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Abstract
Metal pollution in benthic sediments was fractionated and modelled to quantify the risk of anthropogenic activities on river 
ecosystems. In this study, the individual contamination factor (ICF) and the global contamination factor (GCF) were used 
to measure the contamination levels in the sediments. On the other hand, the mobility factor (MF) was used to quantify 
the mobility of heavy metals in benthic river sediments. The factors used to assess pollution in benthic sediments employ 
bioavailable fractions of heavy metals, which have a greater chance of release into aquatic sediments and hence are more 
dangerous to the environment. Heavy metal mobility (MF) is highest in the post-monsoon season for Zn, Pb, Cu, and Co; Fe 
in winter; Mn in pre-monsoon; and Cd in monsoon. This means that heavy metals accumulate in benthic sediments during 
the post-monsoon season when river flows are less turbulent. ICF and GCF data show that pollution levels are higher post-
monsoon than the rest season levels. Sediment samples were further subjected to the positive matrix factorization (PMF) 
model, which identified four factors that explained the variation in the study: factor 1 is concerned with anthropogenic Cu, 
Cd, and Co pollution, while factors 2, 3, and 4 are concerned with Fe, Mn, and Zn pollution. Finally, the total cancer risk 
(TCR) and hazard index (HI) are employed to quantify the risk to human health from accidental ingestion and dermal expo-
sure. According to the risk outcomes from probabilistic and deterministic approaches, river exposure is dangerous to human 
health, with dermal absorption being the most significant concern of the exposure paths.
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Introduction

In recent years, the pollution of benthic sediments due to 
various anthropogenic activities has emerged as a serious 
issue. As a result of excessive effluent discharge (mostly 
from domestic, agricultural, and industrial wastewater), 
many heavy metals have accumulated in the aquatic ecosys-
tem, posing a severe threat to global sediment flux (Armagan 
et al. 2008; Azhar et al. 2015; Yao et al. 2021). These heavy 
metals are not only persistent, but they are also harmful 

when their concentrations exceed permissible limits since 
they do not degrade or decompose over time. In addition, 
these compounds are less mobile in water than other chemi-
cals. As a result, they accumulate in natural aquatic systems, 
leading them to adhere to the top of the sediment column 
of the water body. As a result, sediment columns of water 
bodies are potential sources of heavy metals, which can be 
released into the water column or aquatic flora and fauna by 
natural or anthropogenic processes, and so participate in the 
food chain (Yin et al. 2011; Yao et al. 2021).

In contrast to typical pollutants like nitrogen and phos-
phorus, toxic metals are dangerous at extremely low quanti-
ties, such as a few micrograms per millilitre (μg/mL). As 
a result, residents of polluted areas, children and adults, 
are exposed to hazardous compounds via various sources 
and pathways, resulting in a wide range of toxic exposures 
for them (Wang et al. 2017b, a; Chen et al. 2019; Xu et al. 
2020). Chromium (Cr) and lead (Pb) are two heavy metals 
that have been identified as human carcinogens (Lyon 1994). 
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On the other hand, the systemic non-cancerous metals (e.g. 
Cd, Co, Cu and Hg) can also cause negative health conse-
quences even at minute concentrations (Djadé et al. 2021). 
Heavy metals can be found in sediments in several chemical 
fractions, each related to their mobility and bioavailability 
(Liang et al. 2017; Wang et al. 2019). Because total metals 
do not fully reflect geochemical processes, chemical spe-
ciation and metal bioavailability, sequential extraction is 
useful for investigating these topics (Sundaray et al. 2011; 
Zhang et al. 2017; Hing et al. 2020). It is worth noting that 
exchangeable metals are volatile and easily absorbed by 
humans and aquatic species (Liang et al. 2017). Heavy met-
als generated from anthropogenic activities are commonly 
found in an unstable state with greater mobility (Zhang et al. 
2017). On the other hand, those lithogenic in origin are fre-
quently associated with sediments that have taken on stable 
forms (Xiao et al. 2015). As a result, determining the heavy 
metal chemical fractions is crucial for source identification 
and risk assessment, particularly in areas with high levels 
of human activity.

Several modelling and prediction tools have been devel-
oped in the context of heavy metal concentrations in sedi-
ment and their influence on aquatic ecosystems (Chen and 
Chau 2019; Ardabili et al. 2020). However, a detailed qual-
itative and quantitative investigation must be carried out 
to identify potential pollution sources contributing to soil 
stratum contamination. Various methods have been used to 
identify pollution sources over time, including the absolute 
principal component scores-multivariate linear regression 
(APCS-MLR), chemical mass balance (CMB), maximum 
likelihood principal component analysis (MLPCA) and posi-
tive matrix factorization (PMF) (Jiang et al. 2017; Lv 2019). 
The PMF technique is well known and widely recognized 
as a powerful tool for source allocation, particularly for air 
pollutants, and the United States Environmental Protection 
Agency (USEPA) endorses it (Hsu et al. 2017; Manousakas 
et al. 2017). Other researchers have used the same statisti-
cal method to analyse water quality data (Gholizadeh et al. 
2016; Zhang et al. 2020). In order to deal with environmen-
tal data and handle the uncertainty and distributions inherent 
in those data, positive matrix factorization (PMF), a multi-
variate analysis, has been developed (Paatero and Tapper 
1994). When compared to other multivariate methods, PMF 
can provide a more accurate representation of the system by 

(1) accounting for analytical uncertainties commonly associ-
ated with measurements of environmental samples and (2) 
requiring all values in the solution profiles and contributions 
to be positive (Reff et al. 2007).

A qualitative and systematic approach was used to iden-
tify the current literature on pollution in sediments due to 
heavy metals in India. The procedures below were per-
formed to retrieve the needed literature. First, a compre-
hensive literature review for research and review papers is 
conducted in the Scopus database using different keywords. 
After eliminating duplicates and doing an initial screening, 
documents are selected. Table 1 lists the search phrases used 
to find the relevant publications and helps to understand the 
extent of work carried out and the need for the research work 
in India, a largely understudied region in this field. Heavy 
metals today have contaminated almost every aquatic eco-
system in the world. For evaluation of heavy metals in the 
sediments, two types of approaches are normally used. The 
first approach calculates the pollution level in the sediments 
using the total metal concentration, and the second approach 
uses the metal speciation fractions to evaluate the pollution 
level. Total metal-based approaches involved the calculation 
of pollution load index, geoaccumulation index, enrichment 
factor, potential ecological risk index etc. These indices 
evaluate the risk based on the background concentration of 
metals. In most cases, the background concentration unavail-
able and difficult to determine. In such cases, empirical rela-
tion or mathematical formula will be used to calculate the 
background, which can mislead the results. The metal spe-
ciation–based indices involved the calculation of pollution 
index, mobility factor, individual and global contamination 
factor, risk assessment code, modified ecological risk index 
etc. It has been found that the metal speciation approach 
is much more effective in describing the pollution status 
in sediments due to its understanding of the fractions that 
what metal contamination can be released from sediments 
and what is fixed to sediments. As such, different studies 
carried out the speciation of heavy metals in the sediment 
(Venugopal et al. 2009; Giridharan et al. 2010; Dhanakumar 
et al. 2013; Parthasarathy et al. 2021).

Exposure to heavy metal through ingestion or dermal 
contact pathways poses carcinogenic and non-carcinogenic 
effect on the human population. This is evaluated by calcu-
lating the hazard index and total cancer risk index. There 

Table 1   Search terms used to 
identify the literature

Keywords Occurrences Relevant 
article

“Sediments” AND “heavy metals” AND “Hazard Index” AND “India” 11 7
“Sediments” AND “Metals” AND “positive matrix factorisation” AND “India” 1 1
“Sediments” AND “heavy metals” AND (“mobility Factor” OR “global Con-

tamination factor”) AND “India”
6 5
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are two ways to calculate the two indices; one is deter-
ministic method, and the second is probabilistic method. 
Models for deterministic risk assessment generally have 
only one value assigned to each model parameter, with 
the outcome being a single value for the risk associated 
with that parameter (Jiménez-Oyola et al. 2021). This 
technique is simple and easy to grasp, but input variables 
do not account for variability (Bazeli et al. 2020; Sheng 
et al. 2021). Moreover, this technique is built on a plau-
sible exposure condition and thus conservative (Tong 
et al. 2018). The use of input parameter point values and 
assumptions might lead to an inaccurate risk assessment. 
The probabilistic method employs Monte-Carlo simulation 
to use a variety of distributions which fit the dataset to 
arrive at the risk results in the form of probability distribu-
tions. This method is useful for understanding the extent 
of risk and identifying the sensitive parameters of the 
risk assessment. Several researchers utilized these meth-
ods to conclude that children near the study areas have 
a high risk of carcinogenic and non-carcinogenic effects 
of heavy metals, more so than adults (Swarnalatha et al. 
2015; Kumari et al. 2018; Bhat et al. 2022; Chaithanya 
et al. 2022; Kaur 2022; Arisekar et al. 2022).

Source identification of heavy metals, i.e. whether the 
metals originated from geogenic or anthropogenic sources, 
is very important after establishing the risk associated 
with heavy metals. PMF is regarded among the best at 
source apportionment because it deals with variability 
and uncertainty in different datasets. This technique is 
mostly used in the case of atmospheric pollutants (Belis 
et al. 2015; Amil et al. 2016; Hsu et al. 2016) but has 
recently been to water quality, sediments or soil (Mustaffa 
et al. 2014; Chen et al. 2015; Gholizadeh et al. 2016). The 
advantage of using the PMF is its ability to segregate the 
pollution sources much more easily than other multivariate 
statistical analyses (Reff et al. 2007; Dash et al. 2020). So, 
in this study, PMF has been used to segregate the metal 
pollution sources.

From the above review, it was found that studies on 
the assessment of human health risks, heavy metal mobil-
ity and identification of pollution sources (using the PMF 
model) were rarely performed or carried out in India 
(Dhanakumar and Mohanraj, 2018; Giridharan et  al., 
2010; Kumari et  al., 2018; Parthasarathy et  al., 2021; 
Singh et al., 2014; Swarnalatha et al., 2015). As a result, 
extensive field research was conducted to learn more about 
how heavy metals behave in the ecosystem of a river. For 
this project, the specific goals are to (1) investigate heavy 
metal multi-phase distribution and partition behaviour; (2) 
determine chemical fraction metal mobility and ecologi-
cal risk; (3) use the PMF model to assess river sediment 
pollution sources; and (4) determine non-carcinogenic and 
carcinogenic risk.

Materials and methods

Study area

The Kolong River is a tributary of the Brahmaputra, which 
originated as a spill channel or anabranch (Pcba 2013). 
The river has its source in the Kukurakata and Hatimura 
hills. The river’s total length is roughly 218.62 km, and 
it passes through the metropolises of Nagaon, Morigaon 
and Kamrup and average depth of 1–2 m with a maximum 
height of 4–6 m during the highest rainfall period (Bora 
and Goswami 2017). The Kolong River combines with the 
Kopili River, a vast southern river of the Brahmaputra near 
Jagibhakatgaon, Morigaon district, before returning to its 
source, the Brahmaputra River near Guwahati. Nagaon Dis-
trict is home to the Kolong River, which flows for more 
than 100 km. The river divides Nagaon township into two 
east–west halves, Haibargaon and Nagaon, in the middle 
of the township. The Kolong River receives water from 
several tributaries, including the Diju, Misha, Diphalu, 
Haria-Nanoi and Titaimari or Rahasuti. After receiving 
water from the aforementioned rivulets, the Kolong River 
swells. The Kopili River joins the Kolong River course 
in Morigaon district at Dukhutimukh in Jagibhakatgaon 
town (Singh et al. 2020; Bora and Goswami 2015). Kolong 
River was formerly the only source of potable water, and 
settlements built up along its banks. Nagaon’s portion of 
the Kolong River is currently degraded, posing a health 
and hygiene risk to the community. The Kolong River in 
Assam Nagaon’s district illustrates how human activities 
have exacerbated environmental issues over the previous 
half-century. The Kolong River turned into a succession 
of intermittent dry stretches and sluggish pools due to this 
massive human intervention over the years that followed. 
Because of its limited capacity for self-purification, the 
river is currently under a considerable degree of anthro-
pogenic stress and acts as a major recipient of pollutants. 
As a result, the Central Pollution Control Board lists the 
Kolong River as one of India’s most contaminated rivers. 
The Kolong River’s quality can only be improved over the 
long run with a comprehensive restoration scheme (Bora 
and Goswami 2014; CPCB 2015).

Sample and data collection

Nine benthic sediment samples were obtained in the 
study zone, sequentially from upstream to downstream 
in the Kolong River, as depicted in Fig. 1. Between 2018 
and 2019, monthly benthic sediment samples were col-
lected from the river using a shovel (Simpson and Batley 
2016; Spellman 2016; Tuit and Wait 2020) at the different 
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sampling points over four seasons: winter (W): Decem-
ber–February; pre-monsoon (PRM): March–May; mon-
soon (M): June–August; and post-monsoon (PTM): Sep-
tember–November (Goswami et al. 2021). The sediment 
samples were collected from the bed of the river where 
water depth was approximately 1 m by wadding the river 
from the upstream side in the four seasons (USEPA 2020). 
The depth of water in the winter, pre-monsoon and post-
monsoon season is such that the samples were collected 
around the middle section whereas in the monsoon season, 
the samples were collected near the bank where the water 

depth is safe to wade through (Bora and Goswami 2017). 
The obtained samples were stored in laboratory-grade 
zipped polythene bags. After collecting the samples, they 
were oven-dried at 105 ºC, and undesirable particles such 
as small pebbles, stone, wooden and grass particles were 
manually picked out. Samples were sun-dried and broken 
by hand before being oven-dried to eliminate water parti-
cles from the soil matrix and sieved through a 200-µ-mesh 
sieve for further testing. According to Tessier’s sequen-
tial extraction procedures, analysis techniques were used 
to determine chemical partitioning (Tessier et al. 1979). 

Fig. 1   Study area
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Chemical separation, according to Tessier et al. (1979), 
is defined as a set of operations that divide a sample into 
5 fractions: exchangeable (M1), carbonate bound (M2), 
Fe–Mn oxide bound (M3), sulphide and organic matter 
bound (M4) and residual (M5) fractions. Atomic absorp-
tion spectrophotometer (AAS) was used to analyse the 
metals (Co, Cu, Cd, Fe, Mn, Pb and Zn). Quality control 
protocols were followed throughout the experiment’s oper-
ations, including calibrating the equipment with freshly 
made standards before running it. All the chemicals used 
in the studies were of laboratory quality, and all dilutions 
were made with deionized water (Baird et al. 2017).

Mobility of heavy metals

To evaluate the retention of heavy metals in benthic sedi-
ment samples, the mobility factor (MF), individual contami-
nation factors (ICF) and global contamination factor (GCF) 
of metals were computed.

Mobility factor

The proportions of the metal fractions are used to deter-
mine the mobility of heavy metals in the environment. The 
chemical fractions of metals bound to sediments were split 
into two categories based on the degree to which they were 
associated with distinct phases. The mobility factor was then 
calculated using the information from these two groups. The 
M1 and M2 fractions comprise the mobile group, whereas 
the stationary group comprises of the M3, M4 and M5 frac-
tions. MF adapted from Kabala and Singh (2001) was modi-
fied for the 5-step sequential extraction technique of chemi-
cal partitioning, which describes the potential movement of 
the metals (Sut-Lohmann et al. 2022). The mobility factor 
(MF) was used to calculate the heavy metal mobility factor 
shown in Eq. (1):

Contamination factors

Evaluating the heavy metal contamination factor is critical 
because it indicates the level of risk that heavy metals pose 
to the environment. Using the results from chemical spe-
ciation, ICF for each metal was computed by dividing the 
total of the first three extractions (M1, M2 and M3) by the 
residual (M5) fraction for each metal. The GCF for each site 
was calculated by summing the ICF for each heavy metal 
detected (Ikem et al. 2003; Naji and Sohrabi 2015). The 
ICF and GCF were determined with the help of the follow-
ing equation:

(1)MF =
M1 +M2

M1 +M2 +M3 +M4 +M5
× 100(%)

According to Zhao et al. (2012), the ICF and GCF cat-
egories were as follows: GCF < 6 and ICF < 1 indicates 
low contamination, 6 < GCF < 12 AND 1 < ICF < 3 mod-
erate contamination, 12 < GCF < 24 and 3 < ICF < 6 con-
siderable contamination and GCF > 24 and ICF > 6 high 
contamination.

PMF

The positive matrix factorization (PMF) receptor model 
is one of the most important and widely used methods in 
source allocation (Yan et al. 2019). In the PMF model, n 
(samples) × m (species concentration) matrix (X) is decom-
posed into two-factor matrices: profiles (F) and contributions 
(G) and residual (E) (Eq. 4). Two files were used as input 
to the PMF model: one comprising concentrations of the 
assessed parameters, and the other including uncertainty val-
ues derived using Eqs. (5) or (6). The ideal number of fac-
tors is obtained by repeatedly running the model for several 
iterations and then selecting the best run or solution with the 
minimum value of Q (robust), which indicates the model’s 
ability to fit data (Jiang et al. 2019). Equation (7) has been 
used to determine this parameter. The primary goal of PMF 
factor analysis is to minimize Q for G and F while ensuring 
that all or some of G and F’s components have non-negative 
values (Paatero 1997):

If the species concentration (i.e. concentration of heavy 
metal (Cs)) was more than the standard deviation (SD), the 
uncertainty (Unc.) was calculated by Eq. (5); otherwise, the 
Cs was substituted by SD/2, and the uncertainty was pre-
sumed to be supplied by Eq. (6) (Wang et al. 2016):

where eij is the sum of squared differences between the origi-
nal matrix data (X) and output of PMF (GF), and sij is the 
calculated uncertainties.

(2)ICFi(metal) =
M1 +M2 +M3

M5

(3)GCF =

n
∑

i=1

ICFi

(4)X = FG + E

(5)Unc. = 0.1 × Cs +
SD

3

(6)Unc. = 5 ×
SD

6

(7)Q =

n
∑

i=1

m
∑

j=1

(

eij

sij

)2
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The investigation was conducted using the EPA PMF 5.0. 
The optimum number of factors was estimated by looking 
at the value of Q, which indicates how well the model fits 
the data. A global minimum was obtained for each model 
run by varying the seed value from 1 to 20 times (Bzdusek 
et al. 2006).

Human health risk assessment

While establishing whether or not heavy metals are harmful 
to human health, the assessment of health risks is a valuable 
tool. Both carcinogenic and non-carcinogenic effects of pol-
luted soil or sediments have been observed due to pollution.

Exposure parameters

Dermal contact and incidental intake of sediments (during 
recreational activities) were used to estimate human health 
risks from exposure to heavy metals in children and adults. 
The chronic daily intake (CDI) was calculated using the 
USEPA’s procedures (Eqs. (8) and (9)) in mg/kg) (US EPA 
1989, 2001):

The details and values of the terms in Eqs. (8) and (9) are 
given in Table 2.

Risk characterization

A risk assessment of heavy metal exposure, both non-carcino-
genic and carcinogenic, was conducted to determine the health 
consequences following Eqs. (10) and (11). Hazard quotients 
(HQs) were used to compute the non-carcinogenic risk for all 
heavy metals through the exposure pathways. The hazard index 
(HI) was computed by adding all HQs. If HQ and HI are more 
than 1, the suggested acceptable limits have been exceeded 
(Phillips and Moya 2014). Potential carcinogenic health impact 
(CR) from inadvertent intake of sediments was estimated using 
Eq. (12). The cancer risk was evaluated using reported slope 
factors (SForal). The total cancer risk (TCR) was determined by 

(8)CDIingestion =
CS × EF × ET × IRS × ED

AT × BW
× CF

(9)
CDIdermalcontact =

CS × EF × ED × ET × AF × SA × ABS

AT × BW
× CF

Table 2   Deterministic and probabilistic assessment parameters and values

Parameters Deterministic approach Probabilistic approach Reference

Point estimate (RME) Distribution Values

EF Exposure frequency: adults and child (day/year) 120 Triangular 120 (26 -260)
ED Exposure duration (year)

Adults 30 Lognormal 11.36 ± 13.72 Israeli and Nelson (1992)
Child 6 Uniform 01–06 Anon (2019)

ET Exposure time: adults and child (h/event) 2.6 Triangular 2.6 (0.5–6) Anon (2019)
SA Skin surface area (swimming) (cm2)

Adults 23,000 Normal 18,400 ± 2300 Phillips and Moya (2013)
Child 7280 Normal 6800 ± 600 Anon (2019); Carr (1994)

BW Body weight (kg)
Adults 70 Normal 72 ± 15.9 Carr (1994)
Child 15 Normal 15.6 ± 3.7 Phillips and Moya (2013)

IRs Ingestion rate of sediments (mg/event)
Adult 12.5 – 12.5 Goldblum et al. (2006)
Child 50 – 50 Goldblum et al. (2006)

AT Averaging time (day)
Non-carcinogen 365xED – 365xED USEPA (1989)
Carcinogen 365 × 70 – 365 × 70 USEPA (1989)

AF Adherence factor (mg/cm2)
Adult 0.07 – 0.07 USEPA (1989)
Child 0.2 – 0.2 USEPA (1989)

ABS Dermal adsorption factor (unitless) 0.001 – 0.001 USEPA (2011); Wang 
et al. (2017b, a)

Kp Permeability constant (cm/hour) 0.001 – 0.001 RAIS (1992a, b)
CF Conversion factor 0.000001 – 0.000001
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adding the CR values for each route of exposure and comparing 
them to permissible standard values (Yang et al. 2018; US EPA 
2001). The reference dosage (RfD) and slope factors (SF) were 
provided on the RAIS website (RAIS 1992a, b):

Deterministic method

Models for risk assessment generally have only one value 
assigned to each model parameter, with the outcome being 
a single value for the risk associated with that parameter 
(Jiménez-Oyola et al. 2021). This technique is simple and 

(10)HQingestion =
CDIingestion

RfDoral

(11)HQdermalcontact =
CDIdermalcontact

RfDdermal

(12)CRingestion = CDIingestion × SForal

easy to grasp, but input variables do not account for vari-
ability (Bazeli et al. 2020; Sheng et al. 2021). Moreover, this 
technique is built on a plausible exposure condition and thus 
conservative (Tong et al. 2018). The use of input parameter 
point values and assumptions might lead to an inaccurate risk 
assessment. The deterministic approach’s exposure param-
eters and generic exposure factors are shown in Table 2.

Probabilistic method

Monte Carlo simulation (MCS) is a frequently used approach 
in probabilistic risk assessment, in which variables are 
described by their distribution (Saha and Rahman 2020; Jimé-
nez-Oyola et al. 2021). A wide variety of probable outcomes 
is generated using statistical sampling procedures in MCS 
in the form of probability distributions, which considers the 
data’s inherent unpredictability and uncertainty (Low et al. 
2015; Tong et al. 2018). MCS and other probability-based 
approaches are frequently used in human health risk assess-
ment because they examine the sensitivity of the model input 

Table 3   Concentration of 
heavy metals in Kolong river 
sediments

Winter Pre-Monsoon Monsoon Post-Monsoon

Zn (mg/kg) Max 456.54 38.02 141.90 115.39
Min 300.08 22.94 95.88 62.11
Average 354.82 29.78 111.34 87.67
Std. Dev 57.37 4.40 16.02 15.18

Mn (mg/kg) Max 115.91 495.73 360.09 199.67
Min 75.31 266.71 233.13 140.69
Average 98.05 370.29 312.27 169.57
Std. Dev 13.75 81.76 42.54 18.99

Pb (mg/kg) Max 16.81 40.68 60.60 4.04
Min 12.99 30.13 52.72 3.18
Average 14.79 34.84 55.88 3.57
Std. Dev 1.19 3.03 2.22 0.29

Fe (mg/kg) Max 3440.40 9222.24 4229.54 2097.40
Min 1898.21 6483.93 3442.47 1735.99
Average 2912.47 7754.13 3927.93 1933.86
Std. Dev 504.00 901.02 220.13 131.39

Cu (mg/kg) Max 20.94 25.79 12.27 24.81
Min 11.97 11.88 6.90 22.11
Average 16.68 17.71 9.45 23.32
Std. Dev 2.83 4.12 1.68 0.90

Co (mg/kg) Max 14.69 33.42 28.42 11.05
Min 9.16 27.73 23.21 8.68
Average 11.82 29.67 24.85 9.61
Std. Dev 1.71 1.96 1.76 0.80

Cd (mg/kg) Max 12.67 6.87 5.18 3.36
Min 7.50 4.93 4.03 2.64
Average 10.04 5.35 4.52 3.03
Std. Dev 1.64 0.65 0.39 0.25
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variables (US EPA 2001; Saha et al. 2017; Bazeli et al. 2020; 
Saha and Rahman 2020). The non-carcinogenic and carci-
nogenic hazards were assessed in this work, using MCS as 
probabilistic modelling in Oracle Crystal Ball (Gitter et al. 

2020; Xu et al. 2020). The number of iterations (for each run) 
was set at 10,000 to construct the probabilistic risk distribu-
tions (Yang et al. 2019). Heavy metal concentrations prior 
to MCS were fitted with the triangular distribution. For the 
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Fig. 2   Chemical speciation of surficial sediments in Kolong river
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probabilistic evaluation, the standard distributions and expo-
sure parameter values are shown in Table 2.

Sensitivity analysis

The impact of the input factors on cancer and non-cancer 
risk estimations is assessed using a sensitivity analysis based 

on the contribution to variance or rank coefficient correla-
tion (Chen et al. 2019). This approach is commonly used 
in decision-making and risk management to discover the 
most critical factors influencing risk outcomes (Harris et al. 
2017). The sensitivity analysis in this study was performed 
using the Spearman rank order correlation coefficient, which 
assesses how strongly and in which direction quantitative 
variables are connected to outcomes rather than the values 

Fig. 3   Mobility factor (MF), 
and individual contamination 
factor (ICF) of (a) Zn, (b) Mn, 
(c) Pb, (d) Fe, (e) Cu, (f) Co and 
(g) Cd and their global contami-
nation factors (GCF)

(a) Zn

(b) Mn

(c) Pb

(d) Fe
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themselves (US EPA 2001). The sensitivity analysis was per-
formed using a 95% confidence level and 10,000 iterations.

Results and discussions

Chemical speciation of heavy metals

Maximum, minimum, mean and standard deviation of con-
centrations of heavy metals in mg/kg of sediments in Kolong 

(e) Cu

(f) Co

(g) Cd

Fig. 3   (continued)

Table 4   Summary of PMF for different runs for heavy metals in surfi-
cial sediments in Kolong river

Factor Qexp Q (robust) Q (true) Q (true)/Qexp

2 31 8.8501 8.8500 0.2855
3 15 1.7390 1.7390 0.1159
4  − 1 0.8216 0.8216  − 0.8216
5  − 17 0.3065 0.3062  − 0.0180
6  − 33 0.0063 0.0058  − 0.0002

7065Environmental Science and Pollution Research  (2023) 30:7056–7074

1 3



River benthic sediments during the various seasons of sam-
pling are presented in Table 3.

For Zn, there is a drastic decrease in concentration with 
the onset of monsoon indicating metals get desorbed from 
the sediments into the water body. This can also be corre-
lated with the chemical speciation results (Fig. 2), wherein 
there is decrease in the percentage share of M1, M2, and 
M3 fractions, which is part of the metal fractions which can 
easily get desorbed (Pardo et al. 1990). For Mn, the oppo-
site phenomenon was recorded for the sediments, wherein 
metal concentration increased drastically from winter to 
pre-monsoon. The arrival of monsoon brings in pollutants 
from various sources of pollution in the water body, which 
get deposited onto the sediments. Similar increase is also 
observed in case Pb (winter to monsoon), Fe (winter to pre-
monsoon) and Co (winter to pre-monsoon). This might be 
due to anthropogenic metal contamination, as in the case 
of Mn, Fe, Pb and Co, the increase in metal contamina-
tion directly correlates with the M3 fraction (Morillo et al. 
2002). The M3 fraction of the metals might have adsorbed 
on the sediments during the turbulent flow of the river (Lim 
and Kiu 1995; Baruah et al. 1996; Akindele and Olutona 
2014). The concentration of Cu and Cd is fairly constant as 
it is with the percentage of metal fractions in the sediments. 
Finally, from the chemical speciation study, it observed that 
anthropogenic addition of pollutants is present in the case 
of Mn, Pb, Fe, and Co.

Mobility of heavy metals

MF, ICF and GCF

The box plot in Fig. 3 depicts the changes in MF, ICF and 
GCF temporally and spatially. The MF factor represents 
the mobility of bioavailable fractions in the sediments. The 
greater the amount of mobile fractions present in the sedi-
ments, the more is the risk for the ecosystem, as the frac-
tions can be released from the sediments into the stream. 
Zn, Mn and Pb have the highest MF in winter, whereas Cu 
and Co have the highest MF in the post-monsoon season, 

i.e. in the dry season. In the wet season, i.e. the pre-mon-
soon and monsoon, the MF has decreased, which might 
be due to the desorption of mobile metal fractions from 
the sediments due to the increase in turbulence in the river 
(Akindele et al. 2020). For Cd, the exact opposite hap-
pened, wherein MF is higher in the wet season than in the 
dry season. This indicates that turbulence has an opposite 
effect on Cd, which leads to adsorption of Cd onto the 
sediment particles. For Fe, there is a constant increase of 
bioavailable metals from winter to post-monsoon season, 
which MF represents, indicating anthropogenic addition 
of metals in the river and, in turn, setting down onto the 
sediment particle.

The ICF value indicates the anthropogenic contamina-
tion with respect to each metal, whereas the GCF value 
gives an idea about overall contamination at a site. The 
ICF value for Zn and Cu is highest in post-monsoon, 
whereas Co, Fe and Pb have the highest values in the 
winter. For most metals, dry seasons pose a higher risk 
than wet seasons. This indicates that metal gets adsorbed 
onto the sediment particles during the lean flow period, 
i.e. during the winter and post-monsoon seasons, and 
gets desorbed during the high turbulent period, i.e. dur-
ing the pre-monsoon and monsoon seasons. The ICF 
values of Zn constantly rose from low contamination in 
the winter to moderate contamination indicating the Zn 
is continuously added to the river anthropogenically or 
externally. Mn, Pb, Fe, Cu, Co and Cd have ‘moderate 
to low’ contamination, whereas Zn has the ‘high’ con-
tamination value. The cumulative effect of these metals 
at a site is represented by GCF, which has increased after 
the monsoon season (in post-monsoon) to considerable 
contamination, compared to the pre-monsoon and mon-
soon seasons, where the majority of GCF values fall into 
the moderate contamination category. This indicates that 
with the onset of monsoon or with increase in turbu-
lence in the river, desorption of heavy metals from sedi-
ment might have occurred as there is decrease in labile 
or bioavailable fraction of metals. In other words, with 
monsoon receding, i.e. in post-monsoon season, the bio-
available fractions of metals in sediments rise, indicating 
the metal getting adsorbed onto the sediment particles 
giving an increased risk (Akindele and Olutona 2014; 
Mna et al. 2021). From this study, it is observed that the 
tendency for metals to accumulate in sediments happens 
in dry seasons or the lean flow period of the river. Thus, 
the anthropogenic addition of metals in the Kolong River 
might be happening during the dry season, which can be 
the reason for high values during this period (Akindele 
et al. 2020). When metals are added to the sediments, 
they are an unstable bond which makes them bioavail-
able, and in such cases, the MF, ICF and GCF will show 
high values as in the study area.

Table 5   Correlation coefficients (R2) of heavy metals between 
observed and predicted values by PMF model

Species Intercept Slope SE R2

Zn 0.85 1.00 4.18 1.00
Mn 2.18 0.98 3.03 0.96
Pb 0.30 0.98 0.11 0.99
Fe 55.47 0.98 97.61 0.97
Cu 0.26 0.98 0.22 0.99
Co 0.13 0.99 0.13 0.99
Cd 0.10 0.99 0.10 1.00
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PMF

Q values were computed after iterations with a number of 
factors ranging from 2 to 7. Four factors were considered 

ideal because QTrue/Qexp for iteration, in this case, is the least 
(Table 4). The model’s fitness was determined by compar-
ing observed and predicted heavy metal values, yielding the 
correlation coefficients (R2) (Fig. S1). R2 values greater than 

Fig. 4   Heavy metals (%) contribution to the 4 factors

7067Environmental Science and Pollution Research  (2023) 30:7056–7074

1 3



0.95 were found in all heavy metals, indicating a strong rela-
tionship between predicted and observed values and there-
fore a high level of model dependability (Table 5).

Pollution source apportionment

Heavy metal toxicity to human health and the environment 
involves the usage of source allocation models, viz. PMF 
model, in order to decrease the likelihood of future contami-
nation and, as a result, to more efficiently manage resources. 
The current investigation considers four factors that influence 
the source of pollution in the Kolong River. Figure 4 shows 
that the contribution to factor 1 is shown only by Mn, Fe, Cu, 
Co and Cd. The presence of Cu, Co and Cd can mainly be 
attributed to anthropogenic sources of contamination from 
the nearby region. So, factor 1 can be said to be related to 
anthropogenic contamination. In the rest of the factors, it is 
observed that the contribution is only from Fe, Mn and Zn. 
As reported in various works of literature, the source of these 
metals in northeast India is natural or lithogenic (Borah et al. 
2009; Haloi and Sarma 2012). Thus, from source apportion-
ment analysis using PMF, it can be concluded that among the 
four factors, factor 1 can be related to anthropogenic contami-
nation and factors 2, 3 and 4 can be said to be associated with 
natural or lithogenic contamination.

Health risk assessment

Human health is jeopardized if hazardous chemicals are 
found in sediment samples. The dangers of heavy metal 
exposure on the health of both adults and children were 
investigated in this study. Deterministic and probabilistic 
approaches produced risk results exceeding the USEPA’s 
safe exposure limit (US EPA 1989, 2001).

Deterministic method

Figure 5 depicts the deterministic method of assessment of 
carcinogenic and non-carcinogenic risks associated with 
heavy metal exposure in sediments. During the sampling 
period, which included several seasons, the results of the 
deterministic analysis revealed unsatisfactory results, 
namely, HI > 1 and TCR > 10−5. Non-carcinogenic risk for 
adults was highest in the pre-monsoon, with a value of 27.17 
compared to a reference value of 1. They tend to decrease 
with increased precipitation, which directly correlates with 
MF, which is also seen to decrease with the onset of mon-
soon. The non-carcinogenic effect of these metals poses a 
serious health hazard for persons in the lower age group (i.e. 
children) compared to persons in the higher age group (i.e. 
adults). Fe poses serious health concerns among the metals 

Fig. 5   HQ, HI and TCR out-
comes of deterministic method 
for heavy metals through the 
different exposure routes
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analysed in the study area as its values for all the seasons for 
adults and children are greater than 1 (Fig. 5). Among the 
exposure routes, dermal absorption poses more concern for 
the inhabitants of the nearby area, thereby mainly restricting 
any recreational usage of the river. Considering the carcino-
genic impact of heavy metals on the population of humans, 
the direct usage of the river should be banned as the TCR 
values are more than 1 × 10−5 for all seasons.

Probabilistic method

The values of any parameter vary temporally and spatially 
during the sampling period; calculating risk using point deter-
ministic values would give us an idea about the hazard posed 
by that parameter but would present a full picture of the risk 
posed for the analysis. Also, quantifying each and every point 
at different points of time would be tedious and may result in 
calculation errors. In such cases, the probabilistic risk cal-
culation method would give a more descriptive result of the 
parameter variation and help in quantifying the spatial and 
temporal risk posed by the parameter. In this method, the data 
of heavy metals collected for different seasons is first fitted 
to a triangular distribution and then run through a Monte-
Carlo simulation (10,000 iterations) to quantify the cancerous 
and non-cancerous risk posed through the different routes of 

exposure, i.e. ingestion and dermal. The 5th and 95th per-
centile values of HI and TCR are given in Fig. 6, and their 
probability-frequency distribution curves for the complete 
dataset of the different seasons are provided in Fig. S2-S5. 
The results show that neither in the wettest or driest months 
do the HI and TCR values fall below the permissible value of 
1 and 10−5, respectively. The situation is harsher for the child 
population, where the values are even higher. The HI values 
in order 102 and TCR values are in order 10−3, which is way 
higher than the permissible limits. The health risk assessment 
study thus calls for the treatment of the water before use and 
stringent policies to be framed for pollution abatement.

Sensitivity analysis

Figure 7 shows the sensitivity analysis results to assess the 
prime parameters concerning the non-carcinogenic and carci-
nogenic risks. Exposure frequency (EF), exposure time (ET), 
body weight (BW) of the population exposed to the risk, con-
tact surface area (SA) in case of dermal exposure and Fe con-
centration (Cs-Fe) are important risk factors for non-cancer 
risk. The contributing or differentiating factor causing the 
high risk in the winter months is the concentration of Zn (Cs-
Zn). In the case of carcinogenic risk, the significant factors 
contributing to risk are body weight (BW) of the population 

Fig. 6   HI and TCR from expo-
sure to heavy metals through 
probabilistic method (5th and 
95th percentile)
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exposed to the risk, concentration of Fe (Cs-Fe), exposure 
duration (ED) and exposure frequency (EF) and exposure time 
(ET). The contributing or differentiating factor causing the 
high risk in the winter months is the concentration of Mn (Cs-
Mn). Thus, from sensitivity analysis, it can be concluded that 
the focus of remediation study in the region should primarily 
focus on the concentration of Fe, Mn and Zn. If required, 
focus can also be shifted towards the rest of the heavy metals.

Conclusion

The mobility factor (MF) and the individual contamination 
factor (ICF) for most metals analysed were higher in the 
winter or post-monsoon months, i.e. during the dry sea-
son. However, the variation of Cd was the exact opposite 
to the other metals, i.e. higher values were found in pre-
monsoon and monsoon season (wet period) and identified 

Fig. 7   Rank correlation charts 
of inputs of probability analysis 
(sensitivity analysis). a Winter. 
b Pre-Monsoon. c Monsoon. d 
Post-monsoon

(a) Winter

(b) Pre-Monsoon
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(b) Post-Monsoon
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the increase in the Fe and Zn contamination due to anthro-
pogenic addition of pollutants. Global contamination fac-
tor (GCF) showed that the post-monsoon season had the 
most considerable contamination, followed by the winter, 
pre-monsoon and monsoon season. This contamination in 
benthic sediments leads to a very distinct result during 
high rainfall seasons wherein flow in the river is turbulent; 
the contamination falls from higher form contamination to 
lower form contamination due to the desorption of metals 
from sediments. The simulation of the PMF model segre-
gated the metal contamination, the contamination of Cu, 
Co and Cd mainly due to anthropogenic sources while 
Fe, Mn and Zn contamination due to lithogenic or natural 
sources. Finally, health risk assessment revealed that expo-
sure to Kolong River is hazardous to human health, with 
dermal absorption presenting the greatest concern among 
the exposure pathways. Sensitivity analysis attributed the 
variation in the risk to Mn for carcinogenic and Zn for 
non-carcinogenic risk. Thus, this study calls for adequate 
regulatory strategies to be formulated and continuous envi-
ronmental monitoring programs to be carried out to reduce 
the pollution in the river.
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