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Abstract
The prediction of water quality parameters is of great significance to the control of marine environments and provides a 
scientific decision-making basis for maintaining the stability of water environments and ensuring the normal survival and 
growth of marine aquatic products. However, the water quality in ocean ranches is affected by the complex, dynamic, and 
changeable environments of open water, which have complex nonlinear relationships, poor accuracy, high time complexity, 
and poor long-term predictability. Therefore, in this paper, a multi-input multi-output end-to-end prediction model based on 
a temporal convolutional network (MIMO-TCN) is proposed to predict water quality. A ConvNeXt module and TCN module 
were used as the model encoder and decoder, respectively. ConvNeXt was used to extract the features of the input data, and 
the TCN used the extracted feature data to achieve improved prediction accuracy. The model adds skip connections between 
its modules to solve the gradient disappearance problem as the number of network layers increases. To prove the effective-
ness of the proposed method, a model robustness and prediction ability evaluation was conducted in this paper based on the 
dissolved oxygen in multiple ocean pasture validation samples. Compared with other learning models, the mean absolute 
error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) of the MIMO-TCN prediction 
results were reduced by 60.77%, 30.88%, and 52.45% on average, respectively, and the R2 improved by 6.07% on average 
over those of other models. The experimental results show that the proposed method has higher forecasting accuracy than 
competing approaches.

Keywords Water quality · Deep learning · Temporal convolutional network · Prediction · Long term · Multi-input multi-
output

Introduction

A large number of pollutants produced by human activities 
enter the ocean, exceeding the self-purification capacity of 
the ocean and causing the destruction of the marine eco-
system. Pollution caused by harmful substances entering 
the marine environment will damage biological resources, 
endanger human health, hinder fishing and other human 
activities at sea, and damage the quality of seawater 
and the environment. (Kisi et al. 2020; Al-Ghazawi and 
Alawneh 2021). The water quality parameter is one of the 
important indices used to evaluate the degree of pollu-
tion in an aquatic environment. Keeping the water quality 
within the normal range is an important means for moni-
toring the water environment. For example, the normal 
range of pH in mariculture is 7.0∼8.5 (Nong et al. 2020; 
Huang et al. 2021), and the dissolved oxygen is kept at 
5∼12mg/L. In traditional mariculture, controlling water 
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quality based only on aquaculture experience may lead 
to uncontrollable water quality deterioration, resulting in 
a series of problems, such as decreased aquatic output. 
Extensive open aquaculture causes great damage to the 
ocean environment. With the development of modern fish-
eries, the number of marine ranches is increasing, and the 
associated sea area is also expanding. The current data 
show that China’s marine ranches cover an area of approx-
imately 1500 square kilometers, and approximately 178 
marine ranch demonstration areas are under construction. 
Therefore, we should scientifically and effectively predict 
the water environmental quality parameters of marine 
ranches and grasp the change trends exhibited by the qual-
ity parameters over time, which can help a large number 
of farmers take countermeasures before the environment 
seriously deteriorates, ensure the survival and production 
of fish in the most suitable environment, and improve the 
quality and output of aquatic products. At the same time, 
real-time water quality prediction can not only provide 
an early warning function but also provide a scientific 
decision-making basis for water environment protection 
and governance (Cao et al. 2021; Liu et al. 2013; Yan 
et al. 2021; Hadgu et al. 2014). This will help promote the 
modernization of marine fisheries and enable the estab-
lishment of intelligent aquaculture mechanisms. Therefore, 
the scientific and effective prediction and timely control of 
water quality can help farmers adjust their breeding strate-
gies according to the best water quality content, ensure the 
survival and growth of fish in the most suitable environ-
ment, and improve the quality and yield of aquatic prod-
ucts. At the same time, real-time water quality prediction 
can not only provide an early warning function but also 
provide a scientific decision-making basis for water envi-
ronment protection and governance (Cao et al. 2021; Liu 
et al. 2013; Yan et al. 2021; Hadgu et al. 2014).

Due to the uncertainty of ocean ranch environments and 
the fact that water quality is influenced by multiple factors, 
complex nonlinear relationships are involved. The pre-
diction of water quality is a challenging task considering 
these complex behaviors and the interactions among these 
factors (Zhu et al. 2020). As the detailed mechanisms of a 
marine environment cannot all be considered, it is difficult 
to accurately describe the complex variation trends of such 
an environment through only mechanism modelling. The 
application of data-driven methods to predict water qual-
ity has achieved remarkable results (Baek et al. 2020). The 
main methods include the time series method (Zhang et al. 
2019), interval- and fuzzy number-based time series predic-
tion method (Liu et al. 2020), traditional machine learning 
model-based prediction method (Liu et al. 2018; Sun et al. 
2021; Li et al. 2022), and neural network prediction method 
(Deng et al. 2021; Lin et al. 2020; Xu et al. 2022; Shen 
et al. 2017). These approaches are no longer able to adapt to 

complex water quality changes. They possess some defects, 
such as their poor generalization abilities and limited predic-
tion accuracies.

In recent years, sequence modelling based on deep learn-
ing has attracted increasing attention. Deep learning has 
achieved the most advanced performance in many areas, 
including image processing (Luo et al. 2020; Liang et al. 
2022), language recognition, and text classification. Hinton 
proposed a restricted Boltzmann machine (RBM) and a deep 
belief network (DBN) (Hinton and Salakhutdinov 2006; 
Hinton et al. 2006) in 2006, pointing out that deep networks 
have strong feature extraction capabilities. The prediction 
accuracy of deep neural networks (DNNs) in time series 
problems has been significantly improved (Feng et al. 2019). 
Some specific DNNs have also been widely used in time 
series prediction. Du et al. (2023) proposed a deep learning 
model called Deep Air to predict the surface PM2.5 concen-
tration of Shanghai. Sun et al. (2022) proposed a new mixed 
ship motion and posture prediction model based on long 
short-term memory (LSTM) and Gaussian process regres-
sion (GPR). Yu et al. (2021) proposed a hybrid convolu-
tional neural network-gated recurrent unit (CNN-GRU) deep 
learning method to predict soil moisture content. Ansari 
et al. (2022) proposed a network intrusion alarm predic-
tion method based on a GRU. These deep learning models 
also have many applications in hydrology. Ren et al. (2020) 
used a multilayer perceptron (MLP) and a RNN to construct 
hydrological data for water level prediction. Zheng et al. 
(2021) used LSTM to predict harmful gases in a whole water 
body. Pu et al. (2019) designed a hierarchical CNN to repre-
sent the relationships between Landsat 8 images and in situ 
water quality levels. In the field of deep learning, recurrently 
developed neural structures are commonly used in sequence 
modelling. Including RNNs, LSTM, and GRUs, recurrent 
networks can meet most prediction accuracy requirements, 
but they have unsolvable length limitations and gradient 
problems, and they are difficult to train.

To solve these problems, the convolutional structure of 
TCN can be used for time series modelling; this type of 
network accepts an input with an arbitrary length through 
a sliding 1D convolution, and the gradient problem is not a 
concern (Bai et al. 2018). In addition, the TCN module has 
the advantage of a convolution operation. It can accurately 
capture temporal feature changes; this has been effectively 
verified by Zhao et al. (2019) in a short-term urban traffic 
prediction scenario. The accuracy rate can reach a level as 
high as 95%. Second, each layer of a TCN can utilize convo-
lution operations in parallel instead of sequential processing, 
as in an RNN, which is helpful for extracting features from 
complex data (Samal et al. 2021). TCNs have good applica-
tions in different fields. Ma et al. (2022) used a TCN and 
support vector regression based on particle swarm optimiza-
tion to predict ultrashort-term traction loads. The absolute 
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error did not exceed 0.3 MW. TCNs have also been effec-
tively applied in the field of wind forecasting (Li et al. 2022). 
Meka et al. (2021) established a robust deep learning model 
for the short-term prediction of wind power generation in 
wind farms by using a TCN. Bian et al. (2022) proposed a 
short-term power load prediction method based on a TCN-
DNN hybrid deep learning model. Fan et al. (2021) applied 
a TCN in the field of health data detection and achieved 
improved long-term prediction accuracy. Overall, TCN mod-
els are feasible and precise prediction methods in the field 
of sequence prediction, but TCNs are seldom studied with 
respect to the prediction of water quality.

In this paper, a TCN-based multi-input multioutput 
(MIMO) end-to-end prediction model is proposed to rep-
resent the nonlinear mapping of water quality. The whole 
model adopts a fully convolutional network. The MIMO-
TCN model consists of an encoder and a decoder. A Con-
vNeXt module acts as the encoder to read data at the input 
stage. A stacked TCN acts as the decoder for internal data 
information processing. As the number of network layers 
increases, skip connections are added between each pair of 
modules to solve the gradient disappearance problem. The 
model can accomplish the tasks of single-step prediction and 
multistep prediction. The main contributions of this model 
include the following. 

1) A deep learning water quality prediction method based 
on an MIMO end-to-end architecture is proposed; this 
approach can solve the problem that traditional machine 
learning models have difficulty conducting prediction 
across multiple time steps.

2) A novel ConvNeXt module and a TCN module form a 
combined network with the ability to understand and 
process complex marine water quality scenarios.

3) A prediction method based on full convolution is pro-
posed; this technique adapts to the size of the input win-
dow, achieves compatibility between multisize inputs 
and outputs, and reduces the computational burden of 
the model.

4) A deep learning method with a skip connection struc-
ture is proposed to solve the gradient explosion, gradient 
vanishing, and network degradation problems.

Methodology

Problem statement

In marine water quality prediction problems, the main objec-
tive of the forecasting task is to predict the multiple water 
quality values in a future period of time given historical 
data. As expressed by Eq. (1), X represents water quality 

and contains more than one historical value. Here, N rep-
resents the sequence dimension, and T represents the time 
dimension.

The sequence of each dimension X(n) is represented by Eq. 
(2), where t represents the current timestamp.

When sufficient historical feature data are provided, feature 
capture and inertia prediction can be realized for these data 
by training the model. Both single-step prediction objectives 
can be expressed as P(Xt+d|0∶t) . The multistep prediction 
case can be expressed as P(Xt+1∶t+d|X0∶t) , where d represents 
the future time step.

The output sequence obtained after model calculation 
is expressed as Ŷ  , as shown in Eq. (3). ŷt+d represents the 
future data at time t+d. ŷt∶t+d represents the future data from 
time t to t+d.

The main task of this paper is to establish a mapping from 
X to Ŷ  according to Eq. (4) while minimizing the loss(Ŷ , Y) 
between the observed value Y and the predicted value Ŷ .

End‑to‑end strategy

Most prediction models employ single-step prediction, 
where a sequence is used to train the model to predict the 
value at the next time step. Considering the nonlinear and 
complex characteristics of water quality in the ocean, the 
water quality prediction task requires MIMO water quality 
prediction.

In essence, traditional machine learning algorithms cannot 
properly deal with MIMO problems, so a direct multistep 
forecasting strategy (Taieb and Hyndman 2012) is generally 
adopted to solve such problems. In other words, multiple mod-
els are constructed to predict data in different time periods. 
Neural networks can overcome such limitations. A structure 
with a large number of neurons can flexibly support multiple 
input forms and predict multiple values at once. However, if 
the given data are directly input into the model, a problem 
arises: time series relationship is not considered. An end-to-
end structure based on deep learning can solve this problem 
when processing time series. Performing processing with a 
particular structure such as an encoder or a decoder (Vas-
wani et al. 2017), thus realizing multiple inputs and multiple  

(1)X =
{
X(0)

,X(1)
,X(2)

...X(N)
}
∈ RN×T
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2
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outputs, can also be combined with time series relationship, 
improving the performance of the resulting model.

In this paper, a novel TCN autoencoder is designed via an 
end-to-end deep learning strategy, which can realize MIMO 
water quality data. It can be used to predict the water qual-
ity of different ocean ranches. The architecture of MIMO-
TCN is shown in Fig. 1, which represents the training pro-
cess of the model in detail. In Fig. 1a, the input sequence 
is expressed as X = {X(0),X(1),X(2) …X(N)} ∈ RN×T  . The 
sequence passes through the encoder and decoder of the 
model. After training, the model can capture the trends 
of various changes. The output sequence is expressed as 
Y = {Y (0),Y (1),Y (2),… ,Y (N)} ∈ RN×T . Figure 1b shows the 
movement of the sliding window. The trained network can 
accurately capture the similar changes exhibited by the time 
series in the current period and the historical series to pre-
dict future data according to historical inertia. This strategy 
considers the temporal causality in a deep learning network. 

The value Xt∶t+d in the future period only relies on the his-
torical data before time t. We predict ŷt∶t+d from x1 … xt , so 
that the value of ŷt∶t+d is close to the actual value. This step 
of predicting results through historical data is expressed by 
Eq. (5) below.

MIMO‑TCN model

The MIMO-TCN model is shown in Fig. 2. The whole model 
uses a network structure with full convolution and causal 
convolution. This approach can read a long sequence with-
out limitations. The input is related only to the previous 

(5)p(ŷt⋯t+d) =

T∏

t=0

p(yt⋯t+d)|x1,… , xt−1)

P(yt:t+d) = ∑p(yt:t+d|x1,…,xt-1)^

t=0

T

Fig. 1  Deep learning-based MIMO prediction strategy. (a) The model’s stragegy. (b) Historical data is similar to future data
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sequence. The proposed model follows this overall archi-
tecture and forms a kind of deep learning–based end-to-
end forecasting method through a series containing an 
encoder and a decoder. The encoder and decoder are used 
to construct the convolutional network. Such networks can 
adapt to the input window size, support end-to-end train-
ing, better learn sequence information, and realize the sizes 
of inputs and outputs required for purposes. Additionally, 
the computational cost of the model is reduced. An input 
sequence X ∈ RN×T is mapped to a continuous sequence 
Z = {Z(0), Z(1), Z(2)...Z(N)} ∈ RN×T by the encoder. In the next 
operation, the previous mapping Z ∈ RN×T passes through 
the repeat vector as input. The decoder then generates an 
output sequence represented by Ŷ = {ŷT+1, ŷT+2, ...ŷT+t� } .

ConvNeXt block

In this paper, a ConvNeXt block (Liu et al. 2022) is used 
as the encoder of the model to capture multi-input feature 
information, as shown in Fig. 2c. The ConvNeXt Block 
first uses a depthwise convolution structure, which calcu-
lates each channel of the input data separately. The num-
ber of convolution kernels must be equal to the number 
of input channels. Thus, the number of output channels 

is equal to the number of input channels, which greatly 
reduces the required numbers of computations and param-
eters. The ConvNeXt model increases the convolution ker-
nel size of depthwise convolution. Second, the ConvNeXt 
block borrows an important design from the transformer 
network; that is, the hidden layer adds a bottleneck struc-
ture as the implementation of nonlinear transformation. Its 
memory efficiency is higher than that of the conventional 
expansion structure, and the ConvNeXt module adjusts the 
inversion bottleneck structure according to the number of 
floating point operations. Furthermore, the module uses 
Gaussian error linear unit (GELU) for activation func-
tions and uses fewer normalization functions, reducing 
the normalization layer and retains only the normaliza-
tion layer after performing depthwise convolution. The 
paper replaces batch normalization with layer normaliza-
tion, which is commonly used in CNNs. Third, the Con-
vNeXt network uses the two above convolution layers with 
convolutions, and a GELU activation function is added 
between the two layers. Finally, the output size is adjusted 
to the module input size through layer scaling and path 
dropping. In this study, the ConvNeXt block is applied for 
time series prediction. The data to be processed are a one-
dimensional sequence, so the two-dimensional convolution 

Fig. 2  MIMO-TCN structure. 
(a) TCN Block; (b) The MIMO-
TCN’s whole structure; (c) 
ConvNeXt Block
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layer is replaced by a one-dimensional convolution layer 
in the ConvNeXt block.

TCN

MIMO-TCN uses TCN as its decoder, as shown in Fig. 2a. 
MIMO-TCN makes use of the advantages of causal convo-
lution, dilated convolution, and residual connections in the 
TCN for time series prediction. On the basis of traditional 
convolution, a strict time constraint is added to the causal 
convolution step. The value at time t of the next layer only 
depends on the value at time T and those before time T in the 
last layer. The main process is that we predict a future value 
yt from x1 … xt−1 , to make ŷt close to the observed value yt . 
Sequence modelling tasks are accomplished by using the 
past and current information in each layer. The dilated con-
volution operation can solve the problem that the longer the 
length of the input sequence of the causal convolution is, 
the greater the computational cost. In the calculation of the 
dilated convolution kernel, the original sequence is discon-
tinuous. That is, some position values are skipped in the con-
tinuous sequence to calculate the maximum amount of field 
information with the limited size of the convolution kernel.

The TCN can achieve unlimited data coverage through 
the accumulative calculation process of the multilayer con-
volution and dilated convolution. Finally, the input sequence 
is determined by the size of the convolution kernel and the 
number of network layers. The dilation factor d = (k − 1)i−1 . 
The length of the input sequence SX is expressed in Eq. (6), 
where k is the size of the convolution kernel and L is the 
number of convolution layers.

The more hidden layers there are, the longer the sequence 
length is. However, to process longer input sequences, the 
model needs an extremely deep network or a very large 
convolution kernel. The addition of residual blocks ensures 
that as the network layers deepen, the accuracy is improved, 
making the TCN structure more stable than other networks. 
In other words, equal mappings are added between different 
layers; this is expressed in Eq. (7), where O represents the 
output sequence. This module is an overly complex linear 
regression model, but an activation function is added on top 
of the convolution layer to introduce nonlinearity, and a rec-
tified linear unit (ReLU) activation function is added after 
the two convolution layers. Weight normalization is applied 
to each convolution layer. Regularization is introduced after 
each convolution layer after the dropout operation to prevent 
overfitting.

(6)SX =

L∑

i=1

(k − 1)i + 1

(7)O = Activation(X + F(X))

Each layer of the TCN module has 100 nodes, and the output 
layer is fully connected. Multiple TCN modules are used to 
form the decoder in MIMO-TCN.

Skip connections

In this paper, skip connections (Long et al. 2015) are added 
pairs of modules. This enables a single module to contain 
more detailed information. The model can obtain precise 
results through step-by-step sampling of the information 
possessed by a single module. During the process of increas-
ing the number of layers, the network realizes multiple 
branches to ensure that the degradation of some layers does 
not affect the overall performance. The skip connection out-
put represents the mapping of the output as a superposition 
of a nonlinear function F(X) and the original input X. Skip 
connections are added because they address many problems 
that are encountered with the deepening of the network, such 
as the gradient vanishing problem and gradient explosion 
problem. Taking the vanishing gradient problem as an exam-
ple, deep learning relies on chain backpropagation to update 
parameters. During the propagation process, if one of the 
derivatives is very small, the gradient may decrease after 
repeated multiplication. However, if residuals are used, an 
identity term 1 is added to each derivative, as shown in Eq. 
(8). Even if the original df

dx
 is small, the derivatives can still 

be effectively propagated back. At the same time, the reason 
that the training process of a DNN may fail involves not only 
the disappearance of the gradient but also the degradation 
of the weight matrix. Skip connections break the symmetry 
of the neural network and improve the neuron utilization 
rate at each layer. The original degraded weight matrix can 
recover its expression ability after adding skip connections 
(Orhan and Pitkow 2018). MIMO-TCN breaks the symmetry 
of the network and improves the representation ability of the 
network through skip connections.

Experiments and discussion

To evaluate the proposed MIMO-TCN method, prediction 
experiments are performed on 8 real-world ocean ranch 
dissolved oxygen datasets. First, the dissolved oxygen pre-
diction results obtained for one marine ranch are compared 
with those of other methods in the “Single-pasture pre-
diction evaluation with other prediction models” section. 
Second, an ablation experiment and a multistep prediction 
experiment are carried out on the same experimental data 
in the “Ablation experiment” and “Analysis of multi-output 

(8)dh

dx
=

d(f + x)

dx
= 1 +

df

dx
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results” sections, respectively. Finally, the prediction results 
are verified by the dissolved oxygen data of eight ocean 
ranches in the “Prediction accuracy evaluation on data from 
multiple ranches” section.

Experimental settings

Study areas and data description

Data were collected from 8 ocean ranches along the coast 
of Shandong Province, China (shown in Fig. 3). Cover-
ing approximately 1806 nm of coastline in the West-
ern Pacific Ocean, these locations have longitudes of 
114◦47

�

E ∼ 122◦42
�

E , and latitudes of 34◦22�

N ∼ 38◦24
�

N . 
The depth of the coastal ocean was less than 200 m. There-
fore, the water quality change pattern of the coast was dif-
ferent from that of the ocean, which is greatly affected by 
human interference, as well as terrestrial and marine ecosys-
tems. The variation trends are different in different seasons, 
and these variations are complex.

The water quality measure studied in this paper was dis-
solved oxygen. The interval of the collected dissolved oxy-
gen data was 10 min. A total of 144 consecutive samples 
were collected every day. The time period of data collection 
was 2020.12.1–2021.8.1. The dissolved oxygen data of 8 
marine pastures were collected, and 34,000 samples of data 
were divided into a training set and test set in time order at 
a ratio of 15:2. Among them, 30,000 samples of data were 
input for training, and 4000 samples of data were predicted 
from the test set. The statistical summary of the dissolved 

oxygen water quality levels of the 8 marine pastures is 
shown in Table 1.

Model forecasting performance metrics

To more clearly evaluate the prediction performance of 
the model and analyze the errors between the predicted 
values and the observed values, four performance metrics 
are adopted in this paper: mean absolute error (MAE), root 
mean square error (RMSE), mean absolute percentage error 
(MAPE), and coefficient of determination ( R2).

Their mathematical expressions are shown in Eqs. (9), 
(10), (11), and (12), respectively. The MSE calculates the 
expectation of the squared difference between the predicted 
values and the observed values; it is used to detect the devi-
ation between the predicted values of the model and the 
observed values. The objective of the MAE is to determine 
the absolute value of the differences between the observed 
values and the predicted values. The RMSE adds the square 
root sign on the basis of the MSE, which is more intuitive 
for comparison purposes. The range of the MAPE is [0,∞) , 
and a MAPE of 0% represents a perfect model. A MAPE 
greater than 100% indicates an inferior model; R2 is the coef-
ficient of determination, which is a measure of how well the 
regression fits the predicted values. The lower the MAE, 
MAPE, and RMSE values are, the smaller the error in the 
predicted values. The higher the R2 value is, the higher the 
fitting degree between the predicted values and the observed 
values.

Fig. 3  Geographical location of 
the study area
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where ôi denotes the predicted values, oi represents the 
observed values, and oi is the mean of the observed values.

Parameter settings

This study is run on a Windows 10 operating system and 
compiled with the Python 3.8 language; the specific hard-
ware parameters are an Intel (R) Core (TM) i5-8265 CPU at 
1.80 GHz and 8 GB of RAM. The grid search optimization 

(9)MAE =
1

n

n∑

i=1

|oi − ôi|

(10)RMSE =

√√√√ 1

m

m∑

i=1

(oi − ôi)
2

(11)MAPE =
100%

n

n∑

i=1

|
ôi − oi

oi
|

(12)R2 =1 −

∑n

i=1
(ôi − oi)

2

∑n

i=1
(oi − oi)

2

method is used to set the hyperparameters to obtain the best 
prediction performance. The optimizer, training loss func-
tion, learning rate, dropout rate, number of epochs, batch 
size, and other hyperparameters for model performance are 
set. The Adam optimizer is used in this study because of 
its advantages, such as its fast convergence speed and ease 
of parameter tuning. The MSE is used as a loss function 
because the MSE can quickly converge to the minimum loss 
value during the training process. The dropout rate is set 
to 0.2 to prevent model overfitting. The learning rate is set 
to 0.001. The number of epochs is set to 20, and the batch 
size is 32. The proposed deep learning model achieves the 
best predictive performance through these hyperparameter 
settings.

Single‑pasture prediction evaluation with other 
prediction models

To test MIMO-TCN, 34,000 dissolved oxygen samples 
obtained from the Qingdao Luhaifeng ocean ranch are used 
as the experimental dataset in this section, and the same 
experimental set is used in  the “Ablation experiment” 
and “Analysis of multi-output results” sections. The train-
ing set and test set are divided chronologically. A total of 

Table 1  Statistical values of each ocean ranch

Ranch number Dataset Time Number Mean (mg/L) Max (mg/L) Min (mg/L) Std (mg/L)

Ranch 1 All samples 2020.12.1–2021.5.14 24000 3.574737 8.456000 0.134000 1.660393
Training 2020.12.1–2020.4.16 20000 3.169594 8.456000 0.134000 1.448307
Testing 2020.4.16–2021.5.14 4000 5.600453 7.348000 2.503000 1.062709

Ranch 2 All samples 2020.12.1–2021.5.14 24000 9.757871 13.851000 1.580000 1.680185
Training 2020.12.1–2020.4.16 20000 9.676054 13.851000 1.580000 1.739037
Testing 2020.4.16–2021.5.14 4000 10.166952 12.829000 5.985000 1.271421

Ranch 3 All samples 2020.12.1–2021.5.14 24000 9.883776 13.943000 6.285000 1.136831
Training 2020.12.1–2020.4.16 20000 10.145956 13.943000 7.641000 1.004064
Testing 2020.4.16–2021.5.14 4000 8.572872 10.682000 6.285000 0.807165

Ranch 4 All samples 2020.12.1–2021.5.14 24000 9.883776 13.943000 6.285000 1.136831
Training 2020.12.1–2020.4.16 20000 10.145956 13.943000 7.641000 1.004064
Testing 2020.4.16–2021.5.14 4000 8.572872 10.682000 6.285000 0.807165

Ranch 5 All samples 2020.12.1–2021.5.14 24000 4.379465 8.697000 0.066000 1.986030
Training 2020.12.1–2020.4.16 20000 4.204133 8.306000 0.066000 2.114054
Testing 2020.4.16–2021.5.14 4000 5.256127 8.697000 3.606000 0.630669

Ranch 6 All samples 2020.12.1–2021.5.14 24000 7.332944 12.379000 0.097000 3.956146
Training 2020.12.1–2020.4.16 20000 8.263106 12.379000 0.097000 3.356914
Testing 2020.4.16–2021.5.14 4000 2.682135 10.166000 0.143000 3.407042

Ranch 7 All samples 2020.12.1–2021.5.14 24000 6.461706 8.330000 2.794000 0.739697
Training 2020.12.1–2020.4.16 20000 6.337740 8.330000 5.376000 0.720741
Testing 2020.4.16–2021.5.14 4000 7.081536 8.076000 2.794000 0.473912

Ranch 8 All samples 2020.12.1–2021.5.14 24000 7.235580 15.196000 0.080000 2.460767
Training 2020.12.1–2020.4.16 20000 7.814602 15.196000 0.096000 1.953174
Testing 2020.4.16–2021.5.14 4000 3.412390 7.302000 0.080000 2.004755
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30,000 data samples are used for training, and 4000 data 
samples are predicted for the test set. To verify the accuracy 
of MIMO-TCN, the above predicted dissolved oxygen sam-
ples are compared with those of six other similar algorithms 
according to the performance indicators; these comparison 
methods include a support vector machine (SVM), a deci-
sion tree (DT), an LSTM neural network, a back propaga-
tion neural network (BP), an RNN, and a hidden Markov 
network (HMM). For a fair experimental comparison, all 
the parameters of the comparative models are searched in 
a grid. To find the best hyperparameter settings, the same 
training set and test set are used for comparison. In addition, 
to clearly display the predicted results and facilitate analy-
sis and understanding, the performance indicators and the 
predicted results of various models are visually presented in 
Table 2 and Fig. 4. Table 2 presents the obtained prediction 
results according to the evaluation indicators, where smaller 
values and larger values represent more accurate model pre-
diction results. The MAE of MIMO-TCN is 60.77% lower 
than that of the other algorithms. The RMSE of MIMO-
TCN is 30.88% lower than that of the other algorithms. The 
MAPE of MIMO-TCN is 52.45% lower than that of the 
other algorithms. The R2 of MIMO-TCN is 6.07% higher 
than that of the other algorithms. Compared with these sim-
ilar algorithms, MIMO-TCN achieves the best prediction 
performance in terms of all performance indicators with a 
high fitting degree and a small prediction error. The results 
show that MIMO-TCN is the best approach. Therefore, the 
prediction accuracy of MIMO-TCN is higher than that of 
similar algorithms.

In Fig. 4, an error graph and a line graph are adopted. 
Figure 4a to f show the error comparison diagrams of the 
predicted values produced by the SVM, DT, BP, HMM, 
LSTM, RNN, and MIMO-TCN approaches, respectively. 
Figure 4g contains the resulting line graphs of all models. 
The red line in each error graph represents the prediction 
error of MIMO-TCN, which can be observed in (a)–(f). 
Compared with the other model errors, the error fluctuation 
degree of MIMO-TCN is the smallest, and the error value 
fluctuates slightly near 0. In Fig. 4g, the green line denotes 

the observed values, and the red line represents the predicted 
values. The predicted values of MIMO-TCN have the highest 
coincidence with the observed values in Fig. 4g. In addi-
tion, it can be seen from the analysis of the error graphs and 
resulting line graphs that when sudden increases or drops in 
the values occur, the predicted values of the SVM, DT, BP, 
HMM, LSTM, and RNN models greatly deviate from the 
real values, and the prediction errors are large; in contrast, 
the error of MIMO-TCN remains at a small level. As the 
deep learning model proposed in this paper can learn com-
plex time series, all kinds of changes can still be learned, 
so high prediction accuracy can still be guaranteed in cases 
with large data fluctuations.

Ablation experiment

To explore the contribution of each module in MIMO-TCN, 
the CNN prediction model and its variants are used for dis-
solved oxygen prediction experiments. Figure 5 shows the 
prediction results of various CNN model variants. The pre-
diction model based on a CNN has good performance in 
terms of predicting water quality, as shown in Table 3. The 
MIMO-TCN model has considerable advantages over the 
TCN and CNN. Compared with the other models, MIMO-
TCN has better performance in terms of the MAE, RMSE, 
MAPE, and R2 values of its prediction results. In addition, 
the performance of the Multi-TCN and MIMO-TCN models 
has more obvious index value advantage than the CNN, 
TCN, and TCANs (temporal convolutional attention-based 
networks). Multi-TCN means that multiple TCN modules 
are accumulated and skip connections are added. Figure 5 
shows the comparison results in terms of the three aspects. 
To analyze and explore the contribution of each module, 
the comparison results with respect to these three aspects 
show the fitting degree of the model at each stage and its 
measurement index and error distribution performances. 
Comparison 1, presented in the form of a density correla-
tion graph, is the comparison of the fitting degrees between 
the predicted values and observed values of the CNN and 
the variant models. In Fig. 5, the closer the scattered points 
are to the function y = x , the closer the predicted values are 
to the observed values. In Fig. 5, the slope of the line fitted 
with the scattered points is closer to 1, and the intercept 
is closer to 0. The more concentrated the scattered points 
are, the closer the predicted values are to the observed val-
ues and the better the fitting degree is. By comparison 1, it 
can be clearly observed that the fitting degrees of the two 
graphs on the right are significantly better than those of the 
three graphs on the right. The fitting line is closer to the 
function y = x . The aggregation of the scattered points is 
more concentrated. The fitting degree of the TCAN model is 
not greatly improved. The MIMO-TCN has the best fitting  

Table 2  Performance indices of the experimental results obtained by 
various comparative models

Model MAE RMSE MAPE R
2

MIMO-TCN 0.06850 0.131094 1.543634 0.978771
DT 0.131619 0.208057 2.8842917 0.962102
SVM 0.290330 0.444596 6.192001 0.809486
LSTM 0.137658 0.186130 2.268093 0.969227
BP 0.334318 0.261728 3.662923 0.913651
RNN 0.182222 0.237631 3.406464 0.962042
HMM 0.132040 0.231963 2.498296 0.943705
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effect, which is better than that of the Multi-TCN model 
(second from the right in the figure). In comparison 2, 
different performance metrics are used to compare the 
prediction results of various CNN model variants, which 
are displayed in the form of polar axis diagrams. The 

MAE figure shows that the MAE value of the MIMO-
TCN model is the smallest. The MAE value of the Multi-
TCN model decreases to a lesser extent. The MAE value 
of the TCAN model is not good. Similarly, the MAPE 
and RMSE values of MIMO-TCN are the lowest, the R2 

Fig. 4  Comparison of  the single-output model forecasting results 
of dissolved oxygen obtained for a single pasture site. (a) are pre-
dicted error of  MIMO-TCN and SVM; (b) are predicted error of 
MIMO-TCN and DT; (c) are predicted error of MIMO-TCN and BP; 

(d) are predicted error of MIMO-TCN and HMM; (e) are predicted 
error of MIMO-TCN and LSTM; (f) are predicted error of MIMO-
TCN and RNN; (g) are predicted results of all models
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increases counterclockwise, and the R2 value of MIMO-
TCN is the largest. In comparison 3, boxplots are used to 
judge the prediction results the CNN and variant models. 
The brownish-yellow part shows the model errors, and the 
blue part shows the MIMO-TCN error. MIMO-TCN has 
the smallest error and fewer outliers.

This experimental analysis shows that the performance 
of the proposed model is greatly improved compared with 
that of the traditional CNN model after the module structure 
and optimization parameters are adjusted, indicating that the 
CNN has optimization potential. A TCN is a CNN variant 
used for sequence prediction, and it has advantages in long 
sequence prediction tasks. The TCAN increases the atten-
tion mechanism, but its experimental performance is barely 
improved over that of the base model. However, the above 
experiments prove that the deepening of the TCN model and 
the combination of the ConvNeXt module are the main rea-
sons for the improved model accuracy. The model proposed 
in this paper is constructed and compared with various CNN 
benchmark prediction models and their variants. The above 
three aspects all prove the effectiveness of the model built 
in this paper.

Fig. 5  Forecasting results of the proposed forecasting system and the other benchmark models

Table 3  Performance indices of the ablation results

Model MAE RMSE MAPE R
2

MIMO-TCN 0.06850 0.131094 1.543634 0.978771
Multi-TCN 0.182464 0.228215 3.199373 0.953146
TCAN 0.334318 0.226904 4.573971 0.899450
TCN 0.245960 0.359642 4.872510 0.883640
CNN 0.216870 0.378171 3.588370 0.935471

7924 Environmental Science and Pollution Research  (2023) 30:7914–7929

1 3



Analysis of multi‑output results

On the basis of MIMO prediction, experiments are carried 
out. In this section, the results of different output steps are 
compared to verify the prediction results of the model con-
structed under the MIMO strategy. The number of steps rep-
resents the number of results acquired at one time. Figure 6 
shows all the obtained prediction results, and the middle 
part presents multistep prediction. The upper and lower parts 
of Fig. 6 magnify the results of different steps, while the 
green line shows the error. The predicted results are basi-
cally consistent with the observed values. The error is close 
to 0 in a single step. With the increase in the number of 
steps, the error fluctuates slightly. The reason for this result 
may be that with the increase in the number of steps, the 
complexity of the data increases. When predicting a step, 
the MAE, RMSE, MAPE, and R2 of the model are 0.0685, 
0.1310, 1.5436 (%), and 0.9787, respectively. When simul-
taneously predicting two steps, the MAE, RMSE, MAPE, 

and R2 of the model are 0.1499, 0.2156, 2.8687 (%), and 
0.9580, respectively. When simultaneously predicting the 
three steps, the MAE, RMSE, MAPE, and R2 of the model 
are 0.1635, 0.2502, 3.0728 (%), and 0.9434, respectively. 
When predicting four steps at the same time, the MAE, 
RMSE, MAPE, and R2 of the model are 0.1921, 0.2864, 
3.6286 (%), and 0.9261, respectively. When predicting five 
steps, the MAE, RMSE, MAPE, and R2 of the model are 
0.1970, 0.3190, 3.7746 (%), and 0.9079, respectively. When 
predicting all six steps, the MAE, RMSE, MAPE, and R2 
of the model are 0.2235, 0.3616, 4.2112 (%), and 0.8804, 
respectively. In addition, with the increase in the number of 
predicted steps, the running time decreases exponentially. 
When predicting one step, it takes 7 min and 46 s to train 
30,000 iterations. When the number of predicted steps is 
increased to 6, the training time decreases to 1 min and 37 s. 
After meeting certain accuracy requirements, the prediction 
speed can be appropriately increased to provide the latest 
prediction results in time.

Fig. 6  Comparing the one-step to six-step forecasting accuracy and runtime results
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Fig. 7  Performance indicators 
of the multiranch results
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Prediction accuracy evaluation on data 
from multiple ranches

To verify the performance of the MIMO-TCN prediction 
system in practical applications and to evaluate the accuracy, 
stability, and generalization ability of the model, prediction 
experiments are carried out based on 8 real ocean ranches 
in China. These 8 ranches are distributed in the northern 
and southern ends of the peninsula, and their environmental 
climates are different. The near-land ocean areas are greatly 
affected by the terrestrial climate. The dissolved oxygen 
prediction experiment involving these 8 ocean ranches can 
reflect the applicability of MIMO-TCN. The model adopts 
the same parameter settings as before and adopts the same 
settings when training different ocean ranches. The pre-
diction results are shown in Table 4 and Fig. 7. The per-
formance of MIMO-TCN is evaluated based on the MAE, 
MAPE, RMSE, and R2 indices in Table  4. The MAE, 
MAPE, and RMSE values of all ranch plots in the table are 
very low, with R2 values greater than 0.9. The 12-h (72 sam-
ples) prediction results are presented as curves and density 
correlation plots in Fig. 7. These plots show the predicted 
and observed values for each ranch and displays their fitting 
degrees; the dissolved oxygen values in the line chart greatly 
overlap with the predicted values and the observed values. 
The density plots enable a correlation analysis between the 
predicted and observed values; all points located near the 
y = x line are shown, and the points on the linear regres-
sion line are almost covered by the y = x line. This shows 
that MIMO-TCN can predict dissolved oxygen data with 
high accuracy. It not only predicts well overall but also per-
forms well in predicting peaks and valleys. Figure 7 also 
shows the different dissolved oxygen training loss curves 
of the sea ranches; at the beginning of the training phase, 
the loss values decrease significantly. After learning until 
a certain stage, the curves are steady loss curves. The loss 
change is not as obvious as it is at first. This suggests that 
the hyperparameters of the model are set appropriately and 
are stable under the condition of multi-ranch data. The above 

experiments show that MIMO-TCN has high prediction sta-
bility and a strong generalization ability. MIMO-TCN can 
be applied to dissolved oxygen data obtained from different 
environments with high accuracy.

Conclusion

To improve the accuracy of water quality prediction, it is 
necessary to adapt to increasingly complex water quality 
changes. In this paper, an end-to-end prediction model called 
MIMO-TCN is proposed to predict ocean ranch water qual-
ity. The encoder and decoder of the model consist of a Con-
vNeXt module and a TCN, respectively. The skip connection 
between each pair of modules ensures that the overall model 
performance is not negatively affected by network degrada-
tion as the network deepens. Simultaneously, the ConvNeXt 
module enlarges the learning limit of the CNN. The whole 
model not only solves the gradient disappearance problem 
of the neural network but also achieves improved predic-
tion accuracy. MIMO-TCN is evaluated on a water quality 
dataset derived from real marine ranches and compared with 
SVM, DT, BP, HMM, LSTM, and RNN models. The pre-
diction results of the MIMI-TCN model produce error rates 
that are 30.88% and 52.45% lower than those of the other 
models, and its R2 is 6.07% higher on average. Compared 
with other models, the MIMO-TCN model has better perfor-
mance in different prediction ranges, with small prediction 
errors, high fitting degrees, and very good prediction effects 
in the data segments with large changes and fluctuations. In 
addition, it has been effectively applied to the water quality 
data of eight marine pastures with large environmental dif-
ferences, proving that the method proposed in this paper is 
robust. Although MIMO-TCN achieves good water quality 
prediction results, many aspects of the network can still be 
improved. For example, multidimensional input prediction is 
realized on the basis of this study. In the future, the predic-
tion model built by the fully convolutional layer in this paper 
will be adjusted and improved.
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