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Abstract
This article investigates experimentally and theoretically the adsorption of Basic Red 46 cationic dye (BR46) using activated 
carbon generated from cactus fruit peels (ACCFP). The prepared adsorbent was characterized by different analytical tools 
showing a good surface for the uptake of pollutants. A maximum batch adsorption capacity of 806.38 mg g−1 was achieved 
at optimal conditions. The Freundlich model best represented the equilibrium data, although the pseudo-second-order kinetic 
model best described the adsorption kinetics. The thermodynamic studies demonstrated that the adsorption process was 
spontaneous (ΔG° < 0) and endothermic (ΔH° = 32.512 kJ mol−1). DFT descriptors were combined with COSMO-RS and 
AIM theory to provide a complete picture of the adsorbate/adsorbent system and its molecular interactions. Last, the ACCFP 
was regenerable up to four times, emphasizing the idea of using it as an adsorbent to treat textile wastewaters.
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Introduction

Environmental protection from industrial waste has become 
an urgent concern due to industrialization (Kaci et  al. 
2021b). Heavy metals and aromatic dyes are only some 
harmful substances found in industrial discharges (Kaci et al. 
2021a). Cationic dyes are widely employed and dispersed in 
the aquatic environment due to their inhibitory properties 
(Atmani et al. 2022). The human health effects of its emis-
sion into effluents are substantial (cancer, mutations, skin 
irritation, and allergic dermatitis). Because of its inability to 
decompose, it reduces the photosynthetic activity of aquatic 
organisms. Our planet requires quick action to safeguard the 
ecosystem from pollution sources, particularly the introduc-
tion of low-concentration poisons into the water (Lemaoui 
et al. 2020d; Hammoudi et al. 2021; Hammoudi et al. 2022).

Textile and leather dyes are available in various for-
mulations, including Basic Red 46, and cationic dyes rep-
resent a significant risk to marine life and the surround-
ing environment (Wong et al. 2018). Numerous chemical 
(Kaci et al. 2022), physical (Akkari et al. 2022), and bio-
logical (Paz et al. 2017) techniques for removing these per-
sistent pollutants are being evaluated (Toumi et al. 2019). 
Adsorption is emerging as a viable option for industrial 
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effluent dye removal because of its simplicity of design, 
safety, efficacy, ease of operation, adaptability, environ-
mental friendliness, and cheap cost (Xiao et al. 2020).

Basic Red 46 is widely used in the textile industry, 
accounting for about 10% of global dye output, and is 
classified as a hazardous organic chemical (Şentürk and 
Yıldız 2020). Due to their inability to adhere to fibers, 
considerable amounts of color are liberated into the efflu-
ent. Additionally, they are not physiologically biodegrad-
able due to their aromatic character. Recently, numerous 
adsorbents’ adsorption capacities for the elimination of 
Basic Red 46 were disclosed, with the nature and synthesis 
process having a significant effect on adsorption capaci-
ties. Activated carbon derived from Ziziphus lotus stones 
has an adsorption capacity of 307 mg g−1 (Boudechiche 
et al. 2019). Similarly, Kaouah et al. (2013) obtained a 
781.25 mg g−1. Şentürk and Yıldız (2020) determined 
that activated pine sawdust contained 312.5 mg g−1. On 
the other hand, Konicki et al. (2018) reported obtaining 
46.7 mg g−1 of Fe@graphite core-shell by chemical vapor 
deposition, whereas 370.4 mg g−1 was reported utilizing 
graphene oxide (Shoushtarian et al. 2020).

Activated carbon (AC) is the most widely utilized 
adsorbent because of its vast surface area, porous porosity, 
and high reactivity (Novais et al. 2018). However, com-
mercial activated carbons may be excessively expensive 
and are often manufactured from nonrenewable sources 
like coal and waste products from the petroleum industry 
(Jawad et al. 2020). Therefore, numerous research has used 
biowaste to synthesize activated carbons as a low-cost and 
renewable starting material (Vieira et al. 2021). Agricul-
tural by-products have been widely researched as lignocel-
lulosic precursors in recent years, with promising results 
as they have the potential to create valuable materials such 
as adsorbents, electrodes, and catalysts (Baysal et al. 2018; 
Elmouwahidi et al. 2018). (Mateo et al. 2020). Addition-
ally, several ACs have been successfully synthesized using 
fruit peels, including orange peels (Souza et al. 2018), 
dragon fruit peels (Jawad et al. 2021), apple peels (Enniya 
et al. 2018), banana peels (Prastuti et al. 2019), and mongo 
peels (Mukherjee et al. 2019).

The method by which AC is produced significantly 
influences its qualities. Chemical and physical activation 
are the most prevalent forms. On the other hand, chemical 
activation exhibited several benefits, including lower acti-
vation temperatures, improved yields, and well-developed 
porosity (Kumar and Jena 2017; Ruiz et al. 2017). Hence, 
activation agents such as H3PO4, ZnCl2, and alkaline 
metal complexes have been explored in this field. Addi-
tional advantages of H3PO4 include improved AC gen-
eration with non-hazardous qualities and the absence of 
the requirement for anything other than water purification 
(Francoeur et al. 2021).

Cactus fruit, Cactaceae, is distributed around the world in 
semi-arid conditions. It is widespread over Latin America, 
Africa, and the Mediterranean (Saenz 2000). Although it is 
well known for its nutritional benefits, it has lately attracted 
more medicinal attention (Shetty et al. 2012; Berraaouan 
et al. 2015). However, its peels and seeds are often discarded 
as low-cost solid waste during industrial operations. These 
agricultural “waste” products are high in bioactive chemicals 
and dietary fiber. Most peels are composed of cellulose, pec-
tin, lignin, and gums. Despite this, only a few studies have 
shown the production of adsorbents from cactus fruit peels. 
Insufficient literature is readily available: Kumar and Barakat 
(2013) used cactus fruit peels to remove the fruit’s vibrant 
green color; Mohamed et al. (2020) utilized thermally treated 
cactus pear peels to adsorb methylene blue, and Gebrezgiher 
and Kiflie (2020) used HCl-pretreated cactus fruit peels to 
adsorb reactive colors. Unfortunately, no thermochemical acti-
vation of cactus fruit peels with H3PO4 has been documented 
to produce activated carbon for color removal applications.

This study focused on synthesizing activated carbon utiliz-
ing cactus fruit peels as a precursor, characterized by various 
techniques for removing Basic Red 46 from aqueous media. 
The operational parameters governing the adsorption process 
are optimized, and the isotherm, kinetic, thermodynamic, and 
regeneration characteristics are discussed. In addition, DFT 
global reactivity descriptors, COSMO-RS, and AIM investi-
gations were employed to better understand the BR46 adsorp-
tion mechanism on ACCFP in aqueous solutions.

Experimental part

Preparation of dye solution

Basic Red 46 (BR46) was provided by a local textile com-
pany and utilized (Fig. 1). As a first step, the powder was 
dissolved in distilled water to make a 1 g L−1 reserve solu-
tion. It was then diluted to the appropriate concentrations for 
the test solutions. A pH meter (BOECO BT-675) and HCl 
(0.1M) or NaOH (0.1M) were used to adjust the pH.

Preparation of activated carbon

Cactus fruit peels were washed and dried for 24 h at 80 °C 
before being crushed and screen-selected to a 500-μm size. 
Two grams of this precursor was combined with a phosphoric 
acid solution at room temperature with a 4:1 H3PO4/precursor 
ratio. The mixture was dried for 2 h at 100 °C in an oven. The 
sample was then heated to 600 °C for an hour with an N2 flow 
(70 mL min−1). The preparation conditions of this material are 
based on previous studies on different biomass (Abatan et al. 
2019; Tang and Ahmad Zaini 2020). After activation, it was 
cooled to room temperature, rinsed with hot distilled water to 
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neutralize the pH, crushed, and sieved to a particle size of 100 
μm. Dehydrators were used to keep the ACCFP dry.

Characterization

By employing X-ray diffractometers equipped with CuKα 
radiation sources (λ = 1.5418 Å) in the 10–80° range, 
the crystallized phase was identified. A scanning electron 
microscope (SEM; Quanta 650) with an EDS device was 
used to examine the microstructure and elemental compo-
sition of the sample. The XPS measures were taken using 
a Kratos axis supra spectrometer, which had constant pass 
energy of 20 eV, and a dual X-ray source consisting of Al 
K (1486.6 eV). The surface chemical groups were inves-
tigated using Fourier transform infrared spectroscopy 
(FTIR) using a Nicolet IS5 Spectrophotometer in the range 
500–4000 cm−1 (resolution 0.4 cm−1; a scan rate 40 scans 
min−1). A Micromeritics ASAP 2010 device measured the 
specific surface area (SBET) for N2 adsorption at low tem-
peratures. Pore size distributions were calculated using the 
Barrett–Joyner–Halenda (BJH) model. Several Erlenmeyer 
flasks were filled with 50 mL of 0.01 M NaCl solution to 
identify the point of zero charges (pHpzc). HCl and NaOH 
solutions were used to modify the pH of each solution to 
the desired levels. ACCFP (0.15 g per Erlenmeyer flask) 
was then added. The pH of the mixture was measured after 
it had been vigorously agitated for 24 h. The pHpzc is the 
point on the bisector where the curve between pHfinal and 
pHinitial crosses. The Boehm titration method measured the 
ACCFP’s surface functional groups (Boehm 2002). Agita-
tion for 48 h with the addition of 0.5 g ACCFP resulted in 
50 mL solutions of 0.01 N NaHCO3, Na2CO3, NaOH, and 

HCl. Titrations with NaOH or HCl (0.01 N) were performed. 
The number of acidic surface groups was calculated using 
the assumptions that NaOH neutralizes lactonic phenolic and 
carboxylic groups, Na2CO3 neutralizes lactonic and carbox-
ylic groups, and NaHCO3 neutralizes just carboxylic groups. 
At the same time, the amount of HCl interacted with ACCFP 
to identify the alkaline surface locations.

Experiments on adsorption

Tests were performed with the 1-L conical flask sample 
using 500 mL dye solutions, and the starting concentration 
of 200 mg L−1 was held for 120 min for the BR46 adsorbent. 
Reuse and kinetic thermodynamic studies were carried out 
under optimum operating conditions. After equilibration, the 
samples were centrifuged at 6000 rpm for 10 min. A UV-
visible spectrophotometer (SHIMADZU UV-1800) was used 
to measure the absorbance of several dye solutions at (λmax 
= 531 nm) to estimate the concentration of BR46.

The following equations were used to compute the 
adsorption capacity (q) and removal rate (R):

The starting dye concentration is Co (mg L−1), the equi-
librium and time dye concentrations are Ce and Ct (mg L−1), 
the volume of dye solution is V (L), and M (g) is the adsor-
bent dosage.

Computational study

The Turbomole software was used to perform the compu-
tational investigations (Aissaoui et al. 2017). The geometry 
of three molecular structures (BR46, ACCFP, and BR@
ACCFP) was optimized using the generalized gradient 
approximation GGA-BP86 functional with the TZVP basis 
(Lemaoui et al. 2020c, b; Almustafa et al. 2021; Darwish 
et al. 2021). Convergence was required to occur with a maxi-
mum energy change of 10−6 Ha and a gradient change of 
10−3 Ha/Bohr (Lemaoui et al. 2020a, 2021).

The electrical parameters of the three molecules were cal-
culated, including the chemical potential (μ), global hardness 
(η), electrophilicity index (ω), and ΔN, which reflects the 
fraction of electrons transferred from BR46 to the ACCFP 
surface (Benabid et al. 2019a).

(1)q(e,t) =

(

C0 − C(e,t)

)

V

M

(2)R(e,t) =

(

C0 − C(e,t)

)

C0

× 100

(3)� = −� =
(

EHOMO + ELUMO

)

∕2

Fig. 1   Three-dimensional and planar molecular structure of Basic 
Red 46
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EHOMO and ELUMO denote HOMO and LUMO orbitals’ 
energy; χ denotes electronegativity (Benabid et al. 2021; 
Bououden et al. 2021).

The adsorption energy of the investigated system was 
calculated using the following equation:

EBR46@ACCFP denotes the optimized structure energy of 
the adsorbed BR46 on ACCFP; EBR46 and EACCFP denote 
the optimized structure energies of the isolated BR46 and 
ACCFP molecules.

The solubilization process of the molecule was studied 
using COSMO-RS.

AIM’s primary purpose is to study the type and inten-
sity of bonding interactions in molecular systems using 
molecules’ electron density ρ(r). The second derivative 
∇2ρ(r) sign may be used to identify the kind of chemical 
bonds present at the binding critical point (BCP) (Shain-
yan et al. 2010; Kurnia et al. 2015). The covalent (polar) 
connection is shown if the value is large and the ∇²ρ(r) is 
negative (Grabowski and Ugalde 2010). System rivalry 
between electron grouping (potential energy), V(r), and 
diffusion through electronic mobility (kinetic energy), 
G(r), are shown by the |V|/G ratio. An excess of electric 
charges creates the interaction when the ratio |V|/G > 1.

Interactions are classified as:

•	 Pure interactions with closed layers, |V|/G < 1.
•	 Interactions with closed layers, 1 < |V|/G < 2.
•	 Interactions with shared layer, |V|/G > 2.

Hydrogen bonding is classified under the first two 
types, whereas covalent interactions are classified under 
the third. Positive ∇²ρ(r) and H(r) = V(r) + G(r) values 
indicate electrostatic interaction, and negative values 
indicate a covalent connection. A partially covalent bond 
has a positive ∇²ρ(r) and a negative H(r) value (Rozas 
et al. 2000).

The amsterdam density functional (ADF) was employed in 
AIM calculations (Chen et al. 2020; Bououden et al. 2021). 
The molecular structure was optimized using the DFT-B3LYP 
functional at a TZVP basis (Te Velde et al. 2001; Bououden 
et al. 2021).

(4)� =
(

−EHOMO + ELUMO

)

∕2

(5)� = �2∕2�

(6)ΔN =
�BR46−�ACCFP

2
(

�BR46 + �ACCFP
)

(7)Eads = EBR46@ACCFP −
(

EBR46 + EACCFP

)

Results and discussion

Characterization of activated carbon

XRD analysis was used to verify the prepared activated 
carbon’s amorphous characteristics (Fig. 2). The crystal 
faces (002) and (100) in the typical diffraction patterns of 
activated carbon’s amorphous phase (JCPDS 00-001-0646) 
are remarkably consistent with the two values at 24° and 
44.6° (Ma and Ouyang 2013; Koyuncu et al. 2018).

SEM was utilized to characterize the microstructure of 
ACCFP (Fig. 3). for ACCFP samples before (Fig. 3a, b) 
and after dye adsorption (Fig. 3b, d). The ACCFP (Fig. 3a, 
b) demonstrated irregular particle morphologies with a 
rough heterogeneous surface with cavities ranging from 
5.25 to 8.64 μm. After adsorption, Fig. 3c, d show that the 
ACCFP surface became smoother as the cavities decreased 
up to 1.65 μm, as well as the accumulation of ACCFP 
particles, which may indicate that the dye molecules have 
been trapped and uptaken on the adsorbent surface.

The elemental composition of ACCFP was determined 
before and after adsorption using EDS microanalysis 
(Fig. 3e, f). As shown in Fig. 3e, this activated carbon has 
a high carbon content (70.34%), as well as the presence of 
additional elements such as O (16.31%) and P (9.5%), as 
well as trace levels of Ca (3%) and K (0.65%). Even though 
the carbon content (79.43%) after adsorption increased 
due to color molecules, which suggests that BR46 was 
adsorbed successfully onto the surface (Table 1).

XPS analysis was exploited to identify and meas-
ure the elemental and chemical states of the surface of 
ACCFP (Fig. 4). According to the survey scan (Fig. 4a), 
ACCFP is mainly composed of carbon C (40%), oxygen 
O (44.3%), and phosphorus P (13.3%), with negligible 
quantities of calcium Ca (2.3%) and nitrogen N (0.1%). 
The C 1s spectrum (Fig. 4b) is deconvoluted into three 
peaks, located at 283.8, 284.56, and 286.99 eV that are 
ascribed to the aliphatic/aromatic group (C–C/C–H), 
the hydroxyl group (C–O), and carbonyl group (C=O), 
respectively (Wu et al. 2021b; Xiong et al. 2021). Fur-
thermore, the O 1s spectrum (Fig. 4c) may be split into 
three distinct peaks, at 530.96, 532.47, and 532.80 eV, 
attributed to C=O, C–O, and C–OH, respectively (Jang 
et al. 2018; Wu et al. 2021a).

FTIR spectra may be utilized to determine the chemi-
cal structure and functional groups of ACCFP before and 
during adsorption with BR46 (Fig. 5). Before adsorp-
tion, the band at 3700 cm−1 is produced by overlapping 
hydroxyl and amine groups (OH and NH) (Mokhtar et al. 
2017). The bands at 3080 and 2950 cm−1 are attributed 
to the methyl and methylene groups C=H elongation 
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vibrations (Niazi et al. 2018). At 1790 cm−1, the C=O 
band of the carbonyl group may be found (Xue et  al. 
2022). The band at 1570 cm−1 may be ascribed to CH 
deformation-induced vibrations. The peak at 1250 cm−1 
might be due to CN stretching in amino acids (Yu and 
Luo 2014). The peak at 1090 cm−1 could result from the 
POC stretching vibration, while the peak at 786 cm−1 
could result from the PO band (Bagheri et al. 2020). At 
918 cm−1, the peak is consistent with NH deformation. 
Following adsorption, the ACCFP spectrum reveals a 
slight change in the location of almost all peaks, show-
ing that distinct functional groups of ACCFP are involved 
in the absorption of BR46.

The surface-specific area of ACCFP was measured before 
and after adsorption utilizing the BET adsorption-desorp-
tion of N2. The nitrogen adsorption/desorption isotherms 
for ACCFP before and after dye adsorption are shown in 
Fig. 6a, b, together with an inset displaying the dye’s associ-
ated Barrett–Joyner–Halenda (BJH) pore size distribution.

According to the IUPAC classification, ACCFP fea-
tures a typical V-IV hybrid isotherm curve completely 
overlapped and devoid of a hysteresis loop, indicating 
microporous (Kumar and Jena 2017). Additionally, as 
shown in Table 2, the specific surface area of ACCFP 
was 1288 and 432.6 m2 g−1 before and after adsorp-
tion. In contrast, the pore size is generally less than 10 
nm, showing that ACCFP has a microporous structure. 
Accordingly, the decrease in the specific surface area and 
the pore volume of the ACCFP sample after dye adsorp-
tion may be due to the occupation of the pores by the dye 

molecules. Moreover, it may be due to the agglomeration 
of the adsorbent particles after adsorption.

The zero charge is included in the pH characteristic of 
the accumulated electric charge on the surface (pHpzc), rep-
resented by the point of intersection of the pHfinal vs. pHinitial 
curves with the bisector. ACCFP surfaces are positively 
charged with pH less than 2.05 and negatively charged for 
more than 2.05 (Fig. 7). At pH > pHpzc, the ACCFP surface 
functional groups deprotonate, resulting in a negative charge 
(Momčilović et al. 2012).

The Boehm titration results are given in Table 3. The 
pHpzc and Boehm titration results indicate that ACCFP 
exhibits an acidic behavior resulting from the H3PO4 modi-
fication (Liu et al. 2010).

Adsorption measurements

The adsorption experiments were conducted in triplicate, 
and the average standard deviation was around 0.45%.

Solution pH effect

The adsorbent’s surface charge and the electrostatic interac-
tions between the adsorbent and the adsorbed molecules are 
directly influenced by the adsorbent’s initial pH (Goswami 
and Phukan 2017). The effect of pH was investigated in the 
range of 2 to 10. Adsorption capacity was 137.44 mg g−1 (R 
= 68.72%) at pH = 2, rising to 180.70 mg g−1 (R = 90.35%) 
at pH = 6, and then progressively decreasing (Fig. 8a). A 
reduction in adsorption capacity occurs when the pH dips 

Fig. 2   XRD spectrum of the 
obtained ACCFP powder
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below pHpzc = 2.05, owing to repulsive forces and competi-
tion between the H3O+ and the dye’s cation for the adsorp-
tion sites. The favorable electrostatic interactions between 
the anionic surface of the adsorbent and the cation of the 
dye molecule led to the improvement of cation adsorption 
when pH is higher than pHpzc (Kuppusamy et al. 2017; 
Xiong et al. 2021). Hydroxyl anions surrounding BR46 may 
be responsible for reducing retention at higher pH levels.

ACCFP dose effect

There was an investigation of adsorbent dosages displayed 
in Fig. 8a. The adsorption capacity fell from 515.10 mg g−1 
(R = 51.51%) to 47.26 mg g−1 (94.53%) when the adsorbent 
concentration was raised from 0.2 to 4 g L−1. In other cases, 
adsorption capacity decreases because particular adsorption 
sites have been unsaturated. However, a more significant sur-
face area and more adsorption sites at higher adsorbent doses 
may also increase removal (Rengaraj et al. 2004; Mohanty 
et al. 2005). A negligible increase in the removal rate was 
observed for adsorbent doses greater than or equal to 1 g 
L−1, which is why this dose was retained for the rest of the 
sorption tests.

Stirring speed effect

Figure 8c shows a study examining the impact of stirring 
speed, ranging from 100 to 700 rpm. To begin, the absorp-
tion capacity at 100 rpm was 174.73 mg g−1 (R = 87.63%), 

Fig. 3   Characterization of the ACCFP sample by SEM (before (a, b) and after (c, d) adsorption) and EDS (before (e) and after (f) adsorption)

Table 1   ACCFP elemental composition

Element Before adsorption (%) After adsorption (%)

Carbon C 70.34 79.43
Oxygen O 16.31 9.99
Phosphorus P 9.71 7.70
Calcium 3 2.66
Potassium 0.65 0.22
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rising to 180.70 mg g−1 (R = 90.35%) at 500 rpm. After that, 
the adsorption capacity decreased. Stirring speed facilitates 
dye solution dispersion within the adsorbent particles by 
reducing mass transfer resistance (Zhao et al. 2013). Increas-
ing the speed reduces the adsorption capacity because a por-
tion of the adsorbent is balanced against flask walls.

Temperature effect

Figure 8d depicts the effect of temperature on the adsorption 
of BR46 onto ACCFP. At temperatures ranging from 25 to 
50 °C, the adsorption of BR46 by ACCFP is endothermic, as 
demonstrated by an increase in adsorption capacity from 180 

Fig. 4   XPS spectra: ACCFP (a), 
carbon (b), and oxygen (c)

Fig. 5   FTIR spectra of ACCFP
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mg g−1 (R = 90.35%) to 193.85 mg g−1 (96.92%) (Hameed 
and Ahmad 2009; Arora et al. 2019).

Time and BR46 initial concentration effects

Figure 8e illustrates the effect of altering the initial BR46 
concentrations (i.e., 20, 50, 100, 200, 500, and 1000 mg 
g−1) at various time intervals (0–180 min). Due to a lack 
of adsorption sites, equilibrium was not reached until after 
180 min, whereas it was rapid during the first 30 min. 

Hence, the mass transfer increase may be due to an increase 
in adsorption capacity from 19.74 mg g−1 (R = 98.71%) to 
806.38 mg g−1 (R = 80.63%) (Naushad et al. 2019).

Adsorption modeling

Adsorption isotherms

Four isotherm models were examined to fully compre-
hend the interactions between dye molecules and the 
adsorbent surface (Langmuir, Freundlich, Temkin, and 
Dubinin-Radushkevich). Under optimum circumstances 
(pH = 6, 25 °C, 500 rpm, 180-min contact duration, and 
1 g L−1 of adsorbent), equilibrium experiments were car-
ried out with dye concentrations of 20, 50, 100, 200, 500, 
and 1000 mg L−1.

The Langmuir model (Langmuir 1918) proposes that 
monolayer adsorption may occur on a homogenous sur-
face (Benabid et al. 2019b). According to the Freun-
dlich model (Freundlich 1906), adsorption takes place 
on a heterogeneous surface, which includes interactions 
between molecules that have been adsorbed. Temkin’s 
model considers interactions between the adsorbent and 
the adsorbed molecules during the adsorption process 

Fig. 6   N2 isotherms (a, b). BJH pore size distribution of ACCFP (c, d)

Table 2   Textural features of ACCFP

Specific surface 
area (m² g−1)

Pore volume 
(cm3 g−1)

Pore size (nm)

Before adsorption 1288 0.744 1.940
After adsorption 432.6 0.098 0.421

Fig. 7   pHpzc of ACCFP

Table 3   Boehm titration of ACCFP

Parameter Value

Carboxylic groups (mmol g-1) 1.09
Lactonic groups (mmol g-1) 0.57
Phenolic grous (mmol g-1) 0.03
Total Surface acidity (mmol g-1) 1.69
Total Surface basicity (mmol g-1) 0.68
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and postulates that adsorption heat reduces linearly with 
coverage (Temkin 1940). The last model was Dubinin-
Radushkevich’s model (Dubinin 1960). These models 
may be expressed in the form of the following equations:

(8)qe =
qm KL Ce

1 + KLCe

(9)qe = KF × Ce
1∕n

(10)qe = B ln
(

ACe

)

(11)qe = qDRe
−��2 ;ε = RTLn

(

1 +
1

Ce

)

Fig. 8   The influence of different parameters on BR46 adsorption over ACCFP: a pH, b adsorbent dosages, c stirring speed, d temperature, and e 
contact time and initial BR46 concentration
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qe, Ce, qm, and KL: the equilibrium adsorbed amount 
(mg g−1) and adsorbate concentration (mg L−1), the mon-
olayer adsorption capacity (mg g−1), and the Langmuir 
constant (L mg−1).

•	 KF and n are the Freundlich constant and adsorption 
intensity.

•	 A (L mg−1) and B (J mol−1): constants associated with 
the most significant binding energy and heat-related 
adsorption.

•	 qDR is the monolayer capacity of Dubinin-Radushk-
evich (mg g−1), 𝛽 is the sorption energy constant, and 
ε is the equilibrium concentration (Polanyi potential).

Model adsorption parameters are listed in Table 4 and 
presented in Fig. 9.

The Freundlich model provides the best match (R2 
= 0.99). However, due to the interactions between the 
adsorbed molecules, adsorption may occur on a hetero-
geneous surface due to the isotherm being of type L and 
the 1/n value of 0.56 (Senturk et al. 2010).

Figure 9 illustrates the numerical and experimental 
findings at 25 °C. According to these observations, the 
Freundlich model is a good fit for the adsorption of the 
investigated system. Also, because functional groups are 
present on the surface of the adsorbent, it is clear that the 
Freundlich isotherm may be applied to the adsorbent’s 
energy distribution.

Adsorption kinetics

To further understand the reaction mechanism of BR46 
adsorption onto ACCFP, we explored the pseudo-first-order 
(PFO) (Lagergren 1898) and PSO (Ho and McKay 1999) 
kinetic models. These models’ linear representations are 
given as follows:

K1 (min−1) and K2 (g mg−1 min−1) are the PFO and PSO 
rate constants. qe and qt: BR46 adsorbed quantity (mg g−1) 
at equilibrium and time (t).

Figure 10a, b show the linear form plots, with the 
model’s parameters in Table 5. The PSO model shows 
an R2 value of > 0.99, indicating that this kinetic model 
describes BR46 adsorption kinetics onto ACCFP. Further 
evidence that the PSO kinetic model accurately captures 
the adsorption process is provided by the extraordinar-
ily close agreement between the observed and estimated 
adsorption capacities using this model (Fig. 10c).

Thermodynamic study

The thermodynamic parameters ΔG°, ΔH°, and ΔS° denote 
the spontaneity, heat of sorption, and randomness of the 
adsorbent-adsorbate interface.

(12)ln
(

qe − qt
)

= ln qe − K1t

(13)
t

qt
=

1

K2qe
2
+

1

qe
t

(14)�G
◦

= −RTlnKd

(15)ln K
d
=

�S
◦

R
−

�H
◦

RT

Table 4   The study’s isotherm models and their associated parameter 
values

Langmuir qm (mg g−1) 952.38
KL (L mg−1) 0.019
R2 0.931

Freundlich KF 37.021
1/n 0.565
R2 0.996

Temkin A (L mg−1) 1.164
B (J mol−1) 108.707
R2 0.868

Dubinin-Radushkevich qDR (mg g−1) 207.031
β 1.578E−7
R2 0.715

Fig. 9   Adsorption isotherms
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where Kd = qe / Ce. The slope and intercept of Eq. (14) 
are ΔH° and ΔS° (Fig. 11).

As stated in Table 6, all the calculated parameters are 
supplied. ΔG° values imply that the adsorption process is 
spontaneous. These values range from 0 to − 20 kJ mol-1, 
indicating that physical sorption might regulate the pro-
cess (Weng and Pan 2007; Deniz and Saygideger 2011). 

Fig. 10   Adsorption kinetic 
analysis. Graphical plots of PFO 
(a) and PSO (b) and the repre-
sentation of calculated values 
according to pseudo-first and 
pseudo-second order as a func-
tion of experimental values (c)

Table 5   Kinetic parameters Concentration qe (exp) PFO PSO

qe cal K1 R2 qe cal K2 R2

20 19.743 9.534 0.078 0.982 19.984 0.029 0.999
50 48.122 32.875 0.107 0.942 48.923 0.008 0.999
100 93.854 98.526 0.119 0.935 95.969 0.003 0.999
200 180.707 123.609 0.071 0.985 184.842 0.001 0.999
500 427.865 238.509 0.037 0.979 440.528 4.5E−04 0.999
1000 806.389 2778.093 0.09 0.882 877.193 7.26E−05 0.995

Fig. 11   Plot of Van’t Hoff equation

Table 6   Thermodynamic study results

T (K) ln Kd ΔG° (kJ mol−1) ΔH° (kJ mol−1) ΔS° (kJ mol−1 
K−1)

298 4.179 − 5.447 32.512 0.128
303 4.568 − 6.200
313 5.203 − 7.733
323 7.294 − 9.263
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In contrast, a positive value for ΔH° (32.512 kJ mol-1) 
implies an endothermic reaction, whereas a positive 
value for ΔS° (0.128 kJ mol-1 K-1) indicates increased 
randomness at the solid-liquid interface.

Computational study

BR46+ has the most significant HOMO-LUMO gap and 
hardness, with 1.619 and 0.810 eV values (Table 7). This 
finding demonstrates that BR46+ is the most stable mol-
ecule in this system. Because of its low gap and hardness, 
ACCFP was the most reactive. The negative calculated 
ΔN value indicates an electron-accepting ability of the 
BR46 from the ACCFP.

The developed global electrophilicity index (ω) is 
the beneficial change in energy when a chemical sys-
tem approaches saturation through electron addition (Te 
Velde et al. 2001; Bououden et al. 2021). When electrons 
move from the HOMO to the LUMO, they lose potency. 
The HOMO of BR46+ was found on the phenyldiaze-
nyl and phenyl groups’ double bonds and the double 
bound C=N of the triazole moiety (Fig. 12). The LUMO 
was centered on the azo functional group-bound and its 

vicinity. Their corresponding energy was − 8.283 eV for 
the HOMO and − 6.664eV for the LUMO. The HOMO 
is located on the ACCFP structure’s peripheral on the 
C=C double bonds, while the LUMO is positioned in 
the center on the C=C bonds. Their equivalent energies 
are − 4.425 and − 3.905eV.

The charge distribution of the binary interacting system is 
seen in Fig. 13a. The hydrogen bond acceptor (HBA) is red, 
the hydrogen bond donor (HBD) is blue, and the nonpolar 
region is green.

Figure 13b illustrates the BR46+ and ACCFP σ profiles and σ 
potentials. Surface segments having a screening charge density 
σ are given a P(σ) number (Ma and Ouyang 2013; Chen et al. 
2020). There are three types of surfaces: HBD σ ∈[– 0.025, 
– 0.010], nonpolar zone σ ∈[– 0.010, + 0.010], and HBA σ ∈[+ 
0.010, + 0.25] (Koyuncu et al. 2018; Xiong et al. 2021).

While examining the potentials of the two molecules 
with their contact system, it is found that both exhibit an 
excellent affinity for highly polarized HBAs (Fig. 13b). 
The ACCFP has a good affinity for HBDs, while the 
BR46 exhibits no affinity (Cationic molecule). The non-
polar region also noticed a poor affinity between the 
two molecules. This indicates that physical interactions 

Table 7   Descriptors of global 
reactivity

EHOMO (eV) ELUMO (eV) Gap (eV) χ η ω ΔN

BR46+ − 8.283 − 6.664 1.619 7.474 0.810 34.498 − 3.182
ACCFP − 4.425 − 3.905 0.520 4.165 0.260 33.372 -

Fig. 12   Frontier molecular 
orbitals at an iso-surface = 0.02 
u.a
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(physical nature) will play a significant role in the inter-
action between BR46+ and ACCFP, as demonstrated by 
the AIM research.

Figure  14 shows that the Van der Waals interaction 
energy contributes the most to mixing the two molecules 
(HVdW = − 17.61 and − 33.11 kcal mol−1 for BR46+ and 
ACCFP). Hydrogen bonding (HHB) was found negligible 
for BR46+ but highly significant as VdW interaction for 
ACCFP. This shows that the VdW interaction contributes to 

the adsorption of BR46+ on ACCFP. Electrostatic interac-
tion was less intense but not negligible.

The computed adsorption energy is shown in Table 8. 
The calculated negative value (− 18.54 eV) indicates the 
adsorption’s attractive and relatively strong nature (Van 
der Waals forces).

The optimized BR46+@ACCFP complex molecular graph 
is shown in Fig. 15. Table S3 provides an overview of the 
topological characteristics of BCP’s interactions. The VdW 

Fig. 13   COSMO-RS study: sur-
faces, polarities, and potentials
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forces are characterized by relatively low calculated values of 
ρ(r) in BCPs [3.3 × 10−3, 9.42 × 10−3] a.u.

Positive ∇2ρ(r) indicates the existence of hydrogen 
bond (HB) interaction at the 20 BCPs (Table 9). Positive 
values of ∇2ρBCP(r) and HBCP describe electrostatic inter-
actions (see Fig. 14). EHB < 0 implies weak hydrogen 
bonding strength (Wu et al. 2021b).

Reuse study

The sustainability and durability of the adsorbents are 
essential factors to consider when developing large-scale 
applications. Therefore, a stability evaluation must be 
conducted before deploying ACCFP. This was performed 
by removing BR46 with 0.1 M (HCl) and regenerat-
ing ACCFP for further adsorption cycles. As shown in 
Fig. 16, following the fourth cycle, adsorption capacity 
fell from 806.38 to 647.43 mg g−1. The material may be 
reused four times without substantially compromising 
its performance. To conduct a comparative analysis of 
published research on the removal of BR46 using differ-
ent adsorbents (Table 9). Our analysis indicates that the 
adsorption capacity is relatively high at 806.36 mg g−1, 

Fig. 14   Interaction energies of 
the system BR46+@ACCFP

Table 8   Adsorption energies of the complex and free molecules

BR46+@
ACCFP

BR46+ ACCFP Eads

Energy (Ha) − 4537.07 − 1027.18 − 3509.22 − 0.68
Energy (eV) − 123,460.04 − 27,950.90 − 95,490.60 − 18.54

Fig. 15   Molecular graph of the 
BR46+@ACCFP complex
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which seems to be adequate for treating dye-contami-
nated wastewater.

Conclusion

By chemical activation with H3PO4, activated carbon 
was produced from cactus fruit peels and physico-
chemically characterized using XRD, SEM/EDS, XPS, 
FTIR, BET/BJH, pHpzc, and the Boehm titration. The 
outcomes reveal the microporosity of the material with 
a rough heterogeneous surface and a large specific sur-
face area of 1288 m2 g−1 that is well suited for BR46 
removal. Adsorption experiments in a batch system 

were conducted to determine the effect of operational 
variables such as pH (2–10), adsorbent dosage (0.2–4 
g L−1), stirring speed (100–700 rpm), temperature 
(25–50 °C), time (0–180 min), and initial dye concen-
tration (20–1000 mg L−1), reaching an adsorption capac-
ity of 806.38 mg g−1. The Freundlich model accurately 
described the adsorption isotherm, despite the pseudo-
second-order model expressing the kinetic data with R2 ≥ 
0.995. Under endothermic circumstances (ΔH° = 32.512 
kJ mol−1), the thermodynamic behavior was spontane-
ous (ΔG° < 0), consistent with an electrostatic contact 
mechanism. Besides, the stability of ACCFP has been 
investigated using recyclability testing for up to four con-
secutive cycles with no discernible loss of effectiveness. 

Table 9   Adsorption of BR6 
onto different adsorbents

Adsorbent Adsorption capacity 
(mg g−1)

Reference

Activated carbon from Ziziphus lotus stones 307 Şentürk and Yıldız (2020)
Wild olive cores activated carbon 781.25 Boudechiche et al., (2019)
Synthesize graphene oxide nano adsorbent 370.4 Shoushtarian et al. (2020)
Activated pine sawdust 312.5 Kaouah et al. (2013)
magnetic nanocomposite Fe@graphite core-shell 46.7 Konicki et al. (2018)
Cactus fruit peels activated carbon 806.38 This study

Fig. 16   Reuse and regenerate of 
ACCFP after successive cycles 
of adsorption/removal of BR46
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According to the theoretical approach, physical interac-
tions significantly affect the adsorption of BR46+ on 
ACCFP (physical nature). Overall, the acquired results 
demonstrated that activated carbon acquired from cactus 
peels has the potential to be an efficient and eco-friendly 
adsorbent for treating colored wastewaters.
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