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Abstract
Water is necessary for the survival of life on Earth. A wide range of pollutants has contaminated water resources in the 
last few decades. The presence of contaminants incredibly different dyes in waste, potable, and surface water is hazard-
ous to environmental and human health. Different types of dyes are the principal contaminants in water that need sudden 
attention because of their widespread domestic and industrial use. The toxic effects of these dyes and their ability to resist 
traditional water treatment procedures have inspired the researcher to develop an eco-friendly method that could effectively 
and efficiently degrade these toxic contaminants. Here, in this review, we explored the effective and economical methods of 
metal-based nanomaterials photocatalytic degradation for successfully removing dyes from wastewater. This study provides 
a tool for protecting the environment and human health. In addition, the insights into the transformation of solar energy for 
photocatalytic reduction of toxic metal ions and photocatalytic degradation of dyes contaminated wastewater will open a gate 
for water treatment research. The mechanism of photocatalytic degradation and the parameters that affect the photocatalytic 
activities of various photocatalysts have also been reported.
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Introduction

Water pollution is a critical global issue that has recently 
received much attention due to its severe adverse impacts 
on life and the environment of the planet. Because water is 
essential for developing and sustaining a healthy life, find-
ing clean and fresh potable water is likely the biggest dif-
ficulty that modern society is facing (Baron 2008; Karim 
et al. 2022). The water resources are exploited due to domes-
tic, industrial, agricultural, and municipal activities. It is 
because of these activities, a significant amount of harmful 
contaminants such as heavy metal ions (Zn, Cu, Pb, Ni, Cd, 
Hg, etc.), organic dyes, toxic gases, herbicides, pesticides, 
hydrocarbons, and pharmaceuticals enter ground- and fresh-
water bodies (Reemtsma et al. 2006; Boroski et al. 2009). 
Even a small amount of these toxic substances could result 
in serious health problems because these substances are car-
cinogens and cause genetic mutations.

Consequently, these substances negatively impact neural 
systems and significantly harm a variety of organs, includ-
ing the respiratory system, reproductive system, and gas-
trointestinal tract (Carolin et al. 2017; Mojiri et al. 2019; 
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Hassani et al. 2020a, b; Zhang et al. 2020; Trellu et al. 
2021). As a result, contamination of freshwater reservoirs 
by toxic materials directly or indirectly has significantly 
resulted in the loss of water quality and the lack of fresh-
water resources. Therefore, there is a rapidly expanding 
need for proper, sustainable water management strategies 
and more advanced water treatment technologies. Sev-
eral conventional techniques for upgrading water quality 
by reducing toxic heavy metal ions to their fewer toxic or 
non-toxic forms and degradation of different organic dyes 
in wastewater have been implemented. These techniques 
include adsorption (Alidokht et al. 2013; Sirajudheen et al. 
2020), biological treatment (Rana et al. 2018; Fang et al. 
2020), desalination (Luo et al. 2012; Khairkar et al. 2020), 
electrocoagulation (Ghanbari et al. 2020; Nidheesh et al. 
2021), flocculation (Teh et al. 2016; Tang et al. 2020), ion 
exchange (Bolto et al. 2002; Nabi et al. 2010), membrane 
separation (Nataraj et al. 2006; Castro-Muñoz et al. 2021), 
and reverse osmosis (Mondal et al. 2013; Albergamo et al. 
2020). However, these methods have many drawbacks 
(Ibrahim et al. 2016), including the excessive amount of 
sludge formation, consumption of high energy, low removal 
efficiency & expensive and generation of secondary pol-
lutants (Selvasembian and Balasubramanian 2018; Gunar-
athne et al. 2020; Singh et al. 2020; Shabaan et al. 2020). 
Therefore, developing a reliable and effective method to 
treat various pollutants has become necessary.

As a result, the focus needs to be done on improving/
innovating environmentally friendly, low-energy, and cost-
effective technologies for water purification. To address 
these issues, developing an innovative, environmentally 
friendly, and economical technology that can remove waste-
water contaminants with minimum energy consumption and 
chemical usage is critical. Consequently, researchers have 
concentrated on advanced oxidation processes (AOPs) as 
robust alternative procedures that are competent to oxi-
dize and mineralize a wide spectrum of organic chemicals 
because of their strongly oxidizing and highly potent radi-
cals. AOP is an aqueous phase oxidation technique that uses 
in situ production of powerful oxidizing agents, including 
hydroxyl radicals (•OH) and sulfate radicals  (SO4

• –) to 
speed up the oxidation of contaminants found in water and 
wastewater (Ghanbari and Moradi 2017; Miklos et al. 2018; 
Babu et al. 2019). Due to their effectiveness and efficiency 
in completely mineralizing or converting various pollutants 
into less hazardous substitutes from wastewater, AOPs have 
gathered much attention (Oturan and Aaron 2014; Rana 
et al. 2018; Eghbali et al. 2019). Fast degradation rates and 
non-selectivity in the oxidation of pollutants are additional 
benefits of AOPs. To remove water contaminants, AOPs use 
a variety of processes, such as moist air oxidation, Fenton’s 
process, ozonation, photocatalysis, sonolysis, and sulfate 
radicals-based AOPs (SR-AOPs) (Nidheesh et al. 2013; 

Ghanbari and Moradi 2017; Surenjan et al. 2019; Brillas 
2020; Malik et al. 2020; Ghanbari et al. 2021; Pourshirband 
and Nezamzadeh-Ejhieh 2021; Wang et al. 2021; Zhang and 
Chu 2022).

Chemical agents such as metals,  O3, or  H2O2 and an 
assisting energy source including ultraviolet or visible light, 
ultrasound, current, or γ-irradiation are frequently used in 
AOPs (Braun 2003). For instance, AOPs include (Giannakis 
et al. 2017):

 (i) Fenton-related terms, such as photo-Fenton and elec-
tro-Fenton (Fe/H2O2).

 (ii) γ-radiolysis
 (iii) Heterogeneous photocatalysis, including that involv-

ing  (TiO2/hv)
 (iv) Based on ozone:  O3/H2O2,  O3/UV, and  O3/UV/H2O2
 (v) Ultrasound-based: sonolysis, Fenton assisted by 

ultrasound
 (vi) Based on UV: UV, UV/H2O

Photocatalysis, in addition to AOP, has been proven to 
be an effective way to improve the biodegradability of per-
sistent organic pollutants while also removing present and 
emerging microbial pathogens. Photocatalytic oxidation is a 
group of reactions that utilize a catalyst triggered by chemi-
cal, solar, or other forms of energy and rely on the formation 
of strong reactive radical species like  O2

• –,  O3,  H2O2, and 
mostly •OH radical. These radicals are strongly oxidizing in 
nature and degrade all organic molecules present in water 
non-selectively (Huang et al. 2000; Kudo et al. 2003; Pera-
Titus et al. 2004; Bahnemann 2004; Wang and Xu 2012; 
Ottman et al. 2019). In recent years, light-absorbing cata-
lysts (photocatalysts) have found promising applications in 
degrading toxic dyes and reducing heavy metal ions to their 
lesser toxic forms. Photocatalysts have higher catalytic effi-
ciencies, take a small interval for the reactions, and do not 
form secondary hazardous products (Ramya et al. 2022). 
Recent studies have acknowledged photocatalytic hydro-
gen production as an effective substitute for global energy 
resources. Photocatalysis is triggered by photons of light 
obtained from solar energy under ideal conditions despite 
the lack of thermal energy. Many semiconductors are being 
utilized in photocatalysis that produces strongly energetic 
holes  (h+) and electrons  (e−) when exposed to UV light. 
Electron–hole couples may create reactive oxygen species 
(ROS) particularly •OH and  O2

• − radicals with highly oxi-
dizing properties that can migrate to the outer section and 
trigger oxidation and reduction reactions. Solar energy is 
converted into chemical energy and other chemical by-prod-
ucts by reducing  H2O, which generated hydrogen and other 
hydrocarbons (Li et al. 2010; Sakimoto et al. 2016).

Recent studies have shown that the photocatalysts can 
be magnetized by making composites with materials such 
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as  AgxO,  CuxO, or  FeOx. Such doping of photocatalysts 
with  AgxO,  CuxO, or  FeOx increases the solar light absorp-
tion (Cattarin and Decker 2009). The other advantage of 
such photocatalysts composite is the low cost of separation. 
However, there are also some disadvantages of these mag-
netic photocatalysts including the lack of experimental data 
and information to analyze, characterize, and explain the 
interaction between light waves and magnetic materials. In 
the accessible scientific literature, there is either little or no 
information available about the toxicity and cytotoxicity of 
magnetic photocatalysts (Kiwi and Rtimi 2021) (Table 1).

This review article emphasizes the importance of various 
photocatalysts, including doped, green synthesized and mag-
netic photocatalysts for the removal of different organic pol-
lutants (dyes) and degradation of various toxic heavy metal 
ions from aquatic environments. The basic principle behind 
the photocatalytic degradation of organic dyes and the fac-
tors affecting photocatalytic degradation has been explained. 

The advantages of using nanosized photocatalysts over tradi-
tional photocatalysts have also been explored. Several tech-
niques used for the synthesis of these photocatalysts are also 
examined. Furthermore, the potential future advancements 
and related perspectives are explained.

Methods of preparation of photocatalysts

Sol–gel method

One of the popular liquid phase techniques for fabricat-
ing homogenous metal oxide photocatalysts is the sol–gel 
approach. This technique has been widely employed since 
the resulting product has a high porosity level, a vast sur-
face area, and the capacity to maintain thermal equilibrium. 
The shortcomings of conventional procedures, such as the 
heterogeneities of the final product, the high temperature 

Table 1  Comparative table with selectivities of different catalysts

Sr. no Photocatalyst Method of syn-
thesis

Morphology Light source Dye degraded Efficiency Reference

1 AgxO/FeOx/ZnO Photochemical 
reduction

Nanotubes Suntest solar 
simulator

Tetracycline 85% (within 
240 min)

(Yu et al. 2019b)

2 TiO2/FeOx/POM Hydrothermal 
method

Nanopores and 
micropores

Low-intensity 
solar light

2,4-dichlorophe-
nol

55.9% (Yu et al. 2019c)

3 Fe@MWCNT Semi-spherical UVA-LED w Azorubine 95% (Madihi-Bidgoli 
et al. 2021)

4 (CoFe2O4/mpg-
C3N4 (Sono-
catalyst)

Thermal decom-
position and 
liquid phase 
self-assembly 
method

Nanosheets Ultrasonic bath 
apparatus 
(WUC-D10H, 
40 kHz, 665 W

Methylene blue 
(MB)

92.81% (Hassani et al. 
2018)

5 CoFe2O4/mpg-
C3N4

Liquid self-
assembly 
technique

Nanosheets Acetaminophen  > 92% (Hassani et al. 
2020a)

6 Z-scheme CdS/g-
C3N4

Semi-spherical 
(CdS) and nano 
sheet (g-C3N4)

100 W tungsten 
lamp for 90 min

Methyl orange 
(MO)

 > 85% (Pourshirband and 
Nezamzadeh-
Ejhieh 2021)

7 Cu–TiO2/Zn–TiO2 Sol–gel method 
and simple 
physical mixing

Spherical UVA-LED Bisphenol S 100% in 18 min (Zhang and Chu 
2022)

8 Polyethylene-
TiO2

Low-intensity 
solar simulated 
light

MB 98% (Rtimi et al. 2015)

9 TiO2 impregnated 
polyester

Ultrasonication UV and visible 
light

Reactive Green 
12 (RG12)

100% under 
UV light and 
87.14% under 
visible light 
within 120 min

(Zeghioud et al. 
2017)

10 CuxO/TiO2 High-power 
impulse magne-
tron sputtering

Visible light 
light-emitting 
diodes

RG12 53.4% (Zeghioud et al. 
2019)

11 Hybrid acrylic/
TiO2 films

miniemulsion 
polymerization

A continuous 
 TiO2 NPs 
network

Low-intensity 
simulated 
sunlight

Escherichia 
coli (bacterial 
inactivation)

100% within 
240 min

(Bonnefond et al. 
2015)
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(1100–1300 °C) needed for the reaction, and the possibility 
of air pollution from the discharge of ash particles, can also 
be overcome by utilizing this type of synthesis technique. 
The sol–gel technique can be classified into two catego-
ries based on the reaction process. An aqueous/hydrolytic 
sol–gel method is the one when water is used as the reac-
tion medium; a non-aqueous sol–gel method involves an 
organic solvent (such as alcohol, ketone, or ether) as the 
reaction medium. These days, acids and bases are utilized 
to hydrolyze metal alkoxide, in addition to water and alcohol 
(sol–gel). Because they are very easy to purify and have 
excellent solubility, the metal alkoxides from the precursor 
are regarded as the best.

Five processes are involved in the procedure: hydroly-
sis, condensation, aging, drying, and calcination. It can be 
summed up as follows: the precursor is broken down during 
hydrolysis, and a suitable solvent is employed. Afterwards 
condensation in this process, a metal oxide bond is created 
by removing the water and alcohol. In the end, this process 
increases the solvent’s viscosity while retaining the liquid 
phase gel. The viscous complex expands rapidly during 
the third stage of aging because a solvent is trapped down 
between the gel. Sol particles aggregate due to ongoing 
condensation and precipitation in the process. One of the 
crucial and challenging steps in the drying process is the 
solvent removal from the gel, which significantly impacts 
the final product. To get the required product, many drying 
procedures might be used. Correspondingly, aerogel, xero-
gel, and cryogen are produced via superficial thermal and 
freeze-drying methods. The final task includes calcination, 

which improves the mechanical characteristics by remov-
ing the remaining water molecule from the final sample 
(Yadav et al. 2022).

Multi-doped NSC-TiO2 was fabricated by Lei et al. using 
the sol–gel method in association with a high-energy ball 
milling technique (Lei et al. 2015). The harmful Cr(VI) 
metal ion may be reduced to the less hazardous Cr(III) 
ion using the multi-doped NSC-TiO2. Ahmad et al. used a 
sol–gel approach (Fig. 1) to fabricate a nanostructured ZnO/
SrZnO2 composite that functions as a powerful visible light-
triggered photocatalyst (Ahmad et al. 2022). Under visible 
light irradiation, the developed photocatalyst mineralized 
the azo dye (Congo red, CR) and eliminated the bacterial 
strain (Escherichia coli, E-coli). According to the results of 
the photocatalytic tests, the ZnO/SrZnO2 composite had a 
greater photocatalytic efficiency, mineralizing 92.4% of the 
CR dye in comparison to  SrZnO2 (57.9%) and ZnO (34.6%) 
(Ahmad et al. 2022).

Electrochemical anodization method

Another method for fabricating metal oxide nanotube photo-
catalysts, such as  TiO2, is electrochemical anodization. The 
surface porosity and morphology of the photocatalyst can be 
improved by electrochemical anodization at room tempera-
ture (Lin et al. 2013; Ayati et al. 2016; Robinson Aguirre 
and Félix Echeverría 2018). In this technique, thin metal 
sheets were employed as the cathode (working electrode) 
and other sheets, such as graphite, as the anode (counter 
electrode). Then, electrochemical anodization is performed 

Fig. 1  Schematic represenrataion of fabrication of ZnO/SrZnO2 nanocomposite via a sol–gel route. Reproduced with permission, copyright  © 
2020 Elsevier Ltd, (licence number — 5,362,460,622,777). All rights reserved. (Ahmad et al. 2022)
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for a specific time using a suitable solvent and electrolyte 
and maintaining a specified distance between the electrodes. 
The anodization voltage can be varied. This technique is 
simple and cost-effective (Khaw et al. 2019). In contrast to 
the powder form, metal oxide nanotube sheets are also easy 
to separate and recover. Rojviroon et al. synthesized  TiO2 
nanotubes photocatalyst via electrochemical anodization 
(Fig. 2) and reported the photocatalytic decolourization of 
Reactive Black 5 (RB5) and indigo carmine (IC) dyes using 
fabricated  TiO2 nanotubes (Rojviroon et al. 2021).

Hydrothermal/solvothermal method

The hydrothermal/solvothermal method involves a chemical 
reaction in aqueous or non-aqueous solvents like  CH3OH 
or  C2H5OH in sealed vessels where the temperature of the 
solvents can be raised to close to their critical points by heat-
ing and to apply autogenous pressures at the same time. This 
process is known as hydrothermal when water is employed 
as the solvent. It is referred to as solvothermal when metha-
nol or ethanol is utilized as the solvent. The best approach 
for synthesizing single crystals and nanomaterials photo-
catalysts is the hydrothermal method, in which the solubil-
ity of reactant precursors depends on hot water under high 
pressure. Using a hydrothermally synthesized  TiO2 that had 
been modified to form a magnetically separable  TiO2/FeOx 
microstructure decorated with poly-oxo-tungstate (POM), 
Yu et al. demonstrated the photocatalytic degradation of 
2,4-dichlorophenol (2,4-DCP) (Yu et  al. 2019c). Chen 
et al. described the synthesis of zinc sulfide (ZnS) micro-
spheres photocatalyst via the hydrothermal method (Chen 

et al. 2016b). The photocatalytic activity of as-synthesized 
samples was assessed by evaluating the degradation effi-
ciency of MB in the presence of photocatalysts. More than 
60% of the original dye was degraded after 3 h of radiation. 
Using a hydrothermal process, Baeissa et al. reported the 
fabrication of sodium niobate  (NaNbO3) (Baeissa 2016). 
Then doping of sodium niobate nanocubes with gold was 
done. The resulting  NaNbO3 doped with gold (Au/NaNbO3) 
found potential application for the degradation of malachite 
green (MG) dye. Shammi et al. reported the fabrication of 
CuO-VO2/TiO2 as a new nanocomposite via a hydrothermal 
route. The as-synthesized CuO-VO2/TiO2 nanocomposite 
demonstrated photocatalytic degradation of methylene blue 
(MB), methyl orange (MO), and Congo red (CR) under vis-
ible irradiations (Shammi et al. 2021). The hydrothermal 
approach was used by Madona and Sridevi to fabricate a 
MgO/g-C3N4 heterojunction nanocomposite as shown in 
Fig. 3 (Madona and Sridevi 2022). In comparison to pure 
MgO and g-C3N4, the produced MgO/g-C3N4 nanocompos-
ite demonstrated high photocatalytic performance through 
the degradation of MG when exposed to solar light. After 
five trials, the MgO/g-C3N4 nanocomposite exhibits good 
stability and high degrading efficiency. MG dye removal by 
the MgO/g-C3N4 catalyst achieved the greatest rate constant 
of 0.1079  min–1, which is about 5.3 and 13.6 times superior 
to MgO (0.0207  min–1) and g-C3N4 (0.00789  min–1), cor-
respondingly (Madona and Sridevi 2022). Furthermore, the 
antibacterial efficacy of the MgO/g-C3N4 nanocomposite 
against Gram-positive and Gram-negative bacteria like S. 
aureus, B. subtilis, and E. coli, P. aeruginosa, was examined. 
Due to the generation of reactive oxygen species, the zone 

Fig. 2  Schematic representation of electrochemical anodization method for the fabrication of  TiO2 nanotube. Reproduced with permission, cop-
yright  © 2020 Elsevier Ltd, (licence number — 5,362,431,451,027). All rights reserved (Rojviroon et al. 2021)
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of inhibition is seen in the range of 6 to 7 mm and grows 
with increasing MgO/g-C3N4 nanocomposite concentration 
(ROS).

Co‑precipitation method

Potentially toxic ions and dyes can be removed from water 
by using the metal oxides photocatalysts produced by co-
precipitation. The co-precipitation technique is reliable for 
synthesizing magnetic nanoparticles photocatalysts of nano-
ferrite, cobalt oxide, and zinc sulfide. This approach can 
be used to produce the material in bulk. In addition, it is a 
quick and adaptable method of purification that can be used 
to remediate contaminated industrial sewage. Moreover, 
this technique is particularly effective in removing pollut-
ants from wastewater in ppm amounts. Mani et al. reported 
the green fabrication of zinc sulfide (ZnS) nanoparticles 
(NPs) via a simple co-precipitation method from plant 
extracts (Mani et al. 2018). The ZnS was demonstrated to 
cause photocatalytic degradation of MB dye and MO dye. 
Thilagavathi et al. used a facial co-precipitation approach to 
fabricate  WO3/CoWO4 nanocomposite (Fig. 4) which have 
potential to degrade toxic MB dye in the presence of UV-A 
light (Thilagavathi et al. 2021). Seventy percent of the natu-
ral color of MB was eliminated using pure  WO3. However, 
the photocatalytic decolorization of MB was improved when 
cobalt was added into the  WO3 lattice: the sample with 5 
wt% Co catalyzed the decolorization of MB by 74.7%, while 

the sample with 20 wt% Co catalyzed the decolorization of 
Mb by 86.5% (Thilagavathi et al. 2021).

Sonochemical method

The study of the consequences of phenomenal reactions 
and the use of ultrasonic waves is known as sonochemistry. 
The sonochemical process involves irradiating an aqueous 
medium with ultrasound (20 kHz–10 MHz), which operates 
on the theory of acoustic cavitations. In the medium, bub-
bles can be created, enlarged, and collapsed. This generates 
a pressure of 500 atm and a temperature of about 5000 °C. 
This approach is applicable to chemical processes that take 
place in both liquid–solid and homogeneous liquid systems. 
By using a straightforward sonochemical process, Ayodhya 
et al. reported the green production of capped cadmium 
sulfide (CdS) nanoparticles (NPs) from C. gigantea leaf 
extract as shown in Fig. 5 (Ayodhya and Veerabhadram 
2017). In addition, these CdS NPs were reported to show 
the photocatalytic degradation of MB and eosin yellow 
(EY) dyes.

Ultra‑sonication

Chauhan et al. reported the preparation of ZnO nanoflow-
ers/graphene oxide (ZnO/GO) composite over Si substrate 
in order to degrade MB dye in the presence of solar light 
(Chauhan et al. 2019). In the first step, zinc acetate dihy-
drate and isopropyl alcohol were ultrasonically processed 

Fig. 3  Representation of a hydrothermal route for the synthesis of MgO/ g-C3N4 heterojunction nanocomposite. Reproduced with permission, 
copyright  © 2020 Elsevier Ltd, (licence number 5362500354972). All rights reserved (Madona and Sridevi 2022)
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to obtain ZnO nanoseeds. To create a ZnO/GO nanocom-
posite, these ZnO nanoseeds are mixed with graphene 
oxide (GO). Figure 6 illustrates the various processes 
involved in the fabrication process.

Magnetron sputtering of thin films

For the inactivation of bacteria, Rtimi and his colleagues 
reported the fabrication of adhesive, uniform  TiO2 layer 

Fig. 4  Schematic representation of a facial co-precipitation method 
for the fabrication of pure  WO3 nanoparticles and  WO3/CoWO4 
nanocomposites. Reproduced with permission, copyright  © 2020 

Elsevier Ltd, (licence number 5362481064137). All rights reserved 
(Thilagavathi et al. 2021)

Fig. 5  The schematic diagram 
of C. gigantea leaf extract 
capped CdS NPs under sono-
chemical method. Reproduced 
with permission, copyright  © 
2020 Elsevier Ltd, (licence 
number — 5,362,451,112,570). 
All rights reserved (Ayodhya 
and Veerabhadram 2017).
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photocatalysts using direct current magnetron sputtering 
(DCMS) and high power impulse magnetron sputtering 
(HIPIMS) (Rtimi et al. 2016). In the presence of visible 
light-emitting diodes (LEDs) illumination, Zeghioud and 
his colleagues demonstrated the degradation of RG12 dye 
by  CuxO/TiO2 photocatalyst produced using high-power 
impulse magnetron sputtering (HiPIMS) (Zeghioud et al. 
2019). Grao et al. used pulsed DC magnetron sputtering to 
deposit crystalline  TiO2 on stainless-steel mesh in a single 
step without the use of annealing, substrate heating, sub-
strate bias, or extra energy supplies (Grao et al. 2020). Under 
UV-A, this  TiO2-coated stainless-steel mesh efficiently 
degraded the three most popular dyes employed in photo-
catalysis: MB, MO, and RhB. Furthermore, after 10 con-
secutive cycles, there was little or no loss of photocatalytic 
activity (Grao et al. 2020).

Using  Cu2O photocatalyst target material, Görgün et al. 
reported the fabrication of nanofibers made of polyvi-
nylidene fluoride-co-hexafluoropropylene (PVDF-HFP) 
using an electrospinning approach on an aluminum sub-
strate. Under a 105 W tungsten light bulb, it was discov-
ered that the photocatalysts could decolorize MB with a 
maximum yield of 76% (Görgün et al. 2019). Meng et al. 
described the photocatalytic activity of  TiO2 thin films 
deposited by radio-frequency (RF) magnetron sputtering. 
RF magnetron sputtering with a ceramic  TiO2 target was 
used to create nano-TiO2 thin films on silicon and glass 
substrates (Meng et al. 2009). Using a high-pressure mer-
cury lamp as a lamp-house, the photocatalytic activity was 
assessed by measuring the light-induced degradation of 

a 5-ppm MO solution. The film was employed six times 
in the degradation of 5 ppm MO, with the rates of deg-
radation being 36.566%, 33.112%, 32.824%, 32.248%, 
30.521%, and 28.794%, respectively.

Basic principle of photocatalytic 
degradation of organic dyes

The main principle behind photocatalytic degradation 
involves a semiconductor comprising a valence band (VB) 
and conduction band (CB) in its electronic structure (Aman-
ulla et al. 2022). These bands have an energy gap between 
them called a bandgap (Hosseini-Zori 2018). When illu-
minated by photons having energy ≥ bandgap energy, the 
electron present in the valence band is excited to the CB, 
generating a positively charged hole in the VB. Both hole 
and electron are strongly oxidizing and reducing species, 
respectively. When the hole and electron react with  H2O 
molecules, hydroxyl (•OH) and superoxide  (O2• −) radi-
cals are generated, which attack the organic dyes and con-
vert them into non-hazardous compounds like  CO2 and  H2O 
(Perry et al. 2019). The following chain reaction (Eqs. 1–9) 
has been widely postulated as the possible mechanistic path-
way for degrading dyes (Chauhan et al. 2019).

(1)Photoexcitation ∶ Photocatalyst + hv → h+ + e−

(2)O
2
ionosorption ∶ (O

2
)
ads

+ e
−
→ O

2

∙−

Fig. 6  The schematic illustra-
tion of the fabrication proce-
dures for producing a ZnO/GO 
nanocomposite. Reproduced 
with permission, copyright  © 
2020 Elsevier Ltd, (licence 
number — 5,347,500,540,999). 
All rights reserved (Chauhan 
et al. 2019). PGMEA, propylene 
glycol methyl ether acetate, 
PMSSQ, polymethylsilsesquiox-
ane, PPG, polypropylene glycol
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Degradation of organic dye:

Furthermore, compared to traditional photocatalyst materi-
als, nanosized catalysts have higher photocatalytic efficiency 
(Hariharan 2006; Ye et al. 2010a). This is because of the fol-
lowing two reasons:

a. Quantum size effect: Among the most immediate 
impacts occurs when the particle size falls below a spe-
cific critical limit (i.e., when the size decreases to the 
nanoscale range), resulting in quantum confinement 
(Kivrak et al. 2021). Depending on the material struc-
ture’s size, the semiconductor’s VB and CB transform 
into separate energy levels, which indicates that the 
valence band electric potential shifts more positively; 
alternatively, the electric potential of CB shifts more 
negatively (Einert et al. 2021). The oxidation–reduction 
potential of electron and hole is thus raised, resulting in 
higher oxidation activity of nanoscale photocatalysts (for 
instance, ZnO and  TiO2) (Colmenares et al. 2009).

b. Higher specific surface area: The adsorption abil-
ity of photocatalysts towards organic contaminants 
increases when more atoms are present on the surface. 
The activity is determined by how long it takes electrons 
and holes to get to the particle’s surface. When parti-
cles are in the nanoscale range, their diameter becomes 
extremely small, making it much easier for charge car-
riers to move from the interior to the surface and initi-
ate the redox reaction (Wang et al. 2018; Maity et al. 
2022). The smaller the particle diameter, the greater will 
be surface to volume ratio, and the smaller will be the 
time interval that is utilized by the charge carriers diffus-

(3)Ionization of H
2
O ∶ H

2
O ⇌ H+ + OH−

(4)Superoxide gets protonated ∶ O
2

∙− + H+
→ HOO∙

(5)
Formation of hydrogen peroxide ∶ 2HO

2

∙
→ H

2
O

2
+ O

2

(6)
Formation of hydroxyl radical ∶ H

2
O

2
+ e− → HO∙ + OH−

(7)OH− + h+ → HO∙

(8)
HO∙ +MB∕Industrial dye → CO

2
+ H

2
O + degraded product

(9)dye + h+ → dye∙+ → oxidation of dye

ing to the surface from inside. It reduces the likelihood 
of electron–hole recombination. As a result, the pho-
tocatalytic activity can be improved. For example, the 
photocatalytic efficiency of nano-sized  TiO2 and ZnO 
is higher than that of conventional (bulk)  TiO2 and ZnO 
(Lin et al. 2006; Kim and Kwak 2007) (Table 2).

Photocatalytic reduction of heavy metal ions 
to their less toxic form

Reduction of Cr(VI) ion to Cr(III) ion 
by nitrogen‑sulfur and carbon multi‑doped (NSC) 
‑TiO2

Because of its prominent role in industrial contamination and 
toxicity to living beings, Cr has piqued the attention of schol-
ars (Mills et al. 1996). Electroplating, leather tannery, mining, 
pigments refining of contaminated materials, and industries 
that manufacture chromate are the primary sources that release 
Cr(VI) into an aqueous solution (Lozano et al. 1992; Suksabye 
et al. 2007). Cr(III) and Cr(VI) are two oxidation states of 
chromium. According to Kowalski et al., Cr(VI) has hundreds 
of more detrimental consequences than Cr(III) (Giménez et al. 
1996; Harish et al. 2012). Furthermore, Cr(VI) is versatile 
because of its weak absorption in inorganic areas.

In contrast, Cr(III) is smooth precipitating at close to neu-
tral pH level and is less versatile in the environment due to 
its compassionate nature. Butler et al. found that Cr(VI) from 
 CrO4

2− dissolves more quickly in  H2O than CrIII (Butler and 
Davis 1993). Lin and his co-workers have reported various 
methods for removing Cr, such as reversible osmosis, precipi-
tation, adsorption activities, photocatalysis, and ion transfer. 
But all of these strategies necessitated excessive resources and 
are not suitable for smaller organizations (Chenthamarakshan 
et al. 2000; Lee et al. 2006). Compared to other treatment 
procedures, photocatalytic degradation has gained the great 
attention of scholars. It is because of its unique and promis-
ing approach to solve environmental problems. In addition, it 
possesses high yield, durability, low cost, and applicability for 
redox reactions of harmful pollutants. It is well known that an 
aqueous solution containing Cr(IV) ions causes teratogenic, 
carcinogenic, and mutagenic effects on specific organisms 
(Luo et al. 2011; Giannakas et al. 2013; Zhang et al. 2013; Lei 
et al. 2014; Sun et al. 2014; Wang et al. 2014).

Table 2  Bandgap energies of some common semiconductor materials at 0 K (Sobczyński and Dobosz 2001; Thiruvenkatachari et al. 2008)

Semiconductors CdS Cu2O CdSe TiO2 ZnO Fe2O3 PbS ZnS SnO2 ZrO2 WO3 PbSe Diamond

Bandgap energy 2.42 2.17 1.7 3.03 3.36 2.3 0.286 3.6 3.54 3.87 2.76 0.165 5.4
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Especially,  TiO2 has received significant attention from 
researchers in comparison to other semiconductors, because 
of its higher stability, promising chemical characteristics, and 
relatively low cost (Fujishima et al. 2000). During the pho-
tolysis of  TiO2, electron–hole pairs are generated, and these 
photogenerated electron–hole pairs either recombine or par-
ticipate in redox processes. Lei et al. described the fabrication 
of multi-doped NSC-TiO2 via the sol–gel route in coopera-
tion with the high-energy ball milling treatment (Lei et al. 
2015). The NSC-TiO2 was calcined at temperature 400, 500, 
600, and 700 °C. Ti(OBu)4 (Bu =  CH2CH2CH2CH3) was used 
as a source of Ti and SC(NH2)2 as the doping agent. Multi-
doped NSC-TiO2-500 material resulted in a rapid decrease in 
the concentration of Cr(VI) under visible light illumination 
due to photocatalytic reduction. Absorption of photons, crys-
talline phase, crystal size, rate of separation of electron–hole 
pairs, and degree of crystallinity of the samples are quite 
often thought to be the main factors on which the photolytic 
activity depends. Hence, NSC-TiO2-500 showed the maximum 
photocatalytic reduction ability for Cr(VI) in visible irradia-
tions. This could be associated with the synergistic impact 
of (C, N, and S) multi-doping and enhanced anatase crystal-
lization. The photocatalytic treatment of polluted water using 
nonmetal doped  TiO2 has shown great promise as a renew-
able water treatment method. Additionally, it is supposed to 
be an environmentally friendly alternative to photocatalytic 
treatment of contaminated water using metal-doped  TiO2. 
The latter is susceptible to potential metal problems and 
photo corrosion (Zhang et al. 2014).

Photocatalytic degradation of dye wastewater

Industrial chemicals, organic dyes, domestic wastes, and 
fertilizers are the main factors that contaminate the water, 
and now, this has become one of the worldwide environmen-
tal concerns. The textiles, paper manufacturing, cosmetics, 
and leather industries use organic dyes. Around one million 
tons of organic dyes have been produced worldwide annu-
ally (Erfani and Javanbakht 2018). Often, the wastewater 
from these industries has been released into the natural water 
sources without any pre-treatment. This dye-wastewater 
being non-biodegradable, pigmented, highly hazardous, and 
carcinogenic, when combined with natural water, affects the 
color of the water and may lead to severe diseases if used 
even in little amounts. Therefore, it is the need of the hour  to 
have advanced, reliable, and efficient techniques for treating 
dye wastewater. Generally, coagulation and adsorption are 
conventional methods for treating wastewater polluted by 
dyes (Regkouzas and Diamadopoulos 2019; Campinas et al. 
2021). But these methods have many drawbacks, such as the 
pollutant is not eradicated and the production of sludge that 
needs post-treatment disposal. Therefore, the purification of 
dye-contaminated wastewater needs advanced methods of 

treatment. Furthermore, the dye-contaminated wastewater 
contains toxic, nonbiodegradable molecules and intensively 
conjugated structural species that are hazardous to humans 
and the environment (Rojviroon et al. 2015; Al-Mamun et al. 
2019; Ekka et al. 2019; Bagheri et al. 2020).

Recently, photocatalysts have gained attention owing to 
their efficient and promising water purification abilities. The 
photocatalytic treatment of the dye-wastewater comprises a 
chemical reaction between contaminants and photocatalysts. 
Photocatalytic degradation of the dyes at room temperature 
takes just a few hours. After the photocatalytic degradation, 
the pollutants are degraded to less harmful species  (CO2 
and  H2O) without producing any secondary toxic products. 
ZnO,  TiO2,  SiO2, and  CeO2 are metal oxide semiconductors 
generally used as photocatalysts (Khan et al. 2015).

Factors affecting the photocatalytic degradation of dye 
wastewater

(i) Light source effects

With increasing exposure to light intensity, the percentage 
breakdown of dyes in wastewater is higher. At higher light 
intensity, the enhancement is noticeable because the elec-
tron–hole production is predominant at high irradiation inten-
sity thus the chance of electron–hole recombination is meager 
(Ji et al. 2022; Zhu et al. 2022). Conversely, when the intensity 
of the irradiation light is low, electron–hole pair detachment 
competes with recombination, which reduces the generation of 
free radicals, resulting in a lower percentage of dye degrada-
tion (Alhakimi et al. 2003; Choi et al. 1994; Kuang et al. 2008).

Most photocatalytic degradation research has been done 
at wavelengths between 320 and 380 nm, corresponding 
to the bandgap energy of the ZnO and  TiO2 photocatalysts 
(Mandor et al. 2022). As a result, solar irradiation or arti-
ficial lamps can be used to provide the requisite radiation 
field. Radiation (wavelength range of 320–380 nm) is deliv-
ered in a conventional photocatalytic reactor by fluorescent 
low-pressure and medium mercury lamps providing low and 
high-intensity UV light, respectively, in the short, medium, 
and long UV spectrum (Thiruvenkatachari et al. 2008).

 (ii) pH effects

Because the pH impacts the adsorption of contaminants at 
the photocatalysts’ surface, the aqueous solution’s pH level 
is a crucial aspect of photocatalytic degradation of dye and 
wastewater. Pharmaceutical, dairy, and textiles sectors pro-
duce a wide pH range of wastewater. Furthermore, the pH of 
the solution also influences the production of •OH radicals, 
which is required for photocatalytic reactions (Lawless et al. 
1991). Consequently, pH has a crucial role in the formation 
of •OH as well as in the chemical composition of wastes. 
Therefore, numerous attempts have been made to examine 
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the role of pH in wastewater deterioration under ultraviolet 
and solar irradiation (Zhu et al. 2005). For all three (neu-
tral, cationic, and anionic) dyes in wastewater, photocatalytic 
degradation has been examined at pH levels in the range 
of 3 (acidic) to 13 (alkaline). The breakdown efficiency 
of several azo dye wastes was decreased at an optimal dye 
concentration in both acidic and alkaline (Konstantinou and 
Albanis 2004). It was examined that some non-biodegrada-
ble cationic dyes such as MB, rhodamine B (RhB), and MG 
degraded the least efficient in the presence of  H2O2 at both 
acidic and alkaline pH levels but degraded the most effec-
tively at neutral pH value (Cheng et al. 2004). The inhibitory 
effect was more prominent in the high alkaline range (pH 
11–13). The •OH radicals are removed so rapidly at high pH 
values that they would not have enough time to react with 
dyes present in the wastewater. For instance, pH influences 
the surface of  TiO2 and ZnO photocatalysts, the breakdown 
of organic contaminants (or dyes in wastewater), and the 
generation of •OH radicals (Balcioǧlu and Inel 1996).

The photocatalysts’ zero charges (pzc) point can explain 
the increased photodegradation performance at neutral 
pH. Correspondingly, for  TiO2 and ZnO, the pzc value 
was observed at pH 6.25170 and 8.9174. In alkaline media 
(pH > pzc), photocatalyst surfaces get negatively charged; 
however, in acid media (pH < pzc), they get positively 
charged. Though  TiO2 and ZnO have an amphoteric nature 
with a zero charge in the pH range near their pzc value, dye 
pollutants adsorb exceedingly well at that pH value, hence 
increased photodegradation performance was expected at 
that pH value (Cheng et al. 2004). As a result, the pH value 
substantially impacts the adsorption capacities at the pho-
tocatalyst surface, and therefore, photodegradation rates are 
negligible at extreme pH values (Balcioǧlu and Inel 1996).

As a result, the pH value substantially impacts the adsorp-
tion capacities at the photocatalyst surface, and therefore, 
photodegradation rates are negligible at extreme pH val-
ues. Since there are 3 possible reaction pathways behind 
the organic pollutant/dye degradation reaction, i.e., oxida-
tion and reduction by hole and electron, respectively, in 
semiconductor photocatalysts, and attack of •OH radical, 
interpreting the impact of pH values on the performance 
of the degradation reaction is an insensitive piece of work. 
The relevance of each parameter is highly dependent on the 
substrate’s nature and pH value. For organic dyes and pol-
lutants, it is reasonable to assume that the principal reac-
tion is regulated by •OH attack, which is assisted by the 
large concentration of •OH at pH values near neutral (Cheng 
et al. 2004). Another explanation for pH impacts is the ionic 
specification of organic dyes. The protonation or deproto-
nation of dyes can significantly influence their adsorption 
properties and oxidation–reduction activity (Konstantinou 
and Albanis 2004).

 (iii) Temperature and pollutant concentration

For all kinds of catalysts, it was found that the decoloriza-
tion of real textile industrial wastewater rises with time and 
temperature. Furthermore, the findings showed that a greater 
temperature facilitates the decomposition of contaminants 
in wastewater. It is most likely because the activation energy 
also increases when the operating temperature rises (Kumar 
2017). The time it takes for wastewater to decompose is 
reduced when the dye (a contaminant in waste water) con-
tent is reduced. Although this industrial wastewater’s content 
is relatively low than the original concentration, dye ions 
will likely expose the active catalyst sites. The increased 
dye concentration could also be accountable for screening 
the exposed light, reducing light intensity (Kiriakidou et al. 
1999).

 (iv) Loading of photocatalyst

The impact of several catalyst loadings on photocatalytic 
degradation of dye wastewater has been studied extensively 
(Konstantinou and Albanis 2004; Sun et al. 2008; Akpan 
and Hameed 2009). The initial degradation rates of azo 
dyes in an aqueous medium were precisely proportional 
to  TiO2 catalyst concentration, according to Konstantinou 
and colleagues for azo dye degradation by  TiO2-supported 
photocatalysis (Konstantinou and Albanis 2004). Remark-
ably, studies of UV-supported photocatalytic decomposition 
of industrial wastewater using various photocatalyst (ZnO, 
anatase, or rutile) loading showed that the optimum photo-
catalyst mass required for maximum decolourization effi-
ciency is unaffected by exposure time, irradiation source, or 
pollutant characteristics (Hussein 2012).

 (xxii) Nature of catalysts

TiO2 is the most widely used photocatalyst while analyz-
ing the effect of different prospective photocatalysts on their 
thermal and chemical activity, stability under various work-
ing environments, ease of access and ease of use in several 
physical forms, affordability, toxic effects, and environmen-
tal friendliness. Only rutile and anatase are well-established 
crystal forms among three crystal structures that could be 
employed as possible photocatalysts (Agustina et al. 2005). 
Pillai and his colleagues found that the photocatalytic char-
acteristics of different phases of  TiO2 materials vary greatly, 
with rutile phases having the lowest photoactivity (Lindner 
et al. 1997; Pillai et al. 2007). The anatase phase of  TiO2 is 
a better photocatalyst than rutile, but the brookite phase has 
not been instigated much (Paola et al. 2013).

 (vi) Effect of the water matrices

The water matrix also contributes significantly to the 
AOPs’ capacity to remove pollutants (Hosseini et al. 2022). 
Dissolved and suspended components have a major impact 
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on the percentage removal in highly charged water. Dis-
solved materials, however, may affect the photocatalytic 
water disinfection process and have a variety of impacts, 
including positive, negative, or neutral ones (García-Fernán-
dez et al. 2015, 2019). If dissolved organic compounds are 
present in the aqueous matrix, scavengers may also prevent 
the removal of those materials (DOM). In neutral water, 
natural organic substances, carbonates, bromides, and bicar-
bonate can function as •OH scavengers. Additionally, the 
effectiveness of removing pollutants declines as water matrix 
complexity increases. When present in high concentrations 
in the wastewater, inorganic salts like NaCl,  FeCl2,  CaCl2, 
 FeCl3, and  AlCl3 that are present in the water matrix have a 
detrimental effect on photocatalytic reactions and can even 
completely stop these reactions (Real et al. 2010; Dimitroula 
et al. 2012; Rioja et al. 2016).

Photocatalytic degradation of dyes 
and bacterial inactivation from water

Ti‑based nanomaterials

TiO2 nanotubes photocatalyst has many advantages, such 
as the high ratio of surface area to volume, numerous active 
sites, low cost of synthesis, and good photo-adsorption 
(Sopha et al. 2017; Viet et al. 2018; Parnicka et al. 2019; Hu 
et al. 2020). RB5 and IC dyes are reactive and acid groups. 
The molecular structures of RB5 and IC dyes contain amine 
groups and sulfonic acid on the aromatic rings, respec-
tively. These dyes having such complex structures prevent 
the growth of microorganisms and therefore restrain their 
elimination capabilities (Li et al. 2018a; Bagheri et al. 2020). 
Rojviroon et al. reported the photocatalytic decolorization of 
RB5 and IC dyes by  TiO2 nanotubes synthesized via electro-
chemical anodization (Rojviroon et al. 2021).

The increase in the depth and the diameter of the  TiO2 
nanotubes with increasing anodization voltage suggests 
the increased photocatalytic degradation efficiency for dye 
wastewater with the increase in surface area of the catalyst. 
Now, a greater number of dye molecules can be adsorbed 
and catalyzed. Hence, with the increasing anodization, the 
decolorization efficiency of the  TiO2 nanotubes for these 
dyes increases. The improved physical features of the  TiO2 
nanotubes, such as the inner diameter, wall thickness, and 
depth, were attributed to the increased decolorization effi-
ciency. The tubular-structured network of  TiO2 nanotubes 
got more symmetrically spaced and spread across a greater 
surface area as the voltage applied during anodization 
increased. It raised the electron transfer potential and ion 
habitation on the active sites of the  TiO2 nanotube sheets 
when illuminated with UVA light (Gao et al. 2018; Li et al. 
2018b; Suhaimy et al. 2018). In addition, electrochemical 

anodization led to a nanotube array structure with more 
active sites. These active sites adsorbed and captured dye 
molecules on the nanotube surface, allowing electrons in 
the VB to transfer in parallel and vertically. It raised photon 
efficiency while lowering electron–hole pair recombination 
(Gao et al. 2018; Li et al. 2020a). With increasing initial dye 
concentrations (for both dyes), the decolorization efficiency 
of  TiO2 nanotube photocatalyst (anodized at all voltages) 
was reduced. This is because the higher concentration of dye 
caused inhibitory effects, preventing the light from reaching 
at the active sites over the surface of the photocatalyst. Spe-
cifically, the development of •OH radicals and  O2

•– radicals 
on the active sites was prevented by greater dye concentra-
tions (Anwer et al. 2019; Fatima et al. 2019; Li et al. 2020b). 
In addition, the decolorization efficiency also depends upon 
the extent of the dye molecules’ complexity in their struc-
tures (Kumar et al. 2017a; Natarajan et al. 2018; Neena et al. 
2018; Lu et al. 2020).

The photocatalyst’s ability to decolorize reactive oxidant 
species was reduced. Over time, dissolved organic matter 
(DOM) aggregation occurred on the photocatalyst surface 
and inhibited the active sites (Ye et al. 2018). Some interme-
diate species in treated wastewater are harmful and poison-
ous, regardless of their lighter appearance. Consequently, 
if present in higher concentrations, it may threaten humans 
and aquatic creatures (Pirkarami et al. 2014; Rasheed et al. 
2017). Jafri et al. described the photodegradation of the MB 
dye by  TiO2 hollow nano-fiber (Jafri et al. 2021). First,  TiO2 
hollow nanofibers having desired characteristics were fab-
ricated by template synthesis. Then, polyacrylonitrile was 
employed as a template, and the dip-coating technique set-
tled down the  TiO2 precursor. Afterwards, the influence of 
variation in calcination temperature in the course of template 
removal on the fiber characteristics was studied.

The photocatalytic degradation test exhibited MB dye 
degradation in an aqueous solution depending on the irra-
diation time using the catalysts THNF400, THNF500, 
and THNF600. The degradation percentage of MB dye 
was 42.9%, 61.7%, and 85.5%, respectively. THNF600 
exceeded THNF400 and THNF500 in terms of photocata-
lytic performance. When it comes to photocatalyst qualities, 
THNF600’s outstanding performance can be attributed to 
(i) increased surface area for UV irradiation and adsorption 
of contaminant molecule; (ii) the heterojunctions amid the 
anatase and rutile phases lead to rapid electron–hole separa-
tions (iii) light scattering impact in hollow nanofibers leads 
to efficient light utilization as shown in Fig. 7a. From this, 
we can deduce that using a photocatalyst enforces the deg-
radation of MB dye.

The active sites of the photocatalyst increase in the pres-
ence of the greater amount of photocatalysts, increasing the 
number of photons absorbed and the probability of •OH 
radical formation, allowing a greater number of MB dye 
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molecules to be mineralized (Yunus et al. 2017). The num-
ber of pollutant molecules adsorbed on the surface of the 
photocatalyst varies directly with their concentration which 
further causes the aggregation of contaminants and compe-
tition for active sites. The irradiated UV light is primarily 
absorbed by contaminant molecules rather than catalysts, 
resulting in decreased •OH radical generation. As a result, 
as the concentration of MB dye increases, the number of 
free radicals attacking the dye molecules reduces. Therefore, 
a greater extent of catalyst loading is needed for degrad-
ing higher doses of MB dye (Siddique et al. 2014).

However, while using high concentrations of  TiO2 parti-
cles, the scattering of light is  a practical limitation. There-
fore, the degradation rate will drop due to reduced photonic 
flux within the irradiated solution (Chen et al. 2007). In 
addition, the competition for adsorption by  OH− on the same 
sites reduced, leading to a lower generation rate of •OH 
radical, the primary oxidant required for a greater degree of 
degradation. Consequently, the photocatalytic degradation 
rate became slower (Chen et al. 2007).

Rtimi et al. reported a novel approach for the decoloration 
of MB dye in the presence of low-intensity solar simulated 
light using polyethylene-TiO2 (PE-TiO2) thin film (Rtimi 
et al. 2015). It was noticed that the decoloration of MB dye 
became faster with an increase in the  TiO2 loading. The 
proposed reaction mechanism involves the generation of a 
short-lived unstable cation from generated MB* excited state 
upon light irradiation. This unstable cation then breaks down 
and simultaneously introduces an electron onto  TiO2. This 

electron either interacts with the  O2 in the solution or is 
transported to the adsorbed  O2 on the  TiO2 surface, produc-
ing  O2

• − and other highly oxidative radicals. The following 
reaction is proposed for the formation of  MB+ (Mills 2012):

The intensity and wavelength of the lamp were found to 
have a significant impact on MB decoloration. Under opti-
mum conditions, 98% of MB dye decoloration has been 
reported (Rtimi et al. 2015).

For the first time, Rtimi and his colleagues described the 
formation of adhesive, uniform  TiO2 layers photocatalyst 
produced by HIPIMS and DCMS. The fabricated PE-TiO2 
films have distinct particle size, compactness, optical, and 
redox properties (Rtimi et al. 2016). When compared to 
HIPIMS samples, the levels of Ti-ions found to have been 
leached out during disinfection were greater in the DCMS 
samples. Compared to DCMS samples, bacterial inactivation 
occurred on HIPIMS samples nearly 3 times faster. By the 
investigation of pH, it was determined that hydroperoxide 
 (HO2

• and  O2
−) produced on the PE-TiO2 surface indirectly 

contributed to the inactivation of the bacteria. During the 
process of bacterial inactivation, the surface •OH—radi-
cals were statistically controlled as a function of tempera-
ture and time (Rtimi et al. 2016). The deconvolution for the 
XPS DCMS PE-TiO2 peak prior to bacterial inactivation is 
depicted in Fig. 8a. Figure 8b depicts the redox process for 

(10)
MB+PE − TiO

2
+ solarlight → [MB∗ ……TiO

2
]

PE → MB+ + [PE − TiO
2
+ e−]

Fig. 7  a  TiO2 hollow nanofibers with increased photocatalytic char-
acteristics. (1) The extra surface for molecule adsorption produced 
by the inner core and outside shell, (2) heterojunction formed by 
mixed-phase photocatalyst, and (3) light scattering effect inside the 

nanofiber interior, b diagram depicting the decolorisation of MB/
industrial dye utilizing ZnO/GO nanocomposite as a photocatalyst in 
the presence of sunlight (Chauhan et al. 2019) (Jafri et al. 2021)

69306 Environmental Science and Pollution Research  (2022) 29:69294–69326

1 3



the Ti–O species going through a binding energy (BE) shift 
from 530.9 to 530.4 eV following bacterial inactivation. This 
is an indication of a decline in the (O1s)-species. The—C-O 
peak, which had a BE of 533.9 eV before bacterial inac-
tivation, decreased to 533.3 eV concurrent with bacterial 
oxidation. In contrast to the counts reported for the DCMS 
sputtered samples in Fig. 8a and b, HIPIMS reveals a greater 
number of XPS-counts for O1s species on the PE-TiO2 films 
both before and after bacterial disinfection as shown in 
Figs. 8c and 8d. The change in the XPS deconvoluted peaks 
also reflects the redox reactions of the surface species.

Zeghioud and his colleagues reported the degradation 
of RG12 dye in an aqueous medium by  TiO2 impregnated 
polyester at room temperature (Zeghioud et al. 2017). Uti-
lizing distinct polyester pretreatments (plasma surface acti-
vation and UV-C photons), the  TiO2 loading on polyester 
was enhanced. The study of both catalysts revealed that 
radio-frequency plasma pretreatment polyester had no pho-
tocatalytic activity under visible light and had significantly 

less activity than UVC-pretreated-impregnated materials 
under UV light. Within 120 min of optimal operating cir-
cumstances, RG12 was removed entirely (100%) under UV 
light and 87.14% under visible light. Furthermore, the addi-
tion of  H2O2 had a favorable impact on the degradation, i.e., 
the period of complete degradation of dye was reduced to 
80 min when exposed to UV light. Over five reuse cycles, 
the photo-catalyst maintained its photocatalytic activity and 
showed remarkable stability (Zeghioud et al. 2017).

In another experimental study, Zeghioud and his col-
leagues also reported the degradation of RG12 dye by  CuxO/
TiO2 photocatalyst fabricated via HiPIMS, in the presence of 
visible light-emitting diodes (LEDs) illumination (Zeghioud 
et al. 2019). The fabrication of photocatalyst was optimized 
by varying different parameters. The photocatalyst fabricated 
at 40 A in HiPIMS mode was found to have the highest 
RG12 degradation efficiency. In addition, it was noticed 
that  K2S2O8 and  H2O2 addition improved the photocata-
lytic efficiency by 6 and 7 times correspondingly. While the 

Fig. 8  O1s peak deconvolution of PE-TiO2 samples pre-treated with 
RF plasma for 15 min and 8 min of DCMS sputtering: a before bacte-
rial inactivation, b after bacterial inactivation, and 4 min of HIPIMS 
sputtering: c before bacterial inactivation, d after bacterial inactiva-

tion. Reproduced with permission, copyright  © 2020 Elsevier Ltd, 
(licence number — 5,350,891,329,689). All rights reserved (Rtimi 
et al. 2016)
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addition of Cu and NaCl salt significantly reduced the rate 
of RG12 decoloration by 4 and 2 times, likewise (Zeghioud 
et al. 2019).

Nesic and his colleagues observed the bacterial inhibi-
tion (Escherichia coli) on  TiO2-polyester  (TiO2-PES) in both 
the absence and presence of light irradiation (Nesic et al. 
2014). With a greater  TiO2 loading on the PES, up to 5%, 
it was noticed that the bacterial inhibition increased. On a 
 TiO2-PES 5%  TiO2 sample, the  TiO2 accumulates and inter-
acts with the E. coli cell in darkness, completely removing 
bacterial cultivability within 2 h. It was noticed that bac-
terial disinfection on  TiO2-PES in the dark took a longer 
time than disinfection under low-intensity simulated solar 
irradiation. On  TiO2-PES samples, photocatalysis by  TiO2 
NPs resulted in 100% loss in bacterial viability in 60-min. 
The ROS generated under light due to the NP’s radical pro-
duction is thought to be the cause of the oxidative stress 
that caused the shorter bacterial reduction time under light 
irradiation (Nesic et al. 2014).

Bonnefond and his colleagues reported that the bacterial 
(Escherichia coli) inactivation pickering stabilized hybrid 
acrylic/TiO2 latex films under low-intensity simulated solar 
light irradiation (Bonnefond et al. 2015). No bacterial inac-
tivation was reported under dark circumstances. Photocata-
lytic efficiencies of the films were examined using two dif-
ferent  TiO2 loadings. The films containing 10 weight based 
on monomers (wbm)% and 20 wbm% of  TiO2 showed 100% 
bacterial inactivation in 2 and 6 h respectively. The hybrid 
films demonstrated the repeated inactivation of Escherichia 
coli in the presence of solar irradiation. Because the acrylic/
TiO2 hybrid film is rougher than a new film, it positively 
impacts the inactivation of E. coli (Bonnefond et al. 2015).

Ti‑based magnetic photocatalyst

2,4-DCP is a widespread organic non-biodegradable pol-
lutant in drinking and waste water. It has a long history of 
use as preservatives, herbicides, insecticides, and germi-
cides (Sabhi and Kiwi 2001; Zanjanchi et al. 2010). Can-
cers linked to the endocrine system are also caused by it 
(Chen et al. 2017). Yu et al. reported the photocatalytic 
degradation of 2,4-DCP using the magnetically separable 
 TiO2/FeOx microstructure decorated with POM (Yu et al. 
2019c). Under simulated solar light at pH 5.0, non-magnetic 
 TiO2/POM(1%) led to the fastest 2,4-DCP degradation rates 
with 87.6%, while magnetically separable  TiO2/FeOx(25%)/
POM(1%) led to 76.6% 2,4-DCP degradation within 3 h 
(Yu et al. 2019c).  TiO2/FeOx(25%)/POM (1%) can be sepa-
rated magnetically. Hence, the separation of photocatalysts 
becomes easy and less costly.

Dabirvaziri et al. reported the fabrication of γ-Fe2O3@
SiO2@TiO2–Ag magnetically separable photocatalyst 
using a combination of co-precipitation, sol–gel, and 

photo-deposition techniques (Dabirvaziri et al. 2019). It was 
reported that about 94% of Basic blue 41 dye was decom-
posed within 3 h in the presence of UV light by γ-Fe2O3@
SiO2@TiO2–Ag while only 63% of the same dye was 
decomposed by pure γ-Fe2O3@SiO2@TiO2. The magnetic 
responsive properties of the as-prepared superparamagnetic 
photocatalyst allow for rapid catalyst separation, recycling 
from the reaction medium, and reuse in subsequent reac-
tions. No significant reduction in the photocatalytic activity 
was noticed even after five consecutive cycles which indi-
cated its good stability. Additional antibacterial tests showed 
that the -Fe2O3@SiO2@TiO2-Ag has outstanding antibacte-
rial activity under visible light conditions against two sepa-
rate bacterial strains (E. coli and S. aureus). In addition, it 
was reported that -Fe2O3@SiO2@TiO2-Ag had significantly 
greater antibacterial activity than pure  Fe2O3@SiO2@TiO2 
particles (Dabirvaziri et al. 2019). Jahanara and Farhadi 
reported the synthesis of magnetic cadmium titanate–cop-
per ferrite  (CdTiO3/CuFe2O4) nanocomposite via a sol–gel 
hydrothermal method (Jahanara and Farhadi 2019). The 
photocatalytic performance of this  CdTiO3-based magnetic 
nanocomposite was examined for degradation of organic dye 
pollutants dyes like MB, RhB, and MO in the presence of 
hydrogen peroxide and visible light. The outcomes dem-
onstrated that three dyes were totally degraded by the pho-
tocatalyst within 90–100 min. The heterogeneous  CdTiO3/
CuFe2O4 nanocomposite showed noticeably improved 
photocatalytic activity in comparison to pure  CdTiO3 and 
 CuFe2O4 (Jahanara and Farhadi 2019). Due to its magnetic 
characteristics, the  CdTiO3/CuFe2O4 can be magnetically 
separated. To examine the stability of the  CdTiO3/CuFe2O4 
nanocomposite, it was used three times for the photodeg-
radation of MB. After three recycles, the catalyst activity 
exhibited no discernible change.

Chen et al. fabricated ternary  CaTiO3/reduced graphene 
oxide (rGO)/NiFe2O4 nanocomposite via polyacrylamide gel 
and hydrothermal process (Chen et al. 2019). The photo-
catalytic performance of this nanocomposite was assessed 
through the degradation of MB and RhB under the effect of 
simulated sunlight irradiation. It was observed that when 
compared to pure  CaTiO3 and  NiFe2O4, the ternary nano-
composite exhibited noticeably improved photocatalytic 
activity. When exposed to radiation for 180 min, MB dye 
was degraded approximately 11 and 38% by bare  NiFe2O4 
and  CaTiO3, respectively, while RhB degraded nearly 10 and 
31% for pure  NiFe2O4 and  CaTiO3, respectively. Contrarily, 
under the same conditions,  CaTiO3/rGO/NiFe2O4 nanocom-
posite degraded almost 83% of MB and 74% of RhB, respec-
tively (Chen et al. 2019). Additionally, the nanocomposite 
demonstrated ferromagnetism and is easily recovered by an 
outside magnetic field. The recycling photocatalytic experi-
ment showed that the nanocomposite has good reusability 
in the photocatalytic process. Esania et al. reported the 
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synthesis of a novel ZnO-Fe3O4/TiO2 nanocomposite using a 
combination of solvo-hydrothermal and sol–gel routes. This 
nanocomposite showed photocatalytic removal of Reactive 
Blue 21 (RB21) in the presence of UV light. Under opti-
mum conditions, 99% photocatalytic decoloration of RB21 
was observed. Additionally, after five consecutive catalytic 
cycles, the RB21 decoloration efficiency with ZnO-Fe3O4/
TiO2 nanocomposite was reported to be 97.10% of its initial 
photocatalytic activity from 99.89% (Esania et al. 2022). As 
a result, the photocatalyst was fairly stable. An improved 
Pechini sol–gel process was used by Tatarchuk et al. to 
fabricate the  CoFe2O4@TiO2 magnetic nanocomposite. In 
comparison to  TiO2 and  CoFe2O4 alone, the  CoFe2O4@
TiO2 nanocomposite was shown to have an adsorption effi-
ciency that was more than twice as high (Tatarchuk et al. 
2020). Only the production of distorted titania nanocrystals 
is responsible for the observed synergistic impact. The mag-
netic nanoadsorbent was found to be effective at removing 
dichromate anions (83% removal efficiency) and Congo red 
dye (61% removal efficiency) from water (Tatarchuk et al. 
2020).

Zinc‑based nanomaterials

Chauhan et al. used ZnO/GO composite consistently pro-
duced over silicon substrate to describe an alternative and 
novel method for decolorizing MB dye ((Chauhan et al. 
2019). The photo-excitation of electrons (existing at the sur-
face of ZnO) occurs when ZnO/GO (zinc oxide/graphene 
oxide) is exposed to sunlight. Electrons from the VB of ZnO 
are transported to the CB of ZnO, creating a hole in the VB 
(Chauhan et al. 2019). The reduced work function of GO 
helps in effective electron interaction between GO and ZnO, 
resulting in electron scavenging from ZnO’s CB to GO. With 
the help of GO, this process starts with electron–hole pair 
separation in ZnO. GO is a suitable electron acceptor with 
a 2-D-conjugated nanostructure that effectively eliminates 
electron–hole recombination losses caused by the bandgap 
of ZnO (Houas et al. 2001). As a result, charge separation 
improves the photocatalytic efficiency of the system. Reac-
tive oxyradicals such as  O2

• and •OH/•OOH are formed 
when photo-excited electron interacts with surface oxygen 
species and  H2O molecules. While holes in the VB of zinc 
oxide interact with water molecules to produce the free 
•OH radicals (Gnaser et al. 2005). These •OH radicals are 
highly reactive oxidants that break down dyes rapidly into 
less harmful compounds. Equations (11)–(20) outline the 
possible processes that occur during dye decolourization 
and are depicted schematically in Fig. 7b (An et al. 2014). 
According to the dark adsorption investigation, the ZnO/
GO nanocomposite adsorbs a little fraction of dye, whereas 
the absorption of dye on the surface of ZnO is negligible. 
The attractive electrostatic force amid the negative dipole 

functional (oxygen groups) groups of GO sheets and the 
positive dipole group of MB dye (=  N+  H─) promotes dye 
molecule adsorption (Sharma et al. 2013). As a result, in the 
case of ZnO/GO nanocomposite material, adsorption some-
what facilitates photocatalysis.

The drop-in dye concentration is called dye decoloriza-
tion and is the result of dye oxidation in the vicinity of •OH 
radicals. Under the same operating circumstances, the pure 
ZnO catalyst degrades MB dye by 66% while the ZnO/GO 
catalyst by 99% in just 1 h. The inclusion of the GO sheet 
enhances the surface and electrical characteristics of ZnO. 
The addition of GO improved charge transfer, reduced band 
gap, boosted surface oxygen species, and enhanced the 
light-absorbing capability of the ZnO/GO nanocomposite 
(Chauhan et al. 2019). Figure 9 represents the photocatalytic 
reaction kinetic for degradation of MB dye.

Yu et al. reported the sulfamethazine (SMT) degrada-
tion utilizing ZnO/CuxO hexagonal nanowires under the 
effect of solar and visible light (Yu et al. 2019a). A faster 
SMT-degradation rate was observed when the photocata-
lyst with composition ZnO/Cux=1.25O was used. The type of 
light employed affects the interfacial charge transfer (IFCT) 
between ZnO and  CuxO (solar or visible light). A twofold 
mechanistic route was reported leading to SMT degrada-
tion under visible or solar irradiation. It has been noted 
that CuO doping reduces the ZnO band gap. The extent of 
SMT degradation was found to increase with the intensity 
of light employed. The photocatalyst exhibits semiconductor 
behavior in the course of SMT breakdown. The two pri-
mary radicals causing SMT breakdown were reported to be 
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valence band hole and ⦁OH-radicals. When benzoquinone 
was introduced as an  HO2/⦁O2

− scavenger, the SMT degra-
dation was reduced by 20%. The SMT degradation rates are 
slower under visible light irradiation than those attained in 
the presence of solar light. The quickest SMT deterioration 
was seen with the ZnO/Cux = 1.25O sample (Yu et al. 2019a).

Biomass‑derived ZnS and CdS photocatalysts

Green fabrication of nanoparticles (NPs) is receiving sig-
nificant attention as a novel nanobiotechnology approach 
for synthesizing economic, environment-friendly, and high 
stability nanoparticles. Therefore, green fabrication has 
appeared as a better and safer substitute for existing meth-
ods. In recent years, bio-templates derived from natural 
sources such as plant extracts and microorganisms have 
been used to design complicated nanomaterials with large 
surface areas (Patete et al. 2011; Nakkala et al. 2015; Rao 
et al. 2016; Kumar et al. 2017b). Recently, photocatalysts 
such as metal sulfides were synthesized using chemical 
procedures that used hazardous reagents and required high 
temperatures and pressures. Therefore, many attempts have 
been devoted for developing safer and cleaner materials. 
The green approach for fabricating metal sulfides employing 
plants, bacteria, and fungi emphasizes zinc sulfide (ZnS) and 
cadmium sulfide (CdS) (Munyai and Hintsho-Mbita 2021). 
The catalytic performance of the C. gigantea leaf extract 
capped CdS NPs was verified by UV–vis absorption spectra, 
which was substantially superior to those of other photo-
catalysts including ZnO,  TiO2,  WO3,  SnO2, and  Fe2O3. This 
could be owing to the –OH group-containing components of 
extract interacting directly. The activities of all the studies 

were examined to understand whether CdS NPs have greater 
photocatalytic activity. First, the VB electrons were excited 
by visible light irradiation to the CB, and holes in VB were 
created. The electrons and holes were then transported to 
the crystals’ surfaces. They reacted with  O2 and water to 
generate  O2

•— and •OH, which serve as the active center and 
strong oxidizing agent for photocatalytic activity. The prob-
able mechanistic pathway of EY and MB dyes photocatalytic 
reactions is similar to the mechanistic pathway explained in 
Eqs. (1)–(9) (Ayodhya and Veerabhadram 2017).

In the photodegradation of EY and MB dyes in the pres-
ence of solar irradiation, the degradation performances were 
measured with and without the use of fabricated C. gigantea 
leaf extract capped CdS NPs as shown in Fig. 10. It depicts 
the fluctuation in MB and EY dye degradation over the 
photocatalytic reaction in the presence of solar irradiation 
without and in the presence of CdS NPs. Interestingly, self-
degradation of the MB (9.64%) and EY (14.72%) dyes was 
very low after 1 h of solar irradiation; on the other hand, the 
MB (85.53%) and EY (91.12%) dyes degraded exceedingly 
by using C. gigantea leaf extract capped CdS NPs after 1 h 
of solar irradiation (Ayodhya and Veerabhadram 2017).

ZnS semiconductor has a high-energy bandgap. It can 
be found sequentially in hexagonal wurtzite or cubic zinc 
blend structural forms. It has been demonstrated to have 
extensive applications such as biological sensors, light-
emitting diodes (LEDs), and photocatalysts (Sorensen 
et al. 2006; Xiaosheng Fang et al. 2009; Chen et al. 2010; 
Zhu et al. 2011). Chemically synthesized ZnS nanopar-
ticles and P25 (available commercially  TiO2 nanoparti-
cles) were employed as control groups to investigate the 
photocatalytic performance of biologically synthesized 

Fig. 9  a Photocatalytic reaction kinetic study of MB dye utilizing 
pure ZnO and ZnO/GO catalyst, and b steady degradation of MB dye 
by ZnO/GO catalyst as a function of irradiation time. Reproduced 

with permission, copyright  © 2020 Elsevier Ltd, (licence number — 
5,292,381,016,579). All rights reserved (Chauhan et al. 2019)
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ZnS nanoparticles. Biosynthesized ZnS, chemically syn-
thesized ZnS, and P25, on the other flip, all work well in 
MB photodegradation. Biosynthesized ZnS has the high-
est photocatalytic performance, degrading 96% of MB in 
120 min of UV light exposure (Chen et al. 2016a).

A straightforward co-precipitation approach was used to 
produce ZnS NPs from methanol plant extracts of Tridax 
procumbens, Phyllanthusniruri, and Syzygium aromaticum 
(Mani et al. 2018). In the presence of UV light, photocata-
lytic degradation of MB dye and MO dye by biosynthe-
sized ZnS NPs in an aqueous medium was examined. The 
photocatalytic performance of synthesized ZnS NPs was 
enhanced because of the reduced particle size and lowered 
optical band gap. ZnS NPs were abbreviated as Tridax-
procumbens plant extract synthesized ZnS — T: ZnS, Phyl-
lanthusniruri plant extract synthesized ZnS — P:ZnS, and 
Syzygium aromaticum crude extract synthesized ZnS — S: 
ZnS (Mani et al. 2018).

The degradation of MB dye and MO dye in visible light 
irradiation was used to assess the photocatalytic perfor-
mance of ZnS, T: ZnS, P: ZnS, and S: ZnS NPs samples. 
Before introducing the photocatalyst, MB dye and MO dye 
were subjected to a photocatalytic degradation process to 
determine concentration efficiency in visible light illumina-
tion. Consequently, both dyes degraded just 2% after 3 h of 
visible light irradiation. Furthermore, the same procedure 
was repeated with 1.0 mg of ZnS, T: ZnS, P: ZnS, and S: 
ZnS NPs. A promising photocatalyst acts to separate elec-
tron and hole pairs adequately. The holes of the VB interact 
with the MB dye and MO dye bounded surface, react with 
 H2O or  OH– and generate •OH radicals. Then finally, the 
CB electron reduces the MB and MO dye’s   O2 to  O2

•− to 
exert the degradation. After 3 hours of irradiation, the photo-
catalytic degradation efficiency of MB dye by using ZnS, T: 
ZnS, P: ZnS, and S: ZnS NPs as photocatalyst (1.0 mg) was 
reported to be 55%, 68%, 73% and 81% respectively, while 
that of MO dye under same conditions was 90%, 92%, 95% 
and 99% respectively (Mani et al. 2018).

Zn‑based magnetic photocatalysts

Tetracycline (TC) is an antibiotic and it is used to cure 
common illnesses or protect against some forms of bacte-
rial infections (Yu et al. 2019b). But it has environmental 
side effects and its residues are of great concern because 
they cause the extinction of essential species that are vital 
to the ecosystem. In addition, TC causes antibiotic resist-
ance when used for extended periods (Reardon 2014; Ling 
et al. 2013; Chen and Liu 2016; Grenni et al. 2018). Yu 
et al. reported the photocatalytic degradation of TC using 
zinc-based magnetic photocatalyst (Yu et al. 2019b). ZnO, 
 AgxO/ZnO,  FexO/ZnO, and  AgxO/FexO/ZnO are the photo-
catalysts investigated for the degradation of TC. The visible 
region ZnO absorption is greatly improved by doping ZnO 
with Ag. The charges produced on the ZnO under light are 
trapped by Ag, preventing charge recombination (Lai et al. 
2010; Chen et al. 2011; Zhao et al. 2017; Yu et al. 2018). 
 FeOx extends the response of ZnO into the visible spectrum 
(Zhang et al. 2011; Wang et al. 2012a; Das et al. 2017). 
Pollutant degradation kinetics have been improved in ZnO 
doped with Ag- and Fe-ions (Yu et al. 2007, 2018; Lu et al. 
2008; Wang et al. 2008, 2012a; Chu et al. 2010; Lai et al. 
2010; Chen et al. 2011, 2015; Zhang et al. 2011; Amarjar-
gal et al. 2013; Liu et al. 2015; Zhao et al. 2017; Das et al. 
2017). Total organic carbon (TOC) was taken as a param-
eter for the extent of TC mineralization. Approximately 
56.8% TOC was eliminated using  AgxO(15%)/FeOx(20%)/
ZnO NTs. On the other hand, just 46.4, 49.3, and 50.2% 
of TOC were eliminated using bare ZnO,  FeOx(20%)/ZnO, 
and  AgxO(15%)/ZnO, respectively (Yu et al. 2019b). The 
extent of TC-degradation in this report was higher as com-
pared to any other earlier experimental study (Shirley 1972; 
Nogier and Delamar (1994); Briggs 2005). This method has 
advantages over other traditional methods as  AgxO(15%)/
FeOx(20%)/ZnO nanotubes can be separated magnetically 
after the removal of TC. Consequently, the separation of 
photocatalysts becomes easy and less costly.

Fig. 10  a 3–D bar diagram of 
the degradation performances 
and b kinetic graphs of the 
photocatalytic degradation of 
MB and EY dyes without and 
with the use of fabricated C. 
gigantea leaf extract capped 
CdS NPs. Reproduced with 
permission, copyright  © 2020 
Elsevier Ltd, (licence number 
— 5,292,390,159,324). All 
rights reserved (Ayodhya and 
Veerabhadram 2017)
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Cerium‑based nanomaterials

Cerium oxide  (CeO2), ceria, is an n-type semiconductor 
with band gap energy  (Eg) of about 3.19 eV (Elahi et al. 
2019; Van Dao et al. 2019). In recent years,  CeO2 nano-
particles (CNPs) have drawn lots of attention due to their 
remarkable chemical and physical properties including 
excellent oxygen release/storage ability, high surface area, 
low dimensionality, low cost compared to the noble metal 
catalyst, strong absorption of the light in the UV region 
and chemical, and photo-corrosion resistance (Krishna 
Chandar and Jayavel 2014; Channei et al. 2014; Gnanam 
and Rajendran 2018; Van Dao et al. 2019). The catalytic 
performance of calcium-doped cerium oxide (CDC) was 
studied under various operating conditions such as irradia-
tion period, initial MG concentration, photocatalyst dos-
age, and solution temperature. Furthermore, as the irra-
diation time was increased, the percentage degradation of 
MG increased slightly. The maximum value of percentage 
degradation (65.69%) was attained at 90 min irradiation 
time, after which, a slight decrease in the percentage deg-
radation was observed (Amar et al. 2020).

Dyes have sparked a lot of attention due to their toxic 
effects, and effluents containing malachite green from dye-
ing, printing, and textile industries are left in nearby water 
streams, sometimes untreated or partially treated. There-
fore, its degradation is necessary to make that water useful 
(Chawda et al. 2021). Moreover, as the MG initial concen-
tration was increased above 6 mg/L, the percentage degra-
dation decreased, reaching a lowest of 65.69% at an initial 
concentration of 10 mg/L. This could be because at high 
initial dye concentrations, dye molecules absorb more light 
than photocatalysts. As a result, the formation of •OH and 
•O2

− radicals will be reduced, and photocatalyst activity will 
be decreased (Saleh and Djaja 2014). The impact of altering 
the photocatalyst (CDC) dosage from 0.04 to 0.14 g on the 
percentage dye degradation was examined. When the CDC 
amount was raised from 0.04 to 0.08 g, the percentage degra-
dation of MG remained nearly constant (75%). Furthermore, 
as the CDC concentration was raised to 0.1 g, an increase in 
percentage degradation of up to 84.53% was reported. This 
could be due to the rise in the number of photocatalyst active 
sites, which increased the formation of •OH radicals and, 
consequently, the percentage degradation of MG increased 
(Saleh and Djaja 2014; Sanna et al. 2016).

The study was carried out at three different solution tem-
peratures (25, 35, and 45 °C), with a photocatalyst quantity 
of 0.1 g, a 90-min irradiation interval, and an initial MG 
concentration of 6 mg/L. When the solution temperature 
was raised from 25 °C (89.51%) to 35 °C, the percentage 
degradation slightly increased (92.52%). In addition, the 
percentage degradation of MG decreased slightly when the 

solution temperature was increased to 45 °C (90.86%) (Amar 
et al. 2020).

Whenever the CDC catalyst is exposed to UV light, 
holes in the VB are formed as the electrons in VB get 
stimulated and jump to the CB. These holes will inter-
act with the surrounding  H2O to form extremely reactive 
hydroxyl radicals (•OH). In addition, when the produced 
electrons combine with the surrounding air  O2 molecules, 
extremely reactive oxygen radicals (•O2

−) are produced 
 (O2) (see Eqs. 21–25). The photodegradation of MG is 
caused by this reactive species (Saikia et al. 2015; Muru-
gan et al. 2018; Mandal et al. 2019; Amar et al. 2020).

The cationic MG dye adsorption onto the  TiO2 surface 
proved challenging in acidic circumstances. The photo-
catalytic degradation of MG was slow because of the low 
concentration of the active •OH radicals. The generation 
of active •OH species is favored at higher pH levels, owing 
to enhanced hole transfer to adsorbed hydroxyls and elec-
trostatic abstractive effects between operational cationic 
dyes and negatively charged  TiO2 particles. Even though 
MG dye can be adsorbed to some amount on the surface 
of  TiO2 in an alkaline medium. The MG dye molecules 
will transform to a leuco compound when the pH level has 
become too high (pH = 11) (Li et al. 1999).

Elahi et al. reported the fabrication of  CeO2 nanoparti-
cles (CNPs) from the extract of Salvia Macrosiphon Boiss 
seeds and studied their photocatalytic capabilities for 
rhodamine B (RhB) dye degradation (Elahi et al. 2019). 
Results showed that lowering the particle size significantly 
increased the rate of the photocatalytic reaction, however, 
also increased the band gap energy contradictally.

The amount of catalyst is one of the most crucial factors 
that could influence the catalytic processes, hence var-
ied concentrations of CNPs (50–250 mg) were utilized 
to assess its impact. It was observed that increasing the 
catalyst concentration up to 200 mg clearly increased the 
rate of RhB dye degradation, but after that point, there 
was no discernible change in the rate (Fig. 11a and b). 
The variation in RhB concentration after exposure dura-
tions with 200 mg of CNPs was shown in Fig. 11c. It was 
found that after 12 h of irradiation, the dye was almost 
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completely degraded. The degradation reaction was also 
carried out without the catalyst or in complete darkness 
(Fig. 11d), and the results demonstrated that the presence 
of CNPs and the exposure of the dye solution to UV light 
are essential for the efficient degradation of RhB.

Niobium‑based photocatalysts

Using a hydrothermal process, Baeissa et al. reported the fab-
rication of sodium niobate  (NaNbO3) (Baeissa 2016). Then 
doping of sodium niobate nanocubes with gold was done. 
The findings showed that under visible light irradiation, Au/
NaNbO3 has greater efficiency for photocatalytic degradation 
of MG dye than sodium  NaNbO3 and  TiO2 Degussa.

Benzoquinone, tert-butanol, and sodium ethylenediami-
netetraacetate  (Na2-EDTA) were examined for their effects 
as radical scavengers for superoxide anion radicals  (O2•−), 
hydroxyl radicals (•OH), and holes, respectively. The obser-
vations showed that the amount of MG dye that was photo-
catalytically degraded was very small in the presence of 
1 mM of  Na2-EDTA, indicating that photogenerated holes in 
the Au-NaNbO3 are the principal reactive species that con-
tributed to the degradation of MG dye. Additionally, the rate 
of photocatalytic degradation of MG dye gradually changed 
in the presence of benzoquinone. Therefore, in the photo-
catalytic degradation of MG dye,  O2•− and photogenerated 
holes are the primarily responsible species (Baeissa 2016). 
In the presence of three scavenger agents, Fig. 12 depicts 

Fig. 11  a The photo-degradation rates of RhB dye for various CNPs-
30 concentrations over time. b The photodegradation performances 
for various concentrations of CNP-30 following a 12-h exposure. 
c The visible spectra of RhB solution after exposure to UV-A light 
while containing 200  mg CNPs-30 during the course of time. d 

Correlation of the RhB photo-degradation efficiency of (1) 200  mg 
CNPs-30 when exposed to UV light for 30 min, (2) 200 mg CNPs-
30 in dark, without even a catalyst over time. Reproduced with 
permission, copyright  © 2020 Elsevier Ltd, (licence number — 
5,347,491,038,761). All rights reserved (Elahi et al. 2019)
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the photocatalytic degradation of MG dye, % Au-NaNbO3, 
and Au-NaNbO3.

This study showed that compared to  NaNbO3 photo-
catalyst, Au-NaNbO3 photocatalyst has approximately nine 
times higher photocurrent density (Fig. 12b) (Baeissa 2016). 
Hence, Au-NaNbO3 photocatalyst has high electron and hole 
pair separation efficiency and exhibited a low recombination 
rate.

Iron‑based photocatalysts

Artificial food dyes are frequently employed in the food sec-
tor and contain organic groups such as amines, naphthalene, 
azo, sulfonate, phenolic, and thiol groups. These dyes can 
cause various issues, including eutrophication, bioaccumula-
tion, water coloration, and odor (Barros et al. 2016). One of 
the most widely used food dyes is azorubine (AZB), which 
has been used largely in cheeses, cakes, candies, dried fruits, 
and several alcoholic beverages (Ahmadi et al. 2017; Kiayi 
et al. 2019). Traditional methods for the degradation of AZB 
have some disadvantages including the production of sludge 
(a process of coagulation), the requirement for regeneration 
(a process of adsorption), the production of concentrated 
effluent (a process of membrane), and the lack of mineraliza-
tion (a process of coagulation and a process of adsorption) 
(Liu et al. 2021).

Bidgoli et  al. demonstrated a novel approach for the 
degradation of AZB. AZB was degraded by a heterogene-
ous photo-assisted peroxymonosulfate (PMS) activation 
approach (Madihi-Bidgoli et al. 2021). Under the influence 

of UVA-LED radiation,  Fe2O3, which was loaded onto a 
multi-wall carbon nanotube (Fe@MWCNT), was fabricated 
and used to activate PMS. Fe@MWCNT nano-catalyst 
for PMS activation performed better with higher Fe con-
tent via an electron transfer mechanism. Accordingly, for 
Fe:MWCNT ratios of 10%, 20%, 30%, and 40%, respec-
tively, the AZB degradation efficiencies were 66.4%, 74.4%, 
86.2%, and 82.5%. In an aqueous solution, the UVA-LED/
Fe@MWCNT/PMS method removed approximately 95% 
of the AZB. After 6 cycles, it was noticed that the AZB 
removal rate dropped from 94.4 to 85.3%. This showed 
that Fe@MWCNT can be reused and is highly effective for 
PMS activation. Additionally, the amount of leached Fe was 
negligible (0.03–0.06 mg/L) throughout all cycles (Madihi-
Bidgoli et al. 2021). These findings demonstrated that this 
catalyst has strong stability for repeated water usage without 
substantial leaching.

g‑C3N4 and spinel‑based photocatalysts

TiO2 and ZnO are among the widely explored photocata-
lyst semiconductors. But large bandgap and nonmagnetic 
nature are the challenges with semiconductors. That is why 
semiconductors can only be used with UV radiation and 
are problematic to separate once the process of degrada-
tion is complete. However, this problem can be solved by 
utilizing a spinel catalyst, which has a narrow bandgap. 
Spinel ferrites are advantageous because they exhibit supe-
rior magnetic properties to semiconductors (Hanamura 
et al. 2003; Kirankumar and Sumathi 2020). Although 

Fig. 12  a % Photocatalytic degradation of MG dye by Au-NaNbO3 
in the presence of three scavenger agents, b transient photocurrent 
responses of NaNbO3 and Au-NaNbO3 photocatalyst. Reproduced 

with permission, copyright  © 2020 Elsevier Ltd, (licence number — 
5,347,491,505,417). All rights reserved (Baeissa 2016)
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spinels are not as efficient as semiconductors even in UV 
light, combining both types of catalysts can be a promising 
way to overcome their respective shortcomings (Mamba 
and Mishra 2016). Composites made of semiconductors 
and spinel have the advantages of being easy to separate, 
utilizing nearly all of the UV and visible spectrum of sun-
light, having a larger surface area, and numerous active 
sites (Parsons et al. 2009; Zhang et al. 2010; Govan and 
Gun’ko 2014; Gawande et  al. 2015; Wang and Astruc 
2017; Sun et al. 2019).

Acetaminophen (APAP), often known as paracetamol, 
is a common analgesic, antipyretic, and pain medication 
that is consumed in large quantities (1.45 ×  105 tons/year) 
throughout the world (Noorisepehr et al. 2020). APAP is 
extremely resistant to conventional biological methods and 
is therefore difficult to degrade. Using a mesoporous com-
posite  (CoFe2O4/mpg-C3N4, CF/MCN) catalyst, Hassani 
et al. proposed a novel method for peroxymonosulfate (PMS) 
activation to decompose APAP (Hassani et al. 2020a). Under 
ideal pH, reaction time, and concentration of PMS and CF/
MCN, more than 92% of APAP was degraded using CF/
MCN/PMS. Less than 0.05 mg/L of Fe and Co leaching 
was observed, ensuring the stability of CF/MCN as a cata-
lyst. Furthermore, leached metals had no impact on PMS 
activation and PMS activation-induced APAP degradation 
occurred heterogeneously (Hassani et  al. 2020a). Pour-
shirband et al. reported the photodegradation of MO dye by 
CdS/g-C3N4 nanocatalyst (Pourshirband and Nezamzadeh-
Ejhieh 2021). The designed catalyst can start the degrada-
tion of MO molecules through both oxidation and reduction 
routes. The photocatalyst’s most significant reactive species 
in MO degradation are the photogenerated electron–hole 
pairs accumulated in the direct Z-scheme mechanism. In 
90 min, more than 85% of MO molecules are broken down 
under optimized circumstances. There was no considerable 
loss in the photodegradation performance of CdS/g-C3N4 
after 4 cycles under a pH of 3, which confirmed its high 
stability (Pourshirband and Nezamzadeh-Ejhieh 2021). MB 
dye can be degraded by sonocatalyst. One such sonocatalytic 
study was performed by Hassani et al. (2018). They fab-
ricated cobalt ferrite/mesoporous graphitic carbon nitride 
 (CoFe2O4/mpg-C3N4) nanocomposites and used it for MB 
dye degradation. It was observed that under optimal condi-
tions of sonocatalysis,  CoFe2O4/mpg-C3N4 degraded 92.81% 
of MB dye. This sonocatalyst was reusable because only a 
9.6% reduction in its removal capability was noticed after 5 
successive runs (Hassani et al. 2018). Shah et al. reported 
the fabrication of  NiFe2O4 using the co-precipitation method 
(Shah et al. 2022). And further different amounts of  TiO2 
were added to  NiFe2O4 to make composites photocatalyst. 
Their photocatalytic performances were examined from the 
photocatalytic degradation of reactive turquoise blue 21 dye 
taken as model pollutants under the effect of solar light. The 

composite showed improved dye decolorization, minerali-
zation, and efficient separation at the end of the process, as 
well as improved absorption of ultraviolet and visible light 
from the entire solar spectrum (Shah et al. 2022).

Jing et al. investigated the photocatalytic activities of 
composite Ag/Ag3VO4 and 5%  CoFe2O4/ Ag/Ag3VO4 (Jing 
et al. 2016). These composites degraded 49.75 and 61.48% 
of tetracycline, correspondingly. This demonstrates that 
 CoFe2O4 inclusion enhances activity, and even composites 
exhibit magnetic separability. The composites showed supe-
rior performance across a number of runs. Ye et al. stud-
ied the photocatalytic performance of core–shell organized 
 Fe3O4/SiO2/TiO2 nanocomposites fabricated via the sol–gel 
method and compared it with that of  SiO2/TiO2 (Ye et al. 
2010b). Quick magnetic separation, high chemical stability, 
and preservation of the photocatalytic activity for at least 18 
cycles are benefits of this composite. Like this, Wang et al. 
fabricated  Fe3O4/SiO2/TiO2 nano-composites (NCs) via a 
sol–gel process and examined their photocatalytic activity on 
MB in an aqueous solution at pH = 10 at room temperature. 
The NCs demonstrated faster photodegradation of MB (78%) 
within 5 min of UV exposure (Wang et al. 2012b) (Table 3).

Challenges

The surface of the material, photo-generation of electrons 
and hole, and band gap are the factors that influence the 
photocatalytic activity of the material. Photocatalysts with 
an extensive range of photo absorption and higher separation 
efficiency of photo-induced charge carriers are required for 
photocatalytic activity. However, most current photocatalytic 
materials have a poor solar radiation utilization efficiency 
and a high photogenerated charge carrier recombination 
rate, which restricts overall quantum efficiency and practi-
cal applications. Some nanomaterials photocatalysts such as 
 TiO2 exhibit various limitations and have many challenges 
that rigorously restrict their feasible applications and effi-
ciencies. The nanomaterials metal sulfides photocatalysts 
also face various obstacles, the most prevalent of which are 
the mode of fabrication, use of toxic solvents, etc. These 
challenges restrict the use of nanomaterials metal sulfides 
photocatalysts in several applications. Furthermore, the effi-
ciencies of these nanomaterials metal sulfides photocatalysts 
are also affected by other factors such as the photo-gener-
ation of the electron–hole pair, band gap, and the surface 
of the material of nanostructures. The photocatalytic dye 
degradation also depends upon the wastewater matrix. The 
removal efficiency in highly charged water is significantly 
impacted by dissolved and suspended components. However, 
dissolved substances may have positive, negative, or neutral 
effects and may influence the photocatalytic water disinfec-
tion procedure. Scavengers could also inhibit the removal of 
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dissolved organic materials if they are present in the water 
matrix (DOM). Natural organic materials, carbonates, bro-
mides, and bicarbonate types, for instance, can act as •OH 
scavengers in neutral water. Additionally, as water matrix 
complexity grows, the efficiency to remove contaminants 
decreases. It is because of competition between organic and 
inorganic components for the catalytic active sites. Light 
absorption and light mitigation are additional major hin-
drances in the water matrix. As a result, the cohabitation of 
organic and inorganic materials in a complex water matrix 
leads to a harmful impact during photocatalytic treatment. 
Inorganic salts like NaCl,  FeCl2,  CaCl2  FeCl3, and  AlCl3 that 
are present in the water matrix have a detrimental influence 
on photocatalytic reactions and can even totally stop these 
reactions when they are present in large concentrations in 
the wastewater.

Conclusion: future perspective

The rising demand for clean water and a scarcity of it due 
to fast urbanism, rise in population, and climate change has 
become unprecedented worldwide challenges. Water purifi-
cation is a top priority for human usage, industry, ecosystem 
management, and agriculture around the world. The use of 
nanoparticles in water sanitization is quite effective. The 
significant water-polluting species are toxic heavy metal 
ions and various organic dyes. The traditional techniques for 
reducing these heavy metal ions and degradation of organic 
dyes have many drawbacks, including excessive sludge for-
mation, high energy consumption, low removal efficiency 
and expensive removal, and generation of secondary pollut-
ants. As a result, researchers have been making great efforts 
to design eco-friendly, energy-efficient, and low-cost water 
treatment techniques to improve water purification. Pho-
tocatalysts are a significantly emerging species with great 
potential to reduce heavy metal ions and degrade organic 
dyes. Photocatalysis has various advantages over traditional 
methods for wastewater treatment as photocatalysts have 
higher catalytic efficiencies, take a small interval for the 
reactions, and do not form secondary hazardous products. 
In the present review, numerous photocatalysts for photodeg-
radation of various dyes in wastewater for environmentally-
friendly purposes and to reduce various heavy metal ions 
are well described. Among various photocatalysts, nano-
photocatalysts are more efficient in wastewater treatment 
because they have been shown to have greater photocatalytic 
efficiencies for dye degradation. In addition, magnetic pho-
tocatalysts are advantageous because their separation after 
the degradation of dye is highly cost-effective. Semiconduc-
tor and spinel composites have the benefits of being easy 
to separate, absorbing the entire UV and visible spectrum 
of sunlight practically, having a greater surface area, and Ta
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having numerous active sites. The mechanism proposed for 
various photocatalysts has also been detailed. The doped 
photocatalysts and those synthesized via green methods, 
i.e., photocatalysts made of metal sulfides nanostructures, 
have shown to have the potential for improved photocatalytic 
degradation of various dyes. The fabrication of metal sulfide 
nanostructures using plants, bacteria, and fungi is straight-
forward and environmentally beneficial.
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