biomass (Ghanbari et al. 2015).

Conclusion

Presently, agro-waste is handled by unplanned disposal and 
feed supplements for ruminants and poultry. Other than 
that, whatever waste is remaining burned on fields. These 
handling practices threaten the environment as they lead to 
the generation of pollutants in air and water, greenhouse 
gas emissions, microbial population loss, and soil nutri-
ents. However, from the discussed studies in this review, 
agro-waste could be utilized as a resource of the new era 
contributing to immense applications. Various approaches 
to valorizing the agro-waste were discussed in this review 
article: construction material, biofertilizers, paper and pack-
aging products, heating applications, composites, nano cel-
lulosic materials, soil stabilizers, biofuel, and dye removal. 
The physical and chemical properties of agro-waste were 
made suitable for cellulosic raw material. The studies con-
firmed that products made with agro-waste had properties 
very similar or even superior to their non-renewable raw 
material. Conversion of biomass to value-added products 
was also beneficial for the rural population as it provides 
secondary income, creates jobs, and improves the lifestyle 
of rural people. The utilization of agro-waste was discussed 
as the key to solving waste disposal problems, pollution due 
to burning, deforestation, greenhouse gas emissions, and 
carbon footprints. Several value-added products from agro-
waste were already commercialized, and as a customer, one 
should opt to buy these products, which helps maintain the 
environmental sustainability. The awareness and importance 
of agro-waste utilization are increasing slowly, so capital 
investment must be made to commercialize the value-added 
products produced entirely or partially by agro-waste.
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