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Abstract
Microplastics (MPs), over the years, have been regarded as a severe environmental nuisance with adverse effects on our eco-
system as well as human health globally. In recent times, microplastics have been reported to support biofouling by genetically 
diverse organisms resulting in the formation of biofilms. Biofilms, however, could result in changes in the physicochemi-
cal properties of microplastics, such as their buoyancy and roughness. Many scholars perceived the microplastic-biofilm 
association as having more severe consequences, providing evidence of its effects on the environment, aquatic life, and 
nutrient cycles. Furthermore, other researchers have shown that microplastic-associated biofilms have severe consequences 
on human health as they serve as vectors of heavy metals, toxic chemicals, and antibiotic resistance genes. Despite what 
is already known about their adverse effects, other interesting avenues are yet to be fully explored or developed to turn the 
perceived negative microplastic-biofilm association to our advantage. The major inclusion criteria for relevant literature 
were that it must focus on microplastic association biofilms, while we excluded papers solely on biofilms or microplastics. 
A total of 242 scientific records were obtained. More than 90% focused on explaining the environmental and health impacts 
of microplastic-biofilm association, whereas only very few studies have reported the possibilities and opportunities in turn-
ing the microplastic biofilms association into benefits. In summary, this paper concisely reviews the current knowledge of 
microplastic-associated biofilms and their adverse consequences and further proposes some approaches that can be developed 
to turn the negative association into positive.
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Introduction

Plastic and other emerging contaminant litter have emerged 
as serious pollutants in the aquatic environment due to their 
slow degradation (Gewert et al. 2015; Okoye et al. 2022b), 
prevalence, and abundance in our oceans (Eriksen et al. 2014; 
Horton et al. 2017) and rivers, may pose a severe threat to 
the entire wildlife and ecosystem (Gall and Thompson 2015; 
Horton et al. 2017) and maybe a possible atmospheric bound-
ary threat (Jahnke et al. 2017; Galloway et al. 2017). Vari-
ous assessments aimed at developing an understanding of 
the distribution and transport of marine plastic debris from 
coastlines and beaches to remote islands or the big oceans 
(Dong et al. 2021b; Wang et al. 2021b), including the down-
ward movement from the surface of the sea down the water 
column to bottom sediments, are currently ongoing (Wang 
et al. 2022c). The contamination rate caused by plastic debris 

Responsible Editor: Robert Duran

 *	 Weiwei Feng 
	 fwwujs@126.com

 *	 Xiangyang Wu 
	 wuxy@ujs.edu.cn

1	 Institute of Environmental Health and Ecological Security, 
School of Environment and Safety Engineering, Jiangsu 
University, Zhenjiang 212013, People’s Republic of China

2	 Department of Biochemistry, Faculty of Biological Sciences, 
University of Nigeria, Nsukka, Enugu State 41000, Nigeria

3	 Natural Science Unit, SGS, University of Nigeria, Nsukka, 
Enugu State 41000, Nigeria

4	 Institute of Environmental Health and Ecological Security, 
School of the Environment and Safety, Jiangsu University, 
301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China

/ Published online: 22 August 2022

Environmental Science and Pollution Research (2022) 29:70611–70634

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-22612-w&domain=pdf


1 3

in freshwater ecosystems is gaining global attention (Wagner 
et al. 2014; Okoye et al. 2022a). MPs and nano plastics (NPs) 
are notorious emerging environmental contaminant that has 
gained enormous public attention globally due to the threats 
and potential hazards it poses to the environment (Wang et al. 
2020b, a; Chen et al. 2022b). Several studies define MPs as 
plastic particles < 5 mm (Luo et al. 2022). NPs are plastic 
particles that fall within the size range of 1 to 100 nm (Gigault 
et al. 2018). NPs can originate from coatings, biomedical 
applications, medication delivery, medical diagnostics, elec-
tronics, magnetics, and optoelectronics, in addition to being 
made from plastic fragmentation (Koelmans et al. 2015). The 
particles may become more reactive as a result of their smaller 
size and increased surface area, which facilitates the adsorp-
tion of various environmental pollutants. The chemical and 
physical features of nanoparticles alter during their produc-
tion, affecting their availability and biological influence on 
aquatic creatures (Rummel et al. 2017; Mattsson et al. 2018). 
Large plastic debris (i.e., MPs) has apparent negative con-
sequences on wildlife, in addition to the aesthetic problems 
of littering (Waluda and Staniland 2013). This large plastic 
debris undergoes fragmentation due to subjection to weather-
ing, giving rise to MPs (Akan et al. 2021; Deme et al. 2022; 
Okeke et al. 2022). MPs have been shown to exert several 
adverse effects on both terrestrial and aquatic organisms and 
many other higher-level consumers in the aquatic ecosystem 
(Gall and Thompson 2015; Akan et al. 2021; Deme et al. 
2022; Okeke et al. 2022). The small size of MPs/NPs makes 
them very easy to be ingested by many smaller organisms 
at the trophic level (Cole et al. 2013). The ecotoxicological 
impacts of NPs have been extensively reviewed (Chae and 
An 2017; Ferreira et al. 2019). A recent study shows that 
the growth rate of earthworms was significantly reduced 
by plastic litter with a consequent reduction in weight and 
concomitant effect of reproductive toxicity (Huerta Lwanga 
et al. 2016). Recent data shows that negatively and positively 
charged plastic fragments could accumulate in Arabidopsis 
thaliana, posing significant threats to agricultural productiv-
ity. Furthermore, because they are the largest group, microbial 
populations harmed by plastic litter should be given special 
attention (Sun et al. 2020; Chen et al. 2022a).

The natural ecosystems are comparatively rich in microbes 
accounting for millions of bacterial species per unit volume 
(Louca et al. 2019; Di Pippo et al. 2020). The abundance of 
microbes plays a critical role in ecological processes, such as 
substance metabolism, trophic cycling, and the formation of 
products (Oberbeckmann et al. 2015). Microbes in complex 
ecosystems have distinct structures and categories, and the 
microbial communities are dynamic. Microbial communities 
can quickly respond and adapt to changing environmental 
conditions such as climate change and anthropogenic stress-
induced environmental conditions (Onrubia et al. 2021). 
The presence of MPs in the terrestrial ecosystem has been 

shown to cause an alteration in microbial community com-
position based on or influenced by the physical parameters 
of the soil (Huang et al. 2019; Tu et al. 2020b; Qiongjie et al. 
2022). The phyla of Proteobacteria, Gemmatimonadetes, and 
Bacteroidetes, for instance, were shown to be enriched in 
polyethylene-amended soil, which could lead to alterations in 
soil-dissolved organic matter, soil moisture, and bulk density 
(Wu et al. 2019). Zettler et al. (2013) were the first to coin 
the term “plastisphere” to describe the complex community, 
claiming that there were differences in the microorganisms 
found on the surface of debris and in the surrounding envi-
ronment. In comparison to the surrounding community, the 
plastisphere microorganisms had a lower average abundance 
but a higher homogeneity. Biofilms are functionally and phy-
logenetically diverse communities of algae, fungi, bacteria, 
and protozoans collectively known as biofouling commu-
nity, periphyton, and microbial assemblage (Zhurina et al. 
2022). Microorganisms derive some benefits from biofilms, 
such as nutrient accumulation, formation of stable consor-
tia, protection from toxic chemicals, and horizontal gene 
transfer (Erni-Cassola et al. 2020). Researchers are recently 
beginning to pay close attention to the interaction between 
microbes and MPs in the aquatic environment (Danso et al. 
2019; Erni-Cassola et al. 2020). These plastics and plastic 
debris act as a unique environment for microorganisms that 
also make use of the surrounding nutrients for reproduc-
tion and help in the biodegradation of the plastics. A large 
amount of nutrients adheres to plastic surfaces in seawater 
quickly, which attracts microbial colonization to utilize the 
nutrient substances (Oberbeckmann et al. 2015; Tao et al. 
2022). Plastics enhance the colonization of microbial com-
munities, particularly harmful bacteria, in the aquatic envi-
ronment. The invasion of harmful bacteria can disrupt normal 
gut bacterial communities and reduce the organisms’ ability 
to defend themselves (Kurchaba et al. 2020). According to 
Gong et al. (2019), pathogens made up almost half of the 
20 most abundant genera attached to polyethylene, indicat-
ing that the plastics functioned as transfer vectors for patho-
genic bacteria, posing a risk to human health. MPs in the 
environment are marked by a wide range of sizes and shapes 
(Enders et al. 2015; Kanhai et al. 2017; Wang et al. 2022b), 
which are subject to alterations with age (Jahnke et al. 2017; 
Potthoff et al. 2017). The natural suspended particles mixed 
with MPs may interfere with biofilm formation (Ogonowski 
et al. 2016). Furthermore, other properties of MPs, such as 
roughness, surface area, surface charges, etc., will definitely 
be altered upon the formation of biofilm at the surface. When 
plastic particles or products are released into the aquatic envi-
ronment, a coating layer of organic and inorganic chemicals 
forms almost immediately (Oliveira et al. 2020). The subse-
quent biofilm formation on the plastic surface, which takes 
minutes to hours, is most probably the initial interaction with 
ambient biota (Zettler et al. 2013a; Tu et al. 2020a).
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In this review, we have extensively summarized the rela-
tionship between microbial communities and MPs, nature 
and conditions favoring microplastic-associated biofilms 
in the aquatic environment, microbial communities, and 
structures associated with a biofilm of MPs, environmental 
and ecotoxicological implications of microplastic-associ-
ated biofilms, such as effects on nutrient cycle, impacts on 
aquatic organisms, trophic transfer of MPs, and hydropho-
bic organic chemicals and other leached toxic contaminants 
and their attendant animal and human health implications, 
trophic transfer of antibiotic-resistant genes as well as an 
extensive future prospects to reverse their harmful effects 
of microplastic-associated biofilms. This review will add to 
the growing body of knowledge on the impacts of microplas-
tic-associated biofilm in the environment and its potential 
impact on human health.

Methodology

We followed the 2020 Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines 
to guide the reviewing procedure.

Inclusion criteria

Studies were considered if they met the following criteria: 
(1) microplastic-associated biofilms; (2) full-text articles 
published in English; and (3) articles from 2015 to 2022 
were considered.

Search strategy and information sources

The following databases were searched: ScienceDirect, 
SCOPUS, and PubMed from their launch dates until the end 
of the searching date of 19 May 2022. The study goal was 
addressed through a combination of subject headings and 
keywords in the search, including “microplastic, OR micro-
plastics” and "biofilm OR biofilms.” Other simple subject 
terms, such as “aquatic,” “ecological,” “trophic transfer,” 
and other keywords were joined to the major search terms 
using Boolean operator AND and/or OR to get focus studies 
on a specific section of this review. For the Embase search to 
meet our inclusion criterion of full-text articles, conference 
abstracts were deleted. Our search did not include any other 
search restrictions, such as a country limitation. The other 
databases’ searching strategies were originally derived from 
the PubMed searching approach. Finally, the Google Scholar 
search engine was adopted for secondary search for a broad 
scope of relevant scientific papers.

Selection of studies

Duplication of articles was eliminated after all research 
results were exported to Mendeley. To organize and finish 
the screening procedure, the relevant articles were entered 
into Covidence systematic review software accessible at 
www.​covid​ence.​org. First, two authors separately evaluated 
each abstract and title for eligibility. The eligibility of each 
full-text publication was then separately evaluated by two 
authors. Conflicts were settled in both rounds by group talks.

Quality evaluation

The Mixed Methods Appraisal Tool (MMAT) (Hong et al. 
2018), a tool that assesses the methodological quality of 
studies involving quantitative and qualitative, was used 
to assess the publications’ quality in its 2018 iteration. 
Each of the five methodological quality requirements was 
given could not decide no or yes response rating. Instead 
of computing an aggregate value from the assessments of 
each requirement, a thorough report of the assessments of 
each requirement was utilized to determine the quality of 
the selected articles (Hong et al. 2018). The caliber of the 
studies was evaluated independently by two authors. The 
two authors talked it out and came to a consensus. A third 
author was engaged when this dialogue failed to resolve the 
conflict.

Results

Initially, 321 publications were found (Fig. 1). Ninety-five 
studies fulfilled our eligibility requirements after ineligible 
studies and duplicated studies were eliminated.

Microplastic‑microbe association

There are several reports on the attachment of microorgan-
isms to MPs, such as diatoms (Briand et al. 2012), fungi 
(De Tender et  al. 2015; Zinke et  al. 2017; Zhang et al. 
2020b), bacteria (Brandt and House 2016; Oberbeckmann 
et al. 2016), and algae (Masó et al. 2003). Generally, the 
attachment of microorganisms to surfaces causes a signifi-
cant alteration in gene expression, which might affect cell 
behavior. This interaction may impact the expression of 
genes responsible for surface attachment and motility (Tuson 
and Weibel 2013; Saygin and Baysal 2022). These micro-
organisms derive some beneficial effects from this attach-
ment to surfaces. Horizontal surfaces, for example, promote 
the deposition of suspended particles in the liquid phase, 
resulting in nutrient accumulation on these surfaces (Tuson 
and Weibel 2013). As a result, attached microorganisms 
have access to these nutrients, which promotes growth and 
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development (Free et al. 2014; Shen et al. 2019). Attached 
microorganisms on surfaces improve access to nutrients and 
obtain essential metabolites like metals adsorbed on these 
surfaces (Fig. 1). Metals like these play a crucial role in bio-
logical and cellular functions like electron receptors (Maret 
2016; Hara et al. 2017).

Microbial communities associated with a biofilm 
of MPs

Microbial attachment to surfaces (specifically bacteria) 
usually occurs through biofilms (Free et al. 2014; Ober-
beckmann et al. 2015; Shen et al. 2019). The formation of 
biofilms on microplastic surfaces and many other surfaces 
occurs through the secretion of extracellular polymeric sub-
stances (Shen et al. 2019). In addition to physical support, 
biofilm also provides protection from mechanical damages, 
enhances the bacteria’s diffusivity (Fig. 1) (Oberbeckmann 
et al. 2015; Shen et al. 2019), as well as active protection 
from evading predators (Tuson and Weibel 2013). Finally, 
MPs’ persistent and buoyant nature may also enhance the 
survival and spread of pathogens in soil and waters (Kes-
wani et al. 2016; Semcesen and Wells 2021). Numerous 

researchers have reported the formation of biofilms in the 
aquatic environment (De Tender et al. 2017; Ogonowski 
et al. 2018; Miao et al. 2019c; Wu et al. 2019).

A growing body of evidence has shown that there 
is a high degree of uniqueness and lesser diversity of 
microplastic biofilm relative to the microbial diversity 
of the nearby environment (Bryant et al. 2016; Kettner 
et al. 2017; Laganà et al. 2019; Miao et al. 2019c; Yang 
et al. 2021). As a result of the uniqueness of the micro-
bial community attached to MPs, they form a microe-
cological niche, especially in the marine environment, 
usually referred to as “plastisphere.” (Zettler et  al. 
2013b). Results from preliminary studies have shown 
that the presence of MPs in the environment improves 
and enhances the survival rate of the microorganisms 
and protects them from adverse environmental condi-
tions (Harrison et al. 2014; Bryant et al. 2016). Regard-
less of the type of aquatic habitat, the most commonly 
detected bacterial community attached to MPs belongs 
to the phylum Proteobacteria (Table 1). Cyanobacteria 
are also prominent in microplastic biofilm in the marine 
ecosystem (Sgier et al. 2016; Viršek et al. 2017; Dus-
sud et  al. 2018). Proteobacteria and Firmicutes have 

Fig. 1   Prisma diagram for study 
selection
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also been detected in marine (Viršek et al. 2017) and 
freshwater ecosystems (Miao et al. 2019a, 2021b). As a 
result of the diversity of biofilms attached to microplastic 
surfaces and the presence of other essential natural sub-
strates in waters, MPs usually have an exclusive selection 
of the microorganisms that are attached to them (Miao 
et al. 2019a). In contrast, Oberbeckmann et al. (2016) 
demonstrated that normal marine biofilm processes were 
predominantly responsible for the attachment of micro-
organisms on microplastic surfaces. They came to the 
conclusion that plastics were just surfaces for microbial 
attachment, not a selection process based on plastic type 
or surface. This conclusion was reached based on the 
findings that there was no significant difference between 
particle-associated and plastic-associated biofilms 
despite differences in the surrounding water. The differ-
ence between microbial communities attached to parti-
cles and free-living microorganisms in water in the same 
region has been reported (Ortega-Retuerta et al. 2013; 
Mohit et al. 2014; McCormick et al. 2014). It has also 
been shown that there is a significant difference between 
the community structure of biofilms attached to MPs and 
several other particles present in water (Amaral-Zettler 
et al. 2015; Luo et al. 2022). The ecological processes 
of microorganisms attached to MPs are greatly affected, 
although there is no sufficient data to explain the direct 
effect of MPs on microorganisms.

Behavior and fate of microplastic‑associated 
biofilms in the aquatic environment

To understand the behavior and fate of microplastic-
associated biofilm, it is necessary to study biofilm for-
mation on microplastic influenced by geographical fac-
tors, microbial biofilms, physiochemical weathering, and 
spatial location (Wright et al. 2020; Zhang et al. 2021). 
Results from preliminary studies have shown that the 
presence of MPs in the aquatic environment improves 
and enhances the survival rate of the microorganisms 
and protects them from adverse environmental condi-
tions (Fig. 2) (Harrison et al. 2014; Bryant et al. 2016; 
Qiang et al. 2021). One of the factors involved in sur-
face-programmed biofilm formation is conditioning film 
(CF), which is formed on the microplastic (substrate) 
via the deposition of biomolecules (products of aquatic 
organisms’ metabolic activity), such as proteins, gly-
coproteins, lipids, polysaccharides, nucleic acids, and 
ions, aromatic amino acids which function by substra-
tum surface modification as well as physicochemical 
properties, additionally, acting as a chemoattractant to 
the microorganism, which is required for the complex 
biofilm formation (Miao et  al. 2019a; Bhagwat et  al. 
2021). Despite CFs, quorum sensing, which serves as Ta

bl
e 

1  
(c

on
tin

ue
d)

Sa
m

pl
e 

m
at

rix
M

ic
ro

pl
as

tic
/p

la
sti

c 
su

bs
tra

te
Si

ze
M

ic
ro

bi
al

 c
om

m
un

ity
Re

fe
re

nc
e

R
iv

er
 w

at
er

Po
ly

vi
ny

l c
hl

or
id

e 
pe

lle
ts

D
en

si
ty

 o
f 1

.3
5~

1.
45

 g
/c

m
3 , 3

 m
m

Pr
ot

eo
ba

ct
er

ia
, B

ac
te

ro
id

et
es

, F
irm

ic
ut

es
W

u 
et

 a
l. 

(2
01

9)
M

ar
in

e
Po

ly
et

hy
le

ne
Po

ly
sty

re
ne

Po
ly

pr
op

yl
en

e

>
  2

 m
m

Pr
ot

eo
ba

ct
er

ia
, C

ya
no

ba
ct

er
ia

D
us

su
d 

et
 a

l. 
(2

01
8)

Fr
es

hw
at

er
Po

ly
pr

op
yl

en
e

Po
ly

et
hy

le
ne

(D
ia

m
et

er
 1

00
 n

m
, d

en
si

ty
 2

5 
m

g/
cm

−
3 )

(P
E;

 d
ia

m
et

er
 3

–4
 m

m
, d

en
si

ty
 0

.9
2 

g 
cm

−
3 ) a

nd
 p

ol
y-

pr
op

yl
en

e 
pa

rti
cl

es
 (P

P;
 d

ia
m

et
er

 3
–4

 m
m

, d
en

si
ty

 0
.9

1 
g 

cm
−

3 )

Pr
ot

eo
ba

ct
er

ia
, R

os
eo

co
cc

us
Ph

yc
is

ph
ae

ra
le

s, 
Fi

rm
ic

ut
es

,
C

yc
lo

ba
ct

er
ia

ce
ae

, P
ire

llu
la

ce
ae

M
ia

o 
et

 a
l. 

(2
01

9a
, 2

01
9b

)

70616 Environmental Science and Pollution Research (2022) 29:70611–70634



1 3

the first stage of the contact between the solid surface 
and microorganisms, is another surface-initiated biofilm 
development (Lami 2019). Surface thermodynamics and 
Derjaguin-Landau-Verwey-Overbeek (DLVO)-analyses 
drive the initial adhesion of bacterium (Carniello et al. 
2018). An increase in the number of tethers involved, 
interfacial water loss, structural changes in bacterial sur-
face protein, and reorientation of bacteria on the surface 
all lead to irreversible adherence after the initial encoun-
ter (McGivney et al. 2020). These adhesion forces cause 
bacterial cell walls to deform, increasing the contact area 
of the substratum surface, which activates membrane-
located sensor molecules, including exopolysaccharides 
(EPS) and efflux pumps. Other elements, such as surface 
conditioning, are also involved in the formation of bacte-
rial biofilms (Carniello et al. 2018).

The presence of MPs in the aquatic ecosystem has been 
reported to provide a new environment for biofilm devel-
opment resulting in potential antimicrobial resistance 
gene development. Due to their distinct environmental 
and ecological impacts on human aquaculture and the 
ecosystem, the interactions of microplastic-antibiotic 
resistance genes (ARGs) have raised global concern in 
the past few years (Dong et al. 2021a; Liu et al. 2022). 
Plastisphere, which is predominantly engaged in the accu-
mulation of ARGs and drug-resistant bacteria, has been 
discovered to carry sulfonamide-resistant genes that are 
persisting and propagating in the aquatic environment 
(Debroy et al. 2021; Sathicq et al. 2021). On their long 
journey from source to sink, microplastics are colonized 
and enclosed by diverse and complex biofilm-forming 

microbial consortia (Xue et al. 2020). Horizontal gene 
transfer enhances the transfer of ARGs between bio-
film-forming microbes and ambient bacteria via various 
mobile genetic components (Abe et al. 2020), allowing 
microplastic-associated biofilms to acquire ARGs from 
far settings and encouraging pathogenicity transmis-
sion and antibiotic resistance (AR) in the environment 
(Laganà et al. 2019). Biofouling has also been found to 
affect the fate of MPs by altering particle characteristics 
(e.g., density). Biofilm development raises the density 
of floating or buoyant MPs, causing sedimentation of 
these low-density particles (Oberbeckmann et al. 2015). 
MPs are also most likely included in so-called hetero-
aggregates in the environment. Particulate matter (MPs 
and other suspended solids) and microbes (e.g., protozo-
ans, algae) make up these aggregates, which are bound 
together by biopolymers. Lagarde et al. (2016) demon-
strated polymer-dependent (PP vs. HDPE) aggregations 
with the algae Chlamydomonas reinhardtii in laboratory 
research. While both HDPE and PP surfaces were col-
onized quickly, PP was the only one to create growing 
hetero-aggregates of polymer particles, algal cells, and 
exopolysaccharides. The ability of small particles to be 
ingested can be altered by upscaling them via aggregation. 
Large hetero-aggregates are accessible to macro-feeders, 
while the abundance of tiny particles and hence the avail-
ability to micro-feeders (e.g., protozoans, planktonic crus-
taceans) declines (e.g., planktivorous fishes). As digestive 
fluids decompose the biopolymer matrix, the uptake of 
one aggregate by macro-feeders may result in an internal 
release and exposure to many particles of various sizes.

Fig. 2   Microbial colonization 
biofilm formation on micro-
plastic surfaces and its effects. 
Various plastic products used by 
man disintegrate and find their 
way into the aquatic environ-
ment, where they interact with 
microorganisms, resulting in 
the formation of microplastic-
associated biofilms. This micro-
plastic biofilm confers some 
beneficial roles to the microor-
ganisms while also impacting 
the microplastic itself
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Properties and conditions favoring 
microplastic‑associated biofilm formation 
in the aquatic environment

Several environmental factors influence biofilm forma-
tion in the aquatic environment, such as characteristics 
of the MPs (substrate-specific), succession/period (time-
specific), and environmental conditions. Environmental 
conditions and microbial community are also collectively 
called location-specific factors (Oberbeckmann et  al. 
2015; Amaral-Zettler et al. 2015; Kirstein et al. 2018; 
Tu et al. 2021). The various microplastic characteristics 
include the type of polymer (polystyrene, polyethylene 
polyurethane), plastic additives, and morphology (color, 
size, virgin or weathered, roughness) (Barlow et  al. 
2020). The polymer type is the most studied microplas-
tic property since it directly impacts microplastic biofilm 
formation. A recent study shows that there is a significant 
difference between the microbial community composition 
of polypropylene and polyethylene in the Bay of Brest 
when compared to those on polystyrene at a local scale 
(Frère et al. 2018; Parrish and Fahrenfeld 2019) and those 
from the ocean on a global scale (Amaral-Zettler et al. 
2015; Sun et al. 2020a; Tarafdar et al. 2021). Available 
evidence shows that the dominant microbial biofilms on 
polystyrene, polyethylene, and polyethylene terephthalate 
MPs are Gammaproteobacteria and Alphaproteobacteria, 
unlike the polyethylene MPs dominated by Burkholderi-
ales in a garbage patch in the North Atlantic (Didier et al. 
2017). The majority of studies, on the other hand, have 
concentrated on the impact of typical nonbiodegradable 
plastics on the formation of biofilm in aquatic environ-
ments (Koelmans et al. 2019; Akdogan and Guven 2019). 
Recently, Kirstein et al. (2018) showed that there was a 
significant difference between the microbial communities 
present on biodegradable polylactic acid (PLA) and those 
of 7 other traditional nonbiodegradable plastic polymers 
(Kirstein et al. 2018). Degradable MPs (such as PLA) 
can also be found in wastewater treatment plant efflu-
ents (Mintenig et al. 2017), but they appear to be highly 
resistant in the natural, typically nutrient-poor aquatic 
environment (Napper and Thompson 2019). Research 
has shown that more MPs are produced by biodegradable 
and bio-based PLA during degradation relative to the 
quantity produced by polystyrene (Napper and Thomp-
son 2019; Battulga et al. 2022). It is worthy to note that 
biodegradable plastics are different and distinct from bio-
based plastics, despite the fact that they are frequently 
confused. Nonpetroleum biological resources are used 
to make bio-based plastics, while biodegradable plastics 
can be bio-based or petroleum-based, and their degrada-
tion occurs as a result of exposure to naturally occurring 

bacteria (Wackett 2019). To better understand the fate, 
possible toxicity, and other impacts of biodegradable 
plastic polymers in the aquatic ecosystem, the effects of 
biodegradable MPs on the formation of microbial should 
be extensively studied.

The properties of the microplastic surface are greatly 
influenced by the hydrophobicity and roughness of the MPs, 
two prominent factors that have an influential effect on the 
microbial community on the microplastic surface (Mercier 
et al. 2017; Gong et al. 2019). When compared to virgin 
samples, aged MPs have a larger surface area, polarity, and 
roughness, after being exposed to UV light or incubated in 
water for several weeks (Liu et al. 2019, 2020; Jemec Kokalj 
et al. 2019). These structural alterations can affect the forma-
tion of microbial communities. It has been shown that the 
roughness of the microplastic surface tends to improve nutri-
ent adsorption and surface area, thereby enhancing microbial 
attachment (Oberbeckmann et al. 2015). The predominant 
microplastic type in the environment is usually the aged 
MPs, which have been reported to have a greater environ-
mental impact on the aquatic environment as a result of their 
high sorption capacity for most hydrophobic contaminants 
and their subsequent ingestion by surrounding biota (Fu 
et al. 2019; Liu et al. 2020; Zhang et al. 2022). Therefore, 
it is necessary to give a detailed evaluation of the effect of 
microbial community structure and its role on aged MPs. 
Currently, available evidence shows that microplastic size 
has no effect on the composition of the microbial community 
(Parrish and Fahrenfeld 2019). Consistent with this, there 
was no significant observable difference in the composition 
of the microbial community of mesoplastic and microplas-
tic biofilm in the North Pacific Gyre (Bryant et al. 2016). 
Plastic shape (sheet, monofilament, etc.), just like size, had 
no significant observable difference in the composition of 
the bacterial community (De Tender et al. 2015; Feng et al. 
2020). Certain constituents added during the production of 
plastics, such as heat stabilizers, pigments, flame retardants, 
additives, plasticizers, and antimicrobial agents, are a deter-
minant and cause certain degrees of alterations in some plas-
tics properties of plastics (Smith et al. 2018). These factors 
are still unexplored and require urgent attention.

In addition to the characteristics of MPs, environmen-
tal conditions are another determining factor that greatly 
affects the formation of microplastic biofilms. Certain 
environmental conditions like physicochemical parameters 
(light, temperature, dissolved oxygen, pH, salinity, etc.), 
availability of nutrients (nitrate, carbon, and phospho-
rous), and pollutants (antibiotics, toxic metals, etc.) are, to 
a large extent, essential factors influencing the formation of 
microbial biofilm and succession on the MP surfaces (Shan 
et al. 2022). The microbial assemblage on MPs is deter-
mined by the nutrient level, temperature, and concentration 
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of suspended particles in lake water (Chen et al. 2019; 
Tavşanoğlu et  al. 2020). The growth rate of microbial 
biofilm is also influenced by available nutrients, such as 
nitrogen, carbon, and phosphorous (Liu et al. 2019). The 
diversity of bacterial biofilm in the estuary is determined 
by salinity (Liu et al. 2019). The role played by aquatic ani-
mals and plants in the transfer of MPs across the food web 
cannot be overlooked (Au et al. 2017). Available evidence 
has shown that the interaction between the rhizosphere of 
aquatic plants and the microbiome of aquatic animals may 
affect the formation of microbial biofilm on MPs (Jemec 
Kokalj et al. 2019). This is further proof that both abiotic 
and biotic environmental factors can influence the micro-
biome of the plastisphere (Kettner et al. 2017).

The growth of microbial community on MPs biofilms 
is a perfect representation of temporal succession, which 
may be split into 3 stages: early colonization, mid-coloni-
zation, and late colonization periods (Miao et al. 2022). A 
perfect example is the case of members of the Gammapro-
teobacteria group, which are the dominant early pioneer 
community on microplastic biofilm and are subsequently 
and quickly replaced by members of the Flavobacteria 
and Alphaproteobacteria (Pollet et al. 2018; Ramsperger 
et al. 2020). Generally, members of Gammaproteobacte-
ria and Alphaproteobacteria are the known early pioneers 
of the estuarine and marine MP biofilms (Oberbeckmann 
et al. 2015). Specifically, polystyrene and polyethylene 
MPs in the marine ecosystem are early colonized by 
Vibrio species (Kesy et al. 2019, 2020). Other microbial 
families (such as Planctomycetaceae, Rhodobacteraceae, 
Phyllobacteriaceae, and Flavobacteriaceae) are known 
to be the most abundant in the later phase of microplastic 
colonization (Pinto et al. 2019). Despite the composition 
of the microbial biofilm MPs being significantly different 
from those of the free-living bacteria in the neighboring 

environment, they still depend on the surrounding micro-
bial communities for development (Arias-Andres et al. 
2018a). As a result of the clear geographical and depth-
dependent distribution patterns exhibited by the microbial 
communities present in aquatic ecosystems like rivers and 
lakes, the formation of unique microbial biofilms on MPs 
may be influenced (Liu et al. 2018; Kavazos et al. 2018). 
It has also been shown that the composition of the micro-
bial community on microplastic biofilms in the natural 
environments is dependent on the sources of microbial 
discharge into the aquatic environment (Jiang et al. 2018).

Environmental and ecotoxicological 
implications of microplastic‑associated 
biofilms

Effects of MP‑microbe interactions 
on biogeochemical cycles

Microplastic biofilm has been shown to influence the cyclic 
movement of essential chemical elements, such as carbon, 
phosphorus, and nitrogen between the living organisms and 
the surrounding external environment (Fig. 3). This bio-
geochemical cycle plays a crucial role in synthesizing and 
degrading organic matter (Rogers et al. 2020).

Carbon cycle

The continuous use of plastic products increases their 
deposition on several ecosystems as a result of inadequate 
management, thereby enhancing the interaction between 
MPs and microbes (Roager and Sonnenschein 2019). The 

Fig. 3   Effects of MP-microbe 
interactions on biogeochemical 
cycles. Microplastic biofilm 
has been shown to influence the 
cyclic movement of essential 
chemical elements, such as car-
bon, phosphorus, and nitrogen 
between the living organisms 
and the surrounding external 
environment. The sorption 
and dissolution of the biofilms 
lead to changes in soluble and 
total phosphorus and nitrogen 
concentrations and an increased 
level of dissolved organic 
carbon
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intermediate degradative products of plastics could act as 
substrates, co-substrates, or carbon sources to Mos (Rog-
ers et al. 2020). During the trophic transfer processes, 
there is a concomitant transfer of MPs, their degradative 
products and microbes, resulting in the generation of abi-
otic and biotic chemical reactions in the biogeochemical 
cycle (Zettler et al. 2013a; Rogers et al. 2020). As a result, 
oxidation-reduction reactions are essential in determining 
the fate of MPs in the natural environment. The dissolved 
organic carbon (DOC) is an important component of the 
carbon cycle and is known to be one of the largest reduced 
carbon pools in the world (Peter et al. 2011). Biofilms 
adhering to plastic particles are rich in heterotrophic bac-
teria, which promote the degradation of dissolved organic 
carbon (Peter et al. 2011). About 5.25 trillion pieces of 
plastic weighing 268,940 tons float at the surface of the 
sea (Eriksen et al. 2014). The interaction between plastic 
debris and organic/inorganic matter in the aquatic eco-
system could trigger the production of dissolved organic 
carbon on the microlayer surface (Galgani and Loiselle 
2021). The transformation process is also influenced by 
the abundance of microbial communities(Huang et  al. 
2021b). A recent study shows that the leaching of dis-
solved organic carbon is directly linked to plastic pollution 
in the ocean (Romera-Castillo et al. 2018). Approximately 
23,600 metric tons of dissolved DOC are discharged into 
ambient seawater each year as a result of microplastic par-
ticles (Romera-Castillo et al. 2018).

With more plastic debris entering the oceanic water 
bodies, dissolved organic carbon leaching from plastics 
and its possible effects on marine microorganisms and 
carbon cycling may become increasingly important, par-
ticularly in locations where plastic pollution is prevalent. 
Results from available reports show that many bacteria 
can potentially transform MPs into dissolved carbon 
sources, which could be the cause of the high-dissolved 
organic concentrations detected in environments with 
high levels of MPs (Huang et al. 2021b). These generated 
microplastic intermediates resulting from the degrada-
tion of MPs significantly impacts the carbon cycling in 
the ocean. Intermediate products, as potential electron 
donors, promote the formation of microbe-plastic aggre-
gates, which have an impact on DOC cycling in the ocean 
(Rogers et al. 2020). Evidence from previous studies has 
also indicated the effect of released DOC from micro-
plastic particles affecting the growth and carbon cycling 
of microbes in the ocean (Romera-Castillo et al. 2018; 
Galgani and Loiselle 2019). These findings showed the 
ubiquitous nature of MPs in the marine ecosystem could 
alter the carbon sequestration and turnover with unknown 
implications for marine biogeochemical cycles and global 
productivity of the ocean. Therefore, it is evident that the 
abundance of MPs has a great impact on the activities 

of microbes, leading to alteration in their growth and 
interfering with the ocean’s carbon pool, specifically in 
regions with high microplastic sequestration.

Phosphorus cycle

There are available reports, which show that the presence 
of biofilm has an impact on the phosphorous (P) cycle in 
both the terrestrial and aquatic environment. However, 
little is known about the effect of microplastic on the 
P cycle. Recently, a study on the effect of microplastic 
biofilm on the phosphorous cycle in microcosm shows 
that the concentration of phosphorus in water increased 
significantly as a result of the presence of microplastic 
after 245 days leading to an increase in the activities of 
alkaline phosphatase activities in the biofilm during the 
period of cultivation (Chen et al. 2020). The sorption 
and dissolution of the biofilms were responsible for the 
changes in soluble and total P concentrations. Another 
independent research reported a significant increase in 
total and soluble P concentration due to the addition 
of MPs (Liu et al. 2017). Pieces of microplastic were 
found to influence the availability of P in both paddy 
and red soil (Yan et al. 2021). The available P content 
increased in red soil but dropped in paddy soil due to the 
two soils’ different microbial communities. In contrast 
to N cycling, the P cycle circulates chemicals in vari-
ous forms without causing gaseous loss, resulting in a 
reasonably stable mechanism (Chen et al. 2020). On the 
other hand, additional phosphorus cycling processes are 
required to refine the effects of MPs on terrestrial and 
aquatic ecosystems.

Nitrogen cycle

The essential role of nitrogen in the life of an organism in 
the ecosystem is numerous, ranging from energy metabo-
lism to the formation of materials. Ammonia finds its way 
into the nitrogen cycle by azofication as an intermediate 
product during catabolic reactions. According to a prior 
study, adding PE microbeads significantly raised ammo-
nium concentration and disrupted N cycling, perhaps caus-
ing eutrophication (Cluzard et al. 2015). The presence of 
plastic particles can cause a significant alteration in the 
two major distinct pathways (denitrification and nitrifi-
cation) involved in removing excess reactive nitrogen in 
the ecosystem (Seeley et al. 2020). The effect of 5 types 
of MPs on activated sludge caused a significant inhibi-
tion of the nitrification process (Li et al. 2020). A positive 
regulation was observed for the denitrification process, 
and nitrous oxide emission was remarkably increased in 
the presence of polyethersulfone and PVC (Wang et al. 
2022d). The presence of PE MPs significantly accelerated 
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anammox and denitrification processes leading to an 
increase in the levels of anammox and denitrification 
genes in sediments from freshwater (Huang et al. 2021b). 
MPs peculiarly act as a substrate providing distinct habi-
tat for colonization of microorganisms and biofilm forma-
tion (Oberbeckmann et al. 2015). Biofilm has also been 
reported to play essential roles in biomass production and 
biological matter cycles microbial respiration. PP micro-
plastic was reported to create an extra anaerobic atmos-
phere within its inner surface, which could enhance the 
growth of denitrifying bacteria and consequently improve 
denitrification (Li et al. 2020).

Total nitrogen concentration is expected to reduce 
theoretically since denitrification accelerates nitrogen 
removal in the system. When PP was introduced, the for-
mation of nitrogen-fixing communities contributed to the 
additional nitrogen input, increasing the total nitrogen 
content in microcosms (Chen et al. 2020). Conversely, 
Yan et al. (2021) found that Microvirga species (N-fixing 
root nodule bacteria) in PVC amended soil were reduced. 
Several parameters, including duration, cultivation sys-
tem, and microplastic type, may have different effects on 
azotobacters. Seeley et al. (2020) investigated the asso-
ciation between the microbial population and nitrogen-
cycling activities driven by MPs and found that differ-
ent microplastic types had varying impacts on nitrogen 
cycling. For example, sediments modified with polylactic 
acid and polyurethane foam promoted nitrification and 
denitrification, but PVC had an inhibitory effect on both 
processes. The addition of various types of microplastic 
particles (1000 particles/L) leads to an increase in ammo-
nia concentration (Li et al. 2020). The oxidation rate of 
ammonia was significantly improved by PVC and PP, 
while polyethersulfone, polystyrene, and polyethylene 
caused an inhibition of the oxidation rate. Despite the 
crucial role played by MPs in the nitrogen cycle, research 
on the subject is still in its early stages. With the support 
of organisms, nitrogen passes through the biogeochemi-
cal cycle, which entails a series of complex processes. 
The colonized microbial communities are shaped by the 
microplastic type, surface topography, kind, size, and 
bioavailability, which have an impact on the circulation 
of nitrogen. Understanding how different MPs affect 
these processes under different environmental settings 
and to what extent these manmade materials influence 
the natural nitrogen cycle remains a major knowledge 
gap. Furthermore, the cycling of carbon and nitrogen in 
ecosystems has been demonstrated to be closely related. 
These details are essential for a complete understanding 
of the ecological effects and fate of MPs in the environ-
ment. In addition, complete integration of cultivation-
independent molecular methods, like proteomics, metab-
olomics, and metagenomics, will considerably improve 

our understanding of the effects of MPs on the nitrogen 
cycle in different environments.

Effect on aquatic lives through trophic transfer

There are numerous investigations on the ingestion of 
MPs by the biota as well as transfer along the food chains 
and neglected the presence of biofilms under environ-
mental conditions (Phuong et al. 2016; Potthoff et al. 
2017). However, available evidence shows that the pres-
ence of biofilm enhances the trophic transfer of some 
nanoparticles within the marine environment (Luo et al. 
2022), which most likely applies to microplastic as well. 
There is high selectivity by primary consumers as they 
tend to preferentially feed on particles with higher nutri-
tional content, such as microplastic-containing biofilms 
rich in nutrients (He et  al. 2022). This could also be 
applied to other aquatic feeders like fishes, aquatic inver-
tebrates, and other aquatic predators and birds. This pref-
erential selectivity is more noticeable among selective 
feeders like shrimps and copepods but to a few extent 
among passive feeders like cladocerans (Dahms et al. 
2007). The probability of MPs adhering to the filter-
ing apparatus in suspension and filter feeders may be 
increased by biofilm because neutral particles have been 
demonstrated to be more readily captured than particles 
carrying negative charges (Fabra et al. 2021). Grazers 
like copepods and snails may accidentally consume frag-
ments of plastic when feeding on the biofilms on the plas-
tic surface, as evidenced by feeding marks observed on 
plastic debris sampled on the field (Reisser et al. 2014a). 
Patches of marine snow could be actively explored by 
zooplanktons, implying that larger quantities of MPs that 
are aggregated may be ingested relative to freely scat-
tered particles (Billing et al. 1998). There was an observ-
able enhancement in the uptake of 100-nm polystyrene 
beads embedded in marine aggregates in suspension-
feeding bivalves relative to scattered virgin plastic par-
ticles (Ward and Kach 2009). Furthermore, the increased 
abundance of MPs may lead to a significant alteration 
in the sedimentation rate of algal bloom, thereby influ-
encing the food supply for benthic and pelagic species 
(Long et al. 2015). Nanoparticle-mediated flocculation 
and sedimentation of algal food resulted in a lower rate 
of feeding in Daphnia magna under food-limiting condi-
tions (Campos et al. 2013; Amariei et al. 2022). This pro-
cess may affect both pelagic feeders in the mixing layer 
and benthic ecosystems because they may obtain the food 
of unusual quantity and quality. Conclusively, the forma-
tion and potential heteroaggregation of biofilm may alter 
the uptake and the susceptibility of various organisms 
to ingestion of MPs through the change in their physical 
properties, thereby enhancing their availability.
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Trophic transfer of microplastic‑associated 
biofilms (MAB) and implications on human 
health

Aquatic and marine MPs have been reported in recent times 
to be associated with microbial colonization, which clogs 
the MPs forming biofilm and creating a unique biological 
environment known as plastisphere (Harrison et al. 2018; 
Dussud et al. 2018; Oberbeckmann and Labrenz 2020; 
Xue et al. 2021). In addition to several adverse ecologi-
cal and environmental implications of these microplas-
tic-associated biofilms, they can possibly impact human 
health adversely, as reported in very few experimental 
studies (Michels et al. 2018). Despite the sparingly avail-
able experimental evidence, this section presents the prob-
able route by which these MABs could negatively affect 
humans. The association of MPs and biofilms can serve as 
anthropogenic vectors of several toxic contaminants such as 
heavy metals (Cao et al. 2021; Wu et al. 2022a), chemicals 
(Mammo et al. 2020), antibiotics, antibiotic-resistant genes 
(Li et al. 2021), and pathogenic organisms (Viršek et al. 
2017). Humans can come into contact with contaminant 
MABs directly or indirectly. Direct contact can be through 
drinking contaminated water and swimming in rivers and 
other waterbody and skin in contact with such contami-
nated water (Huang et al. 2021a). Moreover, the transfer 
of recalcitrant MPs through the trophic levels and across 
the food chain are indirect means of getting to humans and 
could serve as a probable prediction of the impact of MABs 
on human health (Walkinshaw et al. 2020). Studies have 
proven that the physicochemical properties of MPs change 
on colonization by microbial biofilms. McGivney et al. 
(2020) compared the nature of MPs incubated in bacteria-
containing water (BCW) and bacteria-free water (BFW) 
and discovered that MPs in BCW increased in their crys-
tallinity and maximum compression, while a concomitant 
decrease was observed in stiffness. Contrarily, there were 
no observed physiochemical changes in plastics incubated 
in BFW (Reisser et al. 2014b). Another study by Lobelle 
and Cunliffe (2011) reported that the biofilm formation 
around buoyant polyethylene MPs causes the MPs to sink. 
Consequentially, MPs are prone to be wrapped by the feces 
of sea animals (Zhang et al. 2020a), further colonized by 
epiblastic organisms, such as diatoms and ciliates, and then 
ingested by fishes (Reisser et al. 2014b). MP-associated 
biofilms also accumulate heavy metals, toxic chemicals, 
antibiotic-resistant genes, pathogenic organisms, hydro-
phobic organic chemicals (HOCs), leached toxic chemicals, 
and degraded toxic particulates of MPs (Jin et al. 2020). In 
this session, we shall review how MAB serves as a portal 
for trophic transfers of hazards to humans and their poten-
tial risks to human health.

Accumulation and trophic transfer of heavy metals 
and toxic chemicals

Heavy metals and toxic chemicals can come from diverse 
sources and accumulate in the aquatic environment as 
a result of human activities, such as mining activities, 
leaching of agrochemicals, pesticides and herbicides, 
and industrial effluent discharges. (Mishra et al. 2019). 
These heavy metals and toxic chemicals have been impli-
cated in causing severe chronic conditions ranging from 
cancer, hormonal dysfunctions, and other genetic prob-
lems in humans (Rehman et al. 2018). A few studies have 
reported the accumulation of these chemicals and metals 
within the plastisphere of MPs. Moreover, the physico-
chemical properties of the surface of the biofilm favor 
the adherence, penetration, and accumulation of these 
chemicals. Despite the significant role of environmental 
parameters, such as aging, temperature, pH, contact time, 
ionic strength, and particle size in influencing the native 
interaction of MPs and heavy metals, the extent of their 
interaction is heightened in the presence of microbial 
biofouling and biofilm formation (Leiser et al. 2020).

Microbial biofilms influence the physicochemical 
properties of microplastic. A recent study by Tu et al. 
(2020) reported that biofouling of polyethylene micro-
plastic causes a reduction in hydrophobicity as well as a 
concomitant increase in the abundance of carboxyl and 
ketone groups on the microplastic surface. The authors 
reported that these physiochemical changes result in an 
increase in the affinity for metal ions to get adsorbed 
onto the surface (Tu et  al. 2020a). In general, it was 
recently shown by a comparative analysis by Wang et al. 
(2021a) that the sorption of metallic ions onto biofilm-
associated MPs is significantly higher than other natural 
particles, such as sediments, clays, and aquatic particles. 
Interestingly, some studies reported some mechanisms 
by which metal gets adsorbed onto the surface of MAB. 
Electrostatic interaction, ion exchange, and surface com-
plexation are the major and most common mechanisms 
identified in recent studies (Wang et al. 2020c, 2021a; 
Guan et al. 2020). Guan et al. (2020) reported that bio-
films on the surface of polystyrene showed improved 
adsorption of trace metal when compared with virgin 
microplastic. The enhanced adsorption was attributed to 
the complexation of trace metals with functional groups 
contained in the biofilms, such as carboxyl, amino, and 
phenyl-OH, which was revealed by SEM-EDS and FT-IR 
analysis (Guan et al. 2020; Stabnikova et al. 2022).

Similarly, other studies have shown that with the 
increase in the maturation of biofilm, there is a concomi-
tant increase in biofilm formation. A recent study by Rich-
ard et al. (2019) investigated the effects of biofouling of 
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MPs to sorb environmental pollutants and heavy metals. 
They reported that the concentration of heavy metals, such 
as Ba, Cs, Fe, Ga, Ni, and Rb progressive accumulated 
as the biofilms developed around the polylactic acid and 
low-density polyethylene MPs. Moreover, mature biofilm 
around MPs was reported to harbor other metals, such as 
Cu, Pb, Al, K, U, Co, Mg, and Mn at varying concentra-
tions (Richard et al. 2019; Wang et al. 2022a). Similarly, 
Wang et al. (2020a) reported that biofilm formation onto 
polyethylene enhances the adsorption of copper (CU2+) 
and tetracycline in MPs. The Freundlich adsorption and 
desorption isotherm model was adopted to show the 
enhancement of heavy metal adsorption by biofilm asso-
ciation with the MPs (Wang et al. 2018, 2020c).

Several pieces of evidence on the enhancement of heavy 
metal adsorption onto MABs and the ease of the trophic 
transfer of microplastic up to humans as consumers present 
a picture of the potential toxicity to humans that the associa-
tion can cause (Aghoghovwia et al. 2016; Zong et al. 2021; 
Cao et al. 2021). Recently, Qi et al. (2021) reported that 
MPs act as an anthropogenic vector for the heavy metal Pb 
(II), and its adsorption onto MPs are enhanced by the forma-
tion and maturation of biofilms (Guan et al. 2020; Li et al. 
2022b). Moreover, from their studies, they discovered that 
biofilm heightens the combined toxicity of both the heavy 
metals and MPs in Daphnia magna (Qi et al. 2021; Cao 
et al. 2021). Metal sorption onto MABs results in the loss 
of buoyancy and sinking of the consortium (Miao et al. 
2021a). Another study reported that plastic-associated bio-
films strongly adsorbed radioactive metals—137Cs and 90Sr 
cations, which cause microplastic-biofilm consortiums to 
potentially emit radioactivity (Johansen et al. 2018, 2019). 
Several pieces of evidence have shown that unscrupulous 
exposure to radioactive emissions could have chronic effects 
resulting in genetic mutation, cancers, hormonal dysfunc-
tion, brain damage, and many more (Carbery et al. 2018; 
Wang et al. 2018; Mammo et al. 2020; Qi et al. 2021).

In the same vein, toxic chemicals and pollutants, such 
as antibiotics, hydrophobic organic contaminants (HOCs), 
polycyclic aromatic hydrocarbons (PAHs), and polychlo-
rinated biphenyls (PCBs) can also adhere more suitably to 
MABs due to the improvement of the MP hydrophobicity, 
density, roughness, and functional groups by the biofilm 
association (José and Jordao 2020). Wang et al. (2021a) 
reported that biofilms developed on MPs are potent vectors 
for aquatic pollutants to foster their trophic transfer through 
the food web to higher organisms. In their report, they high-
lighted that biofilms, which enhance the adherence of these 
pollutants, emit olfactory signals for sea organisms to ingest 
consortiums. Secondly, biofilms enhance the bioavailability 
of the pollutants and evade their degradation by the host 
defense system. Finally, the bioavailable pollutants are trans-
mitted up the food web until they get to humans (Naik et al. 

2019; Wang et al. 2021a). There are sparely available studies 
on the toxic effects of pollutants associated with MABs on 
humans and on higher animals. More so, the fate of these 
chemicals needs to be—to know if they remain intact or 
metabolized by the microbial consortiums. There are pos-
sibilities that the microbial members of the biofilms could 
metabolize the toxic and recalcitrant chemicals into less 
toxic or more toxic derivatives. Alternatively, the associa-
tion may serve as a vector of the intact pollutants. Therefore, 
future studies should look into elucidating the vast possibili-
ties in the association of microplastic and biofilms.

Accumulation and trophic transfer of antibiotic 
resistance genes and pathogenic organisms

Microbial biofilms are known for their recalcitrant nature 
and invasiveness in colonizing susceptible surfaces. Bio-
films are most often resistant to antibiotics and other bac-
tericidal agents due to the coating of the biofilm microbial 
community by EPS as well as the acquisition of antibiotics 
genes (Ghosh et al. 2019). Individual organisms in the con-
sortium of the MAB may acquire these resistant genes from 
their environment and from other organisms through either 
vertical or horizontal gene transfer (Marathe and Bank 
2022). Parthasarathy et al. (2019) opined that plastic pollu-
tion in both the aquatic and terrestrial environments is the 
vector for transmission of pathogens as well as antibiotic 
resistance. Pathogenic bacteria and fungi, such as Pseu-
domonas, Escherichia, Acinetobacter, Candida, Cryptococ-
cus, and Rhodotorula were reported to be present on the 
surfaces of domestic plastic appliances. At the same time, 
other genera, such as Pseudomonas, Aeromonas, Arcobac-
ter, Zymophilus, Aquabacterium, and Campylobacter spp. 
have been associated with MPs in aquatic environments 
(Parthasarathy et al. 2019; Boni et al. 2021). Pathogenic 
organisms and antibiotic genes can emanate from different 
sources. Hospital wastewater is one interesting hub for anti-
biotic resistance. Antibiotic-resistant genes, such as ermB 
(macrolides resistant), tetW (tetracyclines resistant), blaTEM 
(β-lactams resistant), qnrS (fluoroquinolones), ermB), and 
sulI (sulfonamides) have been reported to populate hospi-
tal wastewaters (Rodriguez-Mozaz et al. 2015). Similarly, 
effluents from antibiotic-producing industries are another 
portal for antibiotic resistance to gain entry to water bodies 
at their disposals (Felis et al. 2020).

A growing body of evidence has shown that the associa-
tion of MPs in a consortium of biofilms enhances the transfer 
of antibiotic genes from one organism to another within the 
biofilm consortium. Polyamide MPs have been reported to 
be more prominent as a vector of antibiotic genes in fresh-
water than in seawaters (Arias-Andres et al. 2018b; Wang 
et al. 2021a). Furthermore, from their study, plasmids, espe-
cially those bearing antibiotic resistance, were more easily 
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transferred among MP-associated bacteria than those free-
living bacteria. Finally, the gene transferred occurred across 
diverse phylogenetic bacteria, which potentially suggests the 
ease to which human pathogens could gain antibiotic resist-
ance in a MP-associated biofilm association. These pathogens 
potentially gain entry into humans via ingestion of raw or 
poorly cooked aquatic foods and drinking unpurified waters. 
(Arias-Andres et al. 2018b; Li et al. 2022a). Xiang et al. (2019) 
reported that the ingestion of polystyrene (2–2.9 μm) by Fol-
somia candida significantly altered its gut microbiome and 
antibiotic resistance gene profile. Similarly, Y. Zhang et al. 
(2020), in their studies, opined that the antibiotics resistance 
bacteria on MPs were 100 to 5000 times higher than those 
in fresh water and that about 25% of the microplastic biome 
showed multidrug resistance of TET-SFX-ERY-PEN (Zhang 
et al. 2020c; Deng et al. 2021). Similarly, another study from 
King George Island, South Shetlands, Antarctica, showed 
that 7 strains from 27 bacteria that were part of the biofilm 
of a macroplastic surface exhibited multi-antibiotic resistance 
against cefuroxime, cefazolin, cinoxacin, ampicillin, carbeni-
cillin, and mezlocillin (Laganà et al. 2019). Conversely, Wu 
et al. (2019) compared MP surfaces to other natural surfaces, 
such as rock particles and leaves, for their ability to form bio-
films and ease of disseminating antibiotic resistance. With the 
aid of high-throughput sequencing experiments and metagen-
omic analysis, they reported that microplastic uniquely distinc-
tive microbial communities with the highest node connectiv-
ity (Oberbeckmann et al. 2021). More so, the metagenomics 
analysis revealed that microplastic biofilms possess broad-
spectrum bacteria, distinctive resistome, and two opportunistic 
human pathogens, Pseudomonas monteilii and Pseudomonas 
mendocina. In summary, their results suggest that MP surfaces 
are the most preferred aquatic surface for biofilm formation 
and gene transfer of antibiotic resistance genes (Wu et al. 2019; 
Cholewińska et al. 2022).

In addition to the upregulation of antibiotic-resistant 
genes in MP-associated biofilm consortiums, several stud-
ies have reported a concomitant increase in the expression 
of integrons gene (intl1) as well as metal accumulations. 
Integrons are static genetic elements that facilitate the inte-
gration of gene cassettes and horizontal transfers and dis-
semination of antibiotic-resistant genes (Zhang et al. 2020c; 
Wang et al. 2021c). Class 1 integrons in many studies have 
been associated with antibiotic resistance gene transfers 
in the fish pathogen Aeromonas salmonicida (Eckert et al. 
2018; Li et al. 2021). A study conducted by Pham et al. 
(2021) reported that polyethylene and polystyrene MPs 
promoted selective colonization of antibiotic-resistant and 
pathogenic taxa, such as Raoultella ornithinolytica and 
Stenotrophomonas maltophilia. The consortium around 
MPs was discovered to express enriched sulfonamide 
resistance genes (sul1 and sul2) as well as class 1 integrons 
(intI1) (Pham et al. 2021). In conclusion, antibiotic-resistant 

genes, when transferred to human pathogens, could cause 
serious health challenges, especially for high-risk individu-
als comprising the aged population, children, and immuno-
compromised patients.

Future prospects: reversing the harmful 
effects of microplastic‑associated biofilms

The ubiquitous nature of microplastic and its attendant 
adverse effects are a significant concern of many environ-
mental scientists. Moreover, the advent of biofouling and 
the formation of biofilms quickly around microplastic raises 
more problematic issues, as discussed in the previous sec-
tion. Little attention was given to the advent of harnessing 
the underlining biological and physicochemical principles 
of biofilm formation around MPs for beneficial purposes. 
This section briefly highlights future research perspectives 
on reversing the negative effects of MP-associated biofilms.

Use of biofilms to coagulate plastic microparticles 
into macroparticles for easy mop‑up

Plastic waste and MPs have caused severe environmental 
and health worries for several decades. Several approaches 
have been developed to help manage and control plastic lit-
ter and MPs from water bodies. A very recent review high-
lighted coagulation/flocculation, degradation, separation, 
and filtration as the significant methods for mopping up 
plastic wastes from water bodies, having varying limitations 
and successes (Krystynik et al. 2021). However, mopping 
up MPs is usually difficult because of their minute sizes, 
variations in their buoyancy, and ease of dispersal. Moreo-
ver, the coagulation and flocculation approach has been 
reported as one of the most efficient methods for MP mop-
up. The coagulation/flocculation chemical-based methods 
adopt the principle of charged neutralization to cause MPs 
to aggregate into insoluble floc that can be easily filtered 
or mopped up. The limitation of this method is the adverse 
effect of the residual chemical on water life and ecosystem 
and cost ineffectiveness when trying to treat or mop up MPs 
from large water bodies.

The ease by which microplastic facilitates the forma-
tion of biofilms, which have been perceived as serious 
environmental and health challenges, can be turned into an 
advantage for a more effective microplastic mop-up. Sev-
eral studies have reported the changes in the physicochemi-
cal properties, such as buoyancy, roughness, and tensile 
strength of microplastic in biofouling by microbial commu-
nities (Djaoudi et al. 2022). Free-floating MPs could easily 
become sediments when covered with biofilm, enhancing the 
ease of coagulating or forming aggregates. There are very 
sparse studies on developing novel biogenic particles that 
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could improve the rapid aggregation of MP-associated bio-
films. Michels et al. (2018) reported that biogenic particles 
collected from the southwestern Baltic Seas stimulated the 
rapid aggregation of MP-associated biofilms. Future studies 
could focus on engineering nonpathogenic microbial strains 
with exciting characteristics and abilities to colonize MPs, 
displace or inhibit the growth of pathogenic counterparts, 
and efficiently aggregate to form clusters when inducers are 
introduced. A recent and novel study by Prof Yang Liu and 
colleagues from Hong Kong Polytechnic University reported 
the exciting abilities of engineered Pseudomonas aerugi-
nosa biofilms to trap and aggregate MPs. Furthermore, the 
engineered biofilms also possess control release abilities, 
promising reuse and sustainability for microplastic mop-up 
(Liu et al. 2021; Ayush et al. 2022; Wu et al. 2022b).

Engineering biofilms for microplastic degradation

Another exciting aspect of turning our problems into solu-
tions is the engineering of biofilms to degrade MPs into 
harmless, beneficial, or less recalcitrant products (Lu 
et al. 2022). The advent of modern genetic engineering 
techniques has paved the way for achieving virtually any 
form of microbial genetic manipulation to bestow any 
desired traits on organisms. Microbes, which are part 
of the consortium of biofilms around microplastic, can 
be engineered to degrade hazardous MP particles into 
products for their metabolism. More so, there are pos-
sibilities that microbes within the biofilm could be engi-
neers to form a syntrophic association—where another 
group of microbes uses the product at different stages 
of microplastic degradation (Sturm et al. 2022). Lastly, 
biofilm consortiums can be manipulated to accommodate 
and serve as vectors for in situ lab-engineered organisms 
targeted toward plastic degradation. When in the bio-
film consortium, these engineered organisms have more 
improved specific targets for MPs (Chen et al. 2021).

Despite these research possibilities, there have not 
been many studies that have investigated this interest-
ing approach. Morohoshi et al. (2018) reported that the 
biofilms form around poly(3-hydroxybutyrate-co-3-hy-
droxyhexanoate) (PHBH) when incubated in freshwater 
samples, causing the degradation of the plastics. Using 
next-generation sequencing, the researcher reported 28 
plastic-degrading strains, of which the majority were from 
the genus Acidovorax and order Burkholderiales (Moroho-
shi et  al. 2018). Furthermore, Ghosh Saheli recently 
reported a possible modeled pathway through which bio-
films could degrade plastics and MPs (Ghosh et al. 2019).

To wrap up this session, if studies can achieve the pos-
sibility of degrading MPs by engineering its biofilms, 
several benefits apart from environmental remediation 
may abound. Some interesting applications, such as the 

application of degraded products from MABs could serve 
as supplementary nutrients for aquatic plants and animals 
as well as agriculture in swampy soils. When degraded, 
MPs could be an attractive source of metabolizable car-
bon and hydrogen, which are useful for maintaining the 
trophic level of food chains and the environmental geo-
chemical circle.

Microbial enzymes from microplastic‑associated 
biofilms associations—naturally occurring 
and engineered

Microbial biofilms around microplastics could become 
an interesting source of extracellular enzymes for wide 
industrial and remediation purposes. Moreover, some of 
these enzymes contribute to the clearance of microplas-
tics revenging freshwater and marine habitat (Menzel 
et al. 2021). The microbial population within the bio-
film consortium could produce two different types of 
enzymes—the surface modifying enzymes (SME) and 
plastic polymer degrading enzymes (PPDE). While the 
SMEs contribute to making the surface of microplas-
tics more hydrophilic and coarse for biofilm attachment, 
PPDE acts on plastic polymers to degrade them to mono-
meric units and forms that microbes can metabolize as 
energy sources (Wright et al. 2020). Examples of SMEs 
are majorly hydrolases, such as lipases, carboxylester-
ases, cutinases, and proteases. On the other hand, PPDE 
comprises oxidases, amidases, laccases, and peroxidases 
(Othman et al. 2021). Due to the possibility of produc-
tion of SMEs and PPDEs within the microbial biofilms, 
the consortiums efficiently foster the enzymatic degrada-
tion of microplastic compared to organisms existing in 
isolation (Gao and Sun 2021).

Some of the very interesting and well-studied enzyme 
groups for remediating several microplastic pollutions are 
the polyethylene group-degrading enzymes, polyethylene 
terephthalate-degrading enzymes, polystyrene-degrading 
enzymes, and polypropylene-degrading enzymes (Oth-
man et al. 2021; Menzel et al. 2021; Nur et al. 2022). These 
enzymes have been extensively studied in recent years, 
and a wide range of organisms comprising bacteria, fungi, 
actinomycetes, and algae have been implicated in extracel-
lularly releasing these enzymes (Chattopadhyay 2022). Bio-
films formation around microplastic promotes the synergy 
among this wide range of organisms, especially for micro-
plastic degradation. Moreover, microbial members of the 
plastisphere could be improved for microplastic mop-up 
through genetic and metabolic engineering. Recent advances 
in enzymatic degradation have gained applicability in the 
remediation of thermos-microplastics, such as polyethylene 
terephthalate (PET) by polyethylene terephthalate-degrading 
enzymes (Maity et al. 2021).
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Other potential applications

There are other potential applications of MP-associated 
biofilms. Kalčíková and Bundschuh (2021) reported that 
biofilms around microplastic could act as a sink or source 
of microplastics depending on the environmental condi-
tions. As a microplastic sink, it accumulates microplastics 
from a polluted environment, and as a source is the release 
of the accumulated microplastics from the biofilms under 
certain conditions (Kalčíková and Bundschuh 2021). One 
very recent and interesting study developed a biofilm asso-
ciation having an inert “trap and release” mechanism. The 
engineered biofilm microbial strains release exopolymeric 
substances (EPS) to trap and accumulate microplastics in 
the aquatic environments. Moreover, the biofilm association 
easily disintegrates on induction to release the accumulated 
microplastics. This bioengineered system can be of valuable 
applicability in microplastic recovery and removal from pol-
luted aquatic environments (Liu et al. 2021).

Another interesting application is the engineering and 
fostering of the formation of periphytic biofilms around 
microplastic for microplastic degradation. Periphytic bio-
films comprise a consortium of algae as the first colonizer, 
followed by bacteria, fungi, and micro- and meso-organisms 
(Wu et al. 2018; Shabbir et al. 2020). Periphytic biofilms 
are self-sufficient and more efficient for the degradation of 
biofilms because of the greater diversity of microbial spe-
cies involved (Shabbir et al. 2022). A previous study by 
Shabbir et al. (2020) reported the development and appli-
cation of engineered and immobilized periphytic biofilms 
for enhanced microplastic degradation. Other studies have 
shown several artificial substrates favorably support the 
formation, development, and immobilization of periphytic 
fungi, of which plastic such as PVC are interesting alterna-
tives (Miao et al. 2019b, 2020; Wright et al. 2020). More 
efforts should be directed toward turning the hazards of 
MABs into benefits.

Conclusion and other future prospects

MPs are ubiquitous; many recent studies have evidently 
proved their impact on the environment and human 
health. Contemporary studies have shown that the favora-
ble biofouling of the surface of MPs has resulted in wors-
ening negative consequences. This paper has extensively 
reviewed the impact of MPs on the environment, geo-
chemical cycles, and aquatic lives. It also expounds on 
the heightened consequences and long-term effects on 
human health that may result from the favorable trophic 
transfer of MPs associated with biofilms. The reviews 
have shown that a lot of research interest is being focused 
on the detrimental effect of the microplastic biofilms 

association, with very little attention on ways the asso-
ciation could be harnessed for the benefit of mankind. 
The review paper finally highlighted some prospects 
researchers could focus on turning the hazards of the 
microplastic biofilms association into benefits. In con-
clusion, rather than just directing research efforts toward 
only investigating and understanding the detrimen-
tal impacts of biofilms associated with microplastics, 
future studies should focus more on proactive measures 
in developing sustainable solutions to the environmen-
tal challenge or harnessing their benefits. As detailed 
in the manuscripts, scientists could consider advancing 
or developing biofilm-microplastic association to foster 
coagulation of plastic micro/nanoparticles into macro-
particles for easy mop-up. Moreover, unexplored pos-
sibilities are available through the genetic engineering 
of the biofilms to promote microplastic degradation and 
produce degradative enzymes for environmental pollut-
ants. Finally, the microbial constitute of the biofilms 
could be engineered to become avirulent and outcom-
pete pathogenic organisms in aquaculture, aquatic, and 
agroecosystem.
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