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Abstract
Ciprofloxacin (Cipro) water contamination is a global concern, having reached disturbing concentrations and threatening the 
aquatic ecosystems. We investigated the physiological responses and Cipro-phytoremediation capacity of one floating (Salvinia 
molesta D.S. Mitchell) and one submerged (Egeria densa Planch.) species of aquatic macrophytes. The plants were exposed to 
increased concentrations of Cipro (0, 1, 10, and 100 µg.Cipro.L−1) in artificially contaminated water for 96 and 168 h. Although 
the antibiotic affected the activities of mitochondrial electron transport chain enzymes, the resulting increases in H2O2 concen-
trations were not associated with oxidative damage or growth reductions, mainly due to the activation of antioxidant systems for 
both species. In addition to being tolerant to Cipro, after only 96 h, plants were able to reclaim more than 58% of that from the 
media. The phytoremediation capacity did not differ between the species, however, while S. molesta bioaccumulate, E. densa 
appears to metabolize Cipro in their tissues. Both macrophytes are indicated for Cipro-phytoremediation projects.
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Introduction

One of the pharmaceutical classes that has stood out in 
recent years in ecotoxicological studies are antibiotics 
widely used in human and veterinary medicine (de Assis 

2021; Kelly and Brooks 2018; Rocha et al. 2021a). Those 
drugs have greatly contributed to the economic growth of 
sectors such as agriculture, aquaculture, apiculture, and live-
stock husbandry, where they are used as growth promoters 
and to combat diseases (Kelly and Brooks 2018; Liu et al. 
2018; Rocha et al. 2021a). The uncontrolled use of those 
antibiotics and the lack of appropriate waste treatments, 
however, have contributed to their being increasingly found 
in bodies of water (Gothwal and Shashidhar 2015; Liu et al. 
2018; Kelly and Brooks 2018), where they contribute to one 
of the most serious problems of twenty-first century—the 
selection for (and spread of) antibiotic-resistant microorgan-
isms (Kelly and Brooks 2018).

Among antibiotics, particular attention must be given 
to the fluoroquinolone class. Treated animals and humans 
do not usually completely metabolize those drugs (Kelly 
and Brooks 2018), and they are consequently released into 
the environment, where they can induce bacterial resist-
ance and can cause negative impacts to non-target species 
(Kelly and Brooks 2018). The presence of fluoride in their 
chemical composition makes fluoroquinolones stable and 
persistent in the environment, stimulating a growing inter-
est in their ecotoxicological impacts (Janecko et al. 2016; 
Riaz et al. 2017). Among the antibiotics belonging to this 
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class of drugs, ciprofloxacin (Cipro) has gained prominent 
use (Kelly and Brooks 2018; Kovalakova et al. 2020), and 
has been identified in bodies of water in different regions 
around the world, but mainly in the developed countries of 
Europe, Asia, South America, North America, and in Aus-
tralia, at concentrations varying from 18 ng.L−1 to 8 mg.
L−1 (Frade et al. 2014; Janecko et al. 2016; Quadra et al. 
2017; Riaz et al. 2017; Gomes et al. 2022a). Cipro has been 
detected in rivers in India at concentrations varying from 1 
to 10 µg.L−1 (Mutiyar and Mittal 2014), in hospital waste-
water at concentrations varying from 1100 to 44000 ng.L−1 
in Vietnam (Duong et al. 2008), and 388 to 578 ng.L−1 in 
Malaysia (Thai et al. 2018). It was detected in Pakistan at 
concentrations from 0.35 to 2.210 µg.L−1 in residual waters, 
and from 83 to 341 µg.L−1 in effluents of pharmaceutical 
industries (Riaz et al. 2017). Cipro concentrations up to 
15000 ng.L−1 were found in surface waters in South Africa 
(Agunbiade and Moodley 2014), and at concentrations of 
from 0.41 to > 4482 ng.L−1 in rivers in Brazil (Quadra et al. 
2017; Beatriz et al. 2020; Gomes et al. 2022a).

The deleterious effects of environmentally relevant 
concentrations of Cipro on aquatic organisms have been 
described, with oxidative stress as well as histopathol-
ogy being evidenced in fish such as Cirrhinus mrigala 
when exposed to 1 and 1.5 µg.L−1 (Ramesh et al. 2021) 
and Rhamdia quelen when exposed to 10 and 100 µg.
L−1 (Kitamura et al. 2022). Toxic effects have also been 
reported in photoautotrophic organisms such as microal-
gae (at exposures ranging from 10 to 100 mg.L−1) (Xiong 
et al. 2017), cyanobacteria (1.50 to 17.24 µg.L−1) (Azevedo 
et al. 2019), as well as macrophytes such as Ricciocar-
pus natans (0, 0.75, 1.05, and 2.25 mg.L−1) (Gomes et al. 
2018), Lemna minor L., and L. gibba L. (5, 31, 78, and 
195 µg.L−1) (Nunes et al. 2019). Negative impacts on pho-
tosynthesis and respiration in those species and the gen-
eration of reactive oxygen species was observed (Azevedo 
et al. 2019; Gomes et al. 2018; Liu et al. 2018; Rocha et al. 
2021a; Xiong et al. 2017). There is therefore a great need 
for monitoring and mitigating the effects of that antibiotic 
on aquatic ecosystems throughout the world (Gothwal and 
Shashidhar 2015; Nunes et al. 2019).

Conventional water treatment systems are not efficient at 
removing antibiotics (O’Flaherty and Cummins 2017), so 
that phytoremediation appears as an emerging technological 
alternative for water decontamination (Kurade et al. 2021). 
Phytoremediation consists of the use of plants to metabolize, 
stabilize, and/or accumulate contaminants and pollutants 
in their biomasses (Ansari et al. 2020). The use of aquatic 
macrophytes to reclaim contaminants from water is a Nature-
Based Solution (NBS), being considered an efficient sus-
tainable technique (Song et al. 2019; Fletcher et al. 2020), 
and has emerged as a promising alternative for depuration 
of antibiotic-contaminated waters (Rocha et al. 2021b; Yan 

et al. 2019a). Although several aquatic macrophytes species 
have been indicated for antibiotic-phytoremediation, few stud-
ies have associated their remediation capacities with their 
respective biotypes (submerged and floating) (Rocha et al. 
2021b). For instance, submerged macrophytes (Myriophyl-
lum aquaticum Vell. Verdc. and Rotala rotundifolia (Buch.-
Ham. ex Roxb.) Koehne) were more effective in the removal 
of erythromycin from water than floating ones (Salvinia 
molesta DS. Mitch and L. minor). Biological characteristics 
related to phytoremediation capacity, such as the growth rate, 
contact surface, and intrinsic tolerance vary between species 
and biotype (Rocha et al. 2021a). Therefore, understanding 
the differences in tolerance and removal efficiency between 
different morphotypes of aquatic macrophytes may help to 
better indicate species with greater performance for phytore-
mediation programs (Fletcher et al. 2020).

Between the candidate species, aquatic macrophytes of 
the genus Salvinia have shown prominence for water decon-
tamination, mainly due to their rapid growth and their abil-
ity to reclaim contaminants (Wolff et al. 2012; Schwantes 
et  al. 2019; Praveen and Pandey 2020). S. molesta, for 
instance, has been found to be efficient for treating indus-
trial effluents and is considered as having a great potential 
for post-treatments of contaminated waters (Ng and Chan 
2017; Schwantes et al. 2019). S. molesta is a Brazilian native 
floating macrophyte belonging to the Salviniaceae family 
(Coetzee and Hill 2020) that demonstrates fast growth and 
a high absorption capacity for different xenobiotics, includ-
ing phosphate, nitrate, nitrite, ammoniacal nitrogen, glypho-
sate, and aminomethylphosphonic acidlead, mercury, arsenic 
and nanoparticles, mainly in tropical regions (Mendes et al. 
2021; Mustafa and Hayder 2021; Ng and Chan 2017). Simi-
larly, the submerged macrophyte Egeria densa Planch. has 
gained attention in phytoremediation programs, due to its 
potential to reclaim organic (saflufenacil, oxytetracycline) 
(Vilvert et al. 2017; Pestana et al. 2018; Alonso et al. 2021) 
and inorganic compounds (trace elements, nanoparticles) 
(Pestana et al. 2018; Alonso et al. 2021). This species is 
native to Brazil (Yarrow et al. 2009) and has fast growth 
and great tolerance to different contaminants (Pestana et al. 
2018; Alonso et al. 2021). To our best knowledge, however, 
there have been no studies testing the use of these species 
for phytoremediation of Cipro and comparing their phytore-
mediation capacity. As such, we evaluated the tolerance and 
the capacity of S. molesta and E. densa to remove Cipro 
from contaminated water by examining both the primary 
(photosynthesis and respiration) and oxidative metabolism 
of plants exposed to environmentally relevant concentrations 
of that antibiotic. In addition to evaluate the physiological 
responses and uptake capacity of plants along time, we com-
pared the phytoremediation potential of the species aiming 
to identify the most appropriate biotype to reclaim Cipro 
from contaminated water.
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Material and methods

Plant material

Salvinia molesta DS. Mitch. (Salviniaceae) specimens were 
collected in Barigui Park, Curitiba, Paraná State, Brazil 
(25° 25′ 18′′ S; 49° 18′ 22′′ W) and Egeria densa Planch. 
(Hydrocharitaceae) specimens were collected at Guara-
guaçu river, Paraná State, Brazil (25° 40′ 19.95′′ S; 48° 30′ 
47.20′′ W). Before initiating the experiments, the macro-
phytes were acclimated and depurated in a sterile reconsti-
tuted medium (SRS) (5.298 µM CaCl2, 2.044 µM MgSO4, 
1.500 µM NaHCO3, and 0.7377 µM KCl, in ultrapure water) 
at 25 ± 2 °C under a 10/14-h photoperiod regime of 80 µmol 
photons m2.s−1 (PPFD) for a period of 60 days.

Bioassay

The experiments were carried out in 250-mL Erlenmeyer 
flasks containing 100 mL of SRS. A stock solution (10 mg.
L−1) of Cipro was prepared in ultrapure water using ana-
lytical grade Cipro (Sigma-Aldrich, Brazil). The appro-
priate volumes of that stock solution were added directly 
to the SRS medium prior to transferring the plants to the 
experimental flasks. The macrophytes were exposed to four 
different concentrations of Cipro: 0 (control), 1, 10, and 
100 µg.Cipro.L−1. Those concentrations were chosen based 
on reports of field occurrences of the antibiotic in surface 
waters (Agunbiade and Moodley 2014; Frade et al. 2014; 
Mutiyar and Mittal 2014; Beatriz et al. 2020), effluents to 
sewage treatment plants (Pal et al. 2010; Frade et al. 2014; 
Janecko et al. 2016; Riaz et al. 2017), and effluents from 
hospitals and pharmaceutical industries (Duong et al. 2008; 
Frade et al. 2014; Mutiyar and Mittal 2014; O’Flaherty and 
Cummins 2017; Riaz et al. 2017; Thai et al. 2018).

The bioassays were formed in biochemical oxygen 
demand chambers (BOD) and the macrophytes were exposed 
in static tests for 96 and 168 h, at 23 ± 2 °C with a 10/14-h 
light/dark photoperiod at and illumination of 80 µmol pho-
tons m2.s−1 (OECD, 2006). Before use, plants were sur-
face disinfected in hypochlorite solution (0.5%) for 3 min 
(Mendes et al. 2021) and after being thoroughly washed in 
ultrapure water, they were distributed into each test flask 
(constituting a replicate) at the density of 10 g.L−1; four 
flasks were used in each of the treatments. The E. densa 
apices were cut from the stems of mature plants from the 
apex in the direction of the base to obtain the plant weighs 
including the apex. Four plants were harvested for analysis 
in each time of evaluation (96 h and 168 h of exposure), 
constituting than four replicates for each treatment in a fac-
torial combination time × Cipro concentrations. Water sam-
ples were collected for chemical analyses at each evaluation 

time, as well as at the initial time (0 day). Simultaneous 
tests were carried out in flasks without plants (n = 4), under 
the same condition of temperature and illumination used for 
plant cultivation, to study the natural (light, temperature, and 
hydrolysis) degradation of ciprofloxacin.

Photosynthesis and relative growth rates

Photosynthesis evaluations were conducted using whole 
macrophytes, employing an open-infrared gas system (CI-
340 Photosynthesis System; CID Bio-science, Inc, USA) 
coupled to a chlorophyll CI-510CF fluorescence module. 
The net rates of photosynthesis (PN) were measured three 
times/plant (80 nmol of photons m2 s−1) during each evalu-
ation. Minimum (F0) and maximum (Fm) fluorescence were 
measured, and the maximum quantum yields of photosystem 
II (Fv/Fm) were calculated according to Kitajima and Butler 
(1975). For relative growth rate evaluations, the plants were 
centrifuged at 3000 rpm for 10 min. at room temperature (in 
centrifuge tubes with small holes to remove surface water) 
and weighed to determine their fresh weights (OECD 2006). 
The relative growth rates were calculated as the difference 
between final and initial fresh weights divided by the time 
of exposure.

Biochemical analyses

Freshly collected plants were flash-frozen in liquid nitrogen 
and then stored at − 80 °C in aluminum foil until analyzed. 
Photosynthetic pigment assays were conducted using 0.1 g 
of fresh leaves; extraction was performed in 80% acetone, 
and the concentrations of chlorophyll-a, -b, and carotenoids 
were assessed following Lichtentauler and Wellburn (1983).

Antioxidant enzyme activities, as well as hydrogen peroxide 
(H2O2) concentrations (Velikova et al. 2000), and lipid per-
oxidation (MDA) (Hodges et al. 1999) were determined using 
0.1 g of plants (leaves + roots). The enzymes were extracted in 
1 mL of phosphate buffer (pH 7.8) containing 100 mM EDTA, 
1 mL of L-ascorbic acid, and a 2% polyvinylpyrrolidone solu-
tion (PVP m/v) (Gomes et al. 2016). The activities of ascor-
bate peroxidase (APx) (Nakano and Asada 1981) and catalase 
(CAT) (Aebi 1984) were assessed after determining the total 
protein concentrations (Bradford 1976).

The effects of Cipro on the activities of mitochondrial 
electron transport chain-related enzymes were determined 
using a spectrophotometer. The analyzes were performed 
with intact mitochondria (Howell et al. (2006), with modi-
fications proposed by Murcha and Whelan (2015) using 
100 µg.of protein−1 (Bradford 1976). The activities of com-
plex I (NADH: ubiquinone oxireductase), complex II (suc-
cinate dehydrogenase) (Estornell et al. 1993), complex III 
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(ubiquinol-cytochrome c reductase) (Birch-Machin et al. 
1993), and complex IV (cytochrome c oxidase) (Birch-
Machin et al. 1993) were evaluated.

Chemical analyses and phytoremediation potential

The detection and quantification of Cipro in water and plants 
were performed by high performance liquid chromatography 
(Waters 2695 HPLC), coupled to a fluorometric detector (FD 
Waters multi-fluorescence detector 2475) following Shi et al.
(2009), with modifications of the mobile phase. The fluorescence 
wavelengths evaluated were 278 nm for excitation and 453 nm 
for emission. The solvents used as the mobile phase were: trieth-
ylamine 0.4% (v/v), as phase A; methanol as phase B; and ace-
tonitrile as phase C. Cipro was extracted from the macrophytes 
according to the method proposed by Zhao et al. (2007), with 
modifications. Analytical grade Cipro (United States Pharmaco-
peia, Rockville, MD, USA) was used to establish the calibration 
curves. The curves were composed of six points, and demon-
strated good linearity for the analyte (r2 = 0.999; p < 0.0001) and 
Cipro concentrations in the water and in macrophytes were cal-
culated using the linear equation (y = 11800×—6572.7, where: 
y = Cipro concentration and; x = area). Each batch of samples 
included three blanks, three standards, and three fortified sam-
ples. Recovery rates were 94.4%. The LOD and LOQ were 0.3 
and 1.00 µg.Cipro.L−1 respectively.

After the quantification of the antibiotic in plants, the 
Cipro bioconcentration factor (BCF) was calculated accord-
ing to Jayanpathi et al.(2019) (Eq. 1) and the phytoreme-
diation efficiency was calculated following Gomes et al. 
(2020b) (Eq. 2 and 3):

where c is the Cipro concentration in the tissue plants (µg.
kg−1) and cw is the Cipro concentration in water (µg.L−1).

where c1 is the initial Cipro concentration in the water; c2 is 
the final Cipro concentration in the water.

Data analyses

The data were tested for normality (Shapiro–Wilk) and homo-
scedasticity (Levene), and evaluated using two-way ANOVA. 
Interactions between Cipro concentrations (0, 1, and 100 µg.
Cipro.L−1) and time (96 and 168 h) or between Cipro and 

(1)BCF =
c

cw

(2)Degradation(%) = 100 − (
c2 without plants

c
1 without plants

× 100)

(3)
Phytoremedation efficiency (%) =100 −

(

c2 with plants

c1 with plants

× 100

)

− Degradation

species (S. molesta and E. densa) were included in the model 
and when differences were detected by ANOVA, the means 
were compared using the Tukey test, at a 0.05% level of sig-
nificance. The efficiency of phytoremediation was compared 
between species (S. molesta and E. densa) by T test. The results 
were expressed as the means of four replicates. The data were 
statistical analyzed using R software (R.3.2.2, Team 2015). The 
graphs were prepared using PRISM, version 7.01 software.

Results

Cipro effects on photosynthesis and pigments

S. molesta

Significant interactions were observed in terms of the maxi-
mum quantum yields of PSII (Fv/Fm) (Table 1). Decreased 
Fv/Fm was observed in plants exposed to 100 µg.Cipro.L−1 
after 168 h, in relation to the control (Fig. 1A). Fv/Fm also 
decreased over time, regardless of the antibiotic treatment 
(Fig. 1A). Chlorophyll and carotenoid concentrations were 
not significantly affected (P < 0.05) by Cipro concentration or 
by the time of exposure (Fig. 1B and C, Table 1).

E. densa

Decreased Fv/Fm was observed in plants exposed to 10 and 
100 µg.Cipro.L−1 at 96 h, and to µg.Cipro.L−1 after 168 h, 
in relation to control (Table 2, Fig. 1A). Regardless the time 
of evaluation, when exposed to 10 and 100 µg.L−1 of Cipro, 
decreased chlorophyll-a concentration was observed in plants 
when compared to control (Table 2, Fig. 1B). Significant inter-
action between Cipro concentrations and times of exposure 
was observed for chlorophyll-b and carotenoid concentrations 
(Table 2). At 96 h, the concentration of chlorophyll-b (Fig. 2C) 
and carotenoids (Fig. 2D) were lower in plants exposed to 
Cipro, while after 168 h, this effect was observed only in plants 
exposed to 100 µg.Cipro.L−1 (Table 2, Fig. 2).

Oxidative stress markers

S. molesta

Significant interactions between Cipro concentrations and 
times of exposure were observed for APx and CAT activ-
ity as well as for H2O2 concentration in S. molesta plants 
(Table 1). At 96 h, APx activity was lower in plants exposed 
to 10 and 100 µg.Cipro.L−1 in relation to the control and 
1 µg.Cipro.L−1 (with APx activities not significantly differ-
ing between those latter treatments) (Fig. 3A). After 168 h 
of exposure, however, the plants exposed to 100 µg.Cipro.
L−1 evidenced the greatest APx activity. With exception of 
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the plants exposed to 100 µg.Cipro.L−1 (in which APx activ-
ity increased), APx activity decreased over time (Fig. 3A). 
Significant differences were not observed in terms of CAT 
activity in plants exposed to different Cipro treatments for 
96 h; at 168 h, however, the plants exposed to 10 and 100 µg.
Cipro.L−1 showed greater CAT activity than the control, 
while plants exposed to 1 µg.Cipro.L−1 showed lower CAT 
activity (Fig. 3B). With the exception of plants exposed to 
1 µg.Cipro.L−1, CAT activity increased over time (Fig. 3B).

At 96 h, the H2O2 concentration was greater than the con-
trol only in plants exposed to 100 µg.Cipro.L−1 (Fig. 3C); H2O2 
concentrations increased over time in plants exposed to both 10 
and 100 µg.Cipro.L−1 after 168 h (Fig. 2C). Lipid peroxidation 
(MDA concentration) was not significantly affected by Cipro 
concentrations or time of exposure (Fig. 3D, Table 1).

E. densa

Regardless the time of evaluation, APx activity (Fig. 4A) 
and H2O2 concentration increased in plants exposed to 10 
and 100 µg.Cipro.L−1 in relation to the control (Fig. 4C). 
After 168 h, the amount of H2O2 decreased, when com-
pared with 96 h (Table 2, Fig. 4C). Regardless the time of 
exposure, CAT activity increased in Cipro-exposed plants in 

relation to control (Table 2, Fig. 4B). MDA concentrations 
were not significantly affected by Cipro concentrations or 
time of exposure (Fig. 4D, Table 2).

Mitochondrial electron transport chain effects

S. molesta

Complex I activity was not significantly affected by Cipro or 
the time of exposure to it (Fig. 5A, Table 1). In contrast, the 
activities of complexes II and III were significantly reduced 
in S. molesta plants exposed to Cipro, regardless of the time 
of exposure (Fig. 5B and C, Table 1). Significant interactions 
between Cipro concentrations and times of exposure were 
observed for complex IV activity (Table 1). At 168 h of expo-
sure, increased complex IV enzyme activity was observed in 
plants exposed to 100 µg.Cipro.L−1 in relation to the control 
(Fig. 5D). With exemption of plants exposed to 10 µg.Cipro.
L−1, complex IV activity increased over time (Fig. 5D).

E. densa

Significant interactions between Cipro concentrations 
and times of exposure were observed for the activities of 

Fig. 1   Effects of Cipro concentrations and time of exposure on pho-
tosynthesis and pigments in Salvinia molesta. A Maximum quantum 
yields of photosystem II (Fv/Fm); B chlorophyll-a; C chlorophyll-b; 
D carotenoids. Values are represented as the mean ± standard error 
of four replicates. Lowercase letters indicate significant difference 

between Cipro concentrations at the same evaluation time; upper-
case letters indicate significant differences between times within the 
same Cipro concentration, by the post hoc Tukey Test (considering 
P < 0.05)
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complexes I and II in E. densa plants (Table 2). At 96 h, 
CI and CII activity was lower in plants exposed to 10 and 
100 µg.Cipro.L−1 in relation to the control and 1 µg.Cipro.
L−1 (Fig. 6A and B). After 168 h of exposure, the activities 
of CI and CII decreased in plants exposed to Cipro when 
compared to control (Table 2, Fig. 6A and B). In Cipro-
exposed plants, the activity of CI and CII decreased over 
time (Fig. 6A and B). Regardless of the time of exposure, the 
activities of complexes III and IV were significantly reduced 
in E. densa plants exposed to Cipro concentrations in rela-
tion to control (Fig. 6C and D, Table 2).

Phytoremediation potential

S. molesta

Cipro was not found in water samples of the control treat-
ment (Table 3). Cipro degradation in flasks without S. 
molesta plants increased as its concentrations increased 
(P96 = 0.001; P168 < 0.001). Regardless of the treatment or 
the time of evaluation, lower Cipro concentrations were 
observed in flasks with plants in relation to flasks without 
plants (P < 0.001) (Table 3). As such, the phytoremedia-
tion efficiency of plants treated with 1 µg.Cipro.L−1 was the 

lowest at 96 h of exposure, but that efficiency became the 
greatest among Cipro-treated plants at 168 h (Table 3).

Cipro concentrations in plant tissues ranged from 
6.41 to 114.35  µg.g.DW−1 at 96  h and from 7.60 to 
145.90 µg.g.DW−1 at 168 h. Significant interactions between 
Cipro concentrations were observed in terms of its concen-
trations in plant tissues (Table 4). Regardless of the time of 
exposure, greater concentrations of Cipro were observed in 
plants exposed to 100 µg.Cipro.L−1 (Table 2). Within the 
same Cipro treatment, however, plant tissue Cipro concen-
trations did not significantly differ over time (Table 4).

After 96 h of exposure, bioconcentration factors (BCF) 
decreased as Cipro concentrations in the water media 
increased (Table 4). After 168 h of exposure, the BCF was 
only greater for plants exposed to 1 µg.Cipro.L−1, not dif-
fering among the other treatments. The BCF did not sig-
nificantly differ over time within the same Cipro treatment 
(Table 4).

E. densa

Regardless of the treatment or the time of evaluation, the pres-
ence of plants contributes to lowering Cipro concentrations in 

Fig. 2   Effects of Cipro concentrations and time of exposure on pho-
tosynthesis and pigments in Egeria densa. A Maximum quantum 
yields of photosystem II (Fv/Fm); B chlorophyll-a; C chlorophyll-b; 
D carotenoids. Values are represented as the mean ± standard error 
of four replicates. Lowercase letters indicate significant difference 

between Cipro concentrations at the same evaluation time; upper-
case letters indicate significant differences between times within the 
same Cipro concentration, by the post hoc Tukey Test (considering 
P < 0.05)
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relation to flasks without plants (P < 0.001) (Table 4) and the 
highest phytoremediation efficiency was observed in plants 
treated with 1 µg.Cipro.L−1 (P < 0.0001, Table 3).

The Cipro concentrations in plant tissues ranged 
from 1.78 to 69.46 µg.g.DW−1 at 96 h and from 2.39 to 
119.6 µg.g.DW−1 at 168 h. Regardless of the time of evalu-
ation, Cipro concentration in plant tissues increased with 
the antibiotic addition to the water (Table 4). BCF increased 
over time in E. densa plants, being < 0.84 at 96 h and > 1.14 
after 168 h of exposure (Table 4).

S. molesta vs. E. densa

Significant interactions between Cipro and species were 
observed for the relative growth rate (RGR, Table 4). S. 
molesta plants exposed to 100 µg.Cipro.L−1 showed the 
highest RGR at both times of evaluation, while the same 
was observed for E. densa plants only at 96 h of exposure, 
when compared to the other treatments (Table 2). Regardless 
of the time of evaluation and Cipro treatment, S. molesta 
presented higher RGR than E. densa (Table 4).

Regardless of the time of evaluation and Cipro treat-
ment, the Cipro concentrations in S. molesta plant tissues 
were higher than those observed for E. densa (Table 4; 
P < 0.0001). This was also reflected in the higher BCF 

observed for S. molesta in relation to E. densa for all Cipro 
treatments at 96 h, and in plants exposed to 1 and 10 µg.
Cipro.L−1 after 168 h of exposure (Table 4).

Discussion

The comprehension of plant mechanisms of tolerance to 
environmental contaminants is important for choosing spe-
cies for phytoremediation programs (Carvalho et al. 2014; 
Gomes et al. 2022b). We investigated the physiological 
responses and the ability of S. molesta (floating) and E. 
densa (submerged) plants to remove Cipro from contami-
nated water to evaluate it for use in phytoremediation pro-
grams. Overall, the plants showed efficient phytoremediation 
and high tolerance to that antibiotic, with no observed mor-
tality or visual damage to the plants, even when submitted 
to the highest Cipro concentration investigated.

The tolerance of plants to aquatic contaminants has been 
related to their great ability to cope with oxidative stress 
(Praveen and Pandey 2020), with that tolerance allowing plant 
survival and their antioxidant activity being closely related to 
their remediation capacities (Gomes et al. 2020a, 2022b). The 
exposure of plants to antibiotics such as Cipro increases the 
generation of reactive oxygen species (ROS) through their 

Fig. 3   Effects of Cipro and time of exposure on oxidative stress 
markers in Salvinia molesta: A ascorbate peroxidase activity (APx); 
B catalase activity (CAT); C hydrogen peroxide concentration 
(H2O2); D lipid peroxidation (MDA concentration). Values are pre-
sented as the mean ± standard error of four replicates. Lowercase 

letters indicate significant differences among Cipro concentrations 
within the same evaluation time, while uppercase letters indicate sig-
nificant differences between times within the same Cipro concentra-
tion, by the post hoc Tukey test (considering P < 0.05)
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interference with energy metabolism (Gomes et al. 2017a, 
b). The increased H2O2 concentrations observed in S. molesta 
plants exposed to 100 µg.Cipro.L−1 (Figs. 3C and 4C) and in 
E. densa at 10 and 100 µg.Cipro.L−1 after 96 h of exposure, 
indicated that Cipro concentrations > 10 µg.Cipro.L−1 can 
induce physiological disruption and ROS accumulation after 
short exposures. Despite H2O2 accumulation in the plants, no 
increased lipid peroxidation was observed for both species, 
regardless of the time of exposure (Figs. 3D and 4D). The 
role of antioxidant systems in avoiding oxidative stress was 
evidenced by increased APx and CAT activities after 168 h 
of exposure, with the plants showing increased H2O2 but 
not MDA concentrations (Fig. 3 and 4). Similar results were 
reported by Gomes et al. (2017a, b) in L. minor plants exposed 
to Cipro, with antibiotic tolerance in that species being related 
to increased CAT and APx activities. Similarly, by using spe-
cific inhibitors of H2O2-scavenging enzymes, Gomes et al. 
(2022b) observed the central role of APx and CAT in the tol-
erance and remediation capacity of Cipro, amoxicillin, and 
erythromycin by L. minor plants. In addition to reinforce that 
antioxidant enzyme activity is related to Cipro tolerance, our 
results also evidenced that Cipro effects on plant physiology 
are time dependent, which must be considered when evaluating 
the toxicological effects of that antibiotic.

Although Cipro exposure did not result in detectable oxi-
dative damages, we were interested in better understanding 
how Cipro induced plant H2O2 accumulations. According 
to Gomes et al. (2018), as photosynthesis and respiration 
are the major sources of ROS in plants, H2O2 accumulation 
must be related to antibiotic interference with that energy 
metabolism. We therefore investigated chlorophyll-a fluo-
rescence in S. molesta and E. densa plants. Fv/Fm is a proxy 
of PSII integrity and is very sensitive to ROS accumulations 
(Gomes et al. 2017a, b). In S. molesta, that parameter was 
only affected in plants by treatments with 100 µg.Cipro.L−1 
after 168 h of exposure (Fig. 1A)—indicating interference 
with the photosynthetic apparatus when plants are exposed 
for long periods to high antibiotic concentrations. Those 
negative effects were not related to pigment composition, 
however, as the plants’ photosynthetic pigment concentra-
tions were not affected by Cipro (Fig. 1). In contrast, in E. 
densa, significant reduction on pigment concentration was 
observed in plants showing decreased Fv/Fm. Decreased Fv/
Fm indicates photochemical disruptions that ultimately may 
contribute to ROS accumulations (Gomes et al. 2017a, b), 
and it has been reported that fluoroquinolones can act as qui-
none inhibitors in photosystem II, disrupting the chloroplast 
electron transport chain (Evans-Roberts et al. 2016). The 

Fig. 4   Effects of Cipro and time of exposure on oxidative stress 
markers in Egeria densa: A ascorbate peroxidase activity (APx); B 
catalase activity (CAT); C hydrogen peroxide concentration (H2O2); 
D lipid peroxidation (MDA concentration). Values are presented as 
the mean ± standard error of four replicates. Lowercase letters indi-

cate significant differences among Cipro concentrations within the 
same evaluation time, while uppercase letters indicate significant dif-
ferences between times within the same Cipro concentration, by the 
post hoc Tukey Test (considering P < 0.05)
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observed decrease in Fv/Fm must be a result in place of the 
cause of ROS accumulation. In excess, ROS have negative 
effects on the PSII apparatus by affecting the repair and syn-
thesis of PSII-associated proteins (Gomes et al. 2017a, b), 
which can justify the results observed for S. molesta. In the 
case of E. densa, in addition to ROS formation, the reduction 
on pigment concentrations may contribute to decreased Fv/
Fm (Fig. 2). Chlorophyll biosynthesis, likewise, is sensi-
tive to cellular ROS content (Stenbaek and Jensen 2010), 
which can also induce the pigment degradation (Gomes et al. 
2016). However, it is interesting to note that the decreased 
Fv/Fm in both plant species exposed to the highest con-
centration of Cipro was not followed by decreases on their 
relative growth rates (Table 4). In contrast, after 7 days 
of exposure, at 100 µg.Cipro.L−1, Cipro increased fresh 
weigh production in S. molesta and did not affect RGR in 
E. densa plants. The decrease on pigment concentrations in 
E. densa (which can be reflected in decreased Fv/Fm), can 
be a tolerant mechanism of plants aiming to reduce pho-
tooxidation due to negative effects of ROS on photosynthe-
sis apparatuses. This may allow lower production of ROS 
(by photochemistry) assuring lower ROS accumulation and 
no oxidative damages (as observed here). The stimulator 

effect of Cipro on S. molesta fresh weight production can 
be associated to greater negative effect of the antibiotic on 
the catabolic metabolism (respiration) than in photochem-
istry, assuring greater carbon fixation than consumption. 
However, this must be better investigated by evaluating net 
photosynthesis and respiration in Cipro-exposed plants—
which were not performed here. Moreover, stimulation on 
the growth rate in plants exposed to pharmaceutical drugs 
(Pomati et al. 2004; Rocha et al. 2021b; Wan et al. 2015) 
has been associated with signaling between ROS and plant 
hormones (Gomes et al. 2019)—an interesting topic for fur-
ther investigations.

Aiming to better understand how Cipro induces ROS 
generation in plants, we investigated mitochondrial metab-
olism. While in S. molesta Cipro decreased the activities 
of mitochondrial complexes II and III at both exposure 
times (Fig. 5B and C), in E. densa, the activity of all the 
mitochondrial complexes was affected, demonstrating 
major interference of Cipro in the energetic metabolism 
of E. densa than S. molesta. Complexes I, II, and III have 
been identified as the major source of ROS in mitochon-
dria (O’Leary and Plaxton 2016; Huang et  al. 2019), 
and the inhibition on those complexes causes electron 

Fig. 5   Effects of Cipro concentrations and times of exposure on 
the activities of enzymes associated with the mitochondria electron 
transport chain in Salvinia molesta. A Ubiquinone oxireductase (CI); 
B succinate dehydrogenase (CII); C ubiquinol-cytochrome c reduc-
tase (CIII); D cytochrome c oxidase (CIV). Values presented as the 

mean ± standard error of four replicates. Lowercase letters indicate 
significant differences among Cipro concentrations within the same 
evaluation time, while uppercase letters indicate significant differ-
ences between times within the same Cipro concentration, by the post 
hoc Tukey Test (considering P < 0.05)
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transport chain imbalances, leading to ROS formation, as 
was observed in our study. Similar results were reported 
by Gomes et al. (2018) while investigating the effects of 
Cipro and temperature on Ricciocarpus natans (L.) Corda. 
Those authors demonstrated that Cipro acts as an inhibitor 
of the ubiquinone reaction site (Qo site) of complex III, 
blocking quinol oxidation and leading to the accumulation 
of unstable semiquinones at the Qo site—which results in 
increased ROS production. The quantities of antibiotics 
inside the plants (which increased with increased Cipro 
concentrations in media) and its effects on mitochon-
dria may be related to ROS accumulation, which would 
help explain the absence of H2O2 accumulation in plants 
exposed to only 1 µg.Cipro.L−1.

Interestingly, we observed increased complex IV activ-
ity in S. molesta plants exposed to 100 µg.Cipro.L−1 after 
168 h (Fig. 3D). According to Buchanan et al. (2015), com-
plex IV (together with complex III) acts in proton export to 
the outside of the mitochondrial matrix to assure the ionic 
and functional balance of the electron transport chain. As 
reductions in complex III activities were observed here, 
the increased complex IV activity may have been acting as 
a mechanism to control the ionic balance and represented 

attempts to optimize H+ proton pumping (which would 
accumulate in the mitochondrial matrix when complex III 
activity is disrupted). As a result, the production of ATP 
via mitochondrial ATP synthase will be guaranteed, supply-
ing energy for the plant’s physiological demands. This may 
represent the intrinsic tolerance mechanism of S. molesta 
to Cipro, as reductions in complex IV activity have been 
reported in other species exposed to that antibiotic (Gomes 
et al. 2017a, b).

Time of exposure is an important factor to be considered 
in phytoremediation programs using aquatic plants as the 
plant tolerance and remediation capacity can be altered over 
time, affecting their phytoremediation capacity (Carvalho 
et al. 2014; Adesanya et al. 2021; Park and Son 2022). After 
some time of exposure, plants can be saturated by the con-
taminants, reducing their uptake, since the rate of degrada-
tion cannot follow the rate of uptake, or due to the saturation 
of accumulation sites for the contaminants. However, it was 
not seen in the present study, since the time of exposure did 
not significantly affect the phytoremediation efficiency of 
plants. In another way, the increase on antioxidant responses 
over time, indicate the tolerance of plants in avoiding nega-
tive effects of Cipro as a result of its accumulation in plant 

Fig. 6   Effects of Cipro concentrations and times of exposure on 
the activities of enzymes associated with the mitochondria electron 
transport chain in Egeria densa. A Ubiquinone oxireductase (CI); B 
succinate dehydrogenase (CII); C ubiquinol-cytochrome c reduc-
tase (CIII); D cytochrome c oxidase (CIV). Values presented as the 

mean ± standard error of four replicates. Lowercase letters indicate 
significant differences among Cipro concentrations within the same 
evaluation time, while uppercase letters indicate significant differ-
ences between times within the same Cipro concentration, by the post 
hoc Tukey test (considering P < 0.05)
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tissues. Both, the capacity to tolerate and the ability to 
reclaim contaminants over time must be considered when 
selecting plants to reclaim contaminants (Adesanya et al. 
2021).

In addition to their Cipro tolerance, S. molesta and E. 
densa plants demonstrated a great ability to reclaim that 
antibiotic from contaminated water, removing from 69 to 
93% and 68 to 90% of the antibiotic in the media after only 
168 h, respectively (Table 3). Although the phytoremedia-
tion efficiency did not differ between the two macrophytes 
species, S. molesta (floating) accumulated more Cipro in 
their tissues when compared to E. densa (submerged). After 
the uptake, organic compounds, such as antibiotics, may 
undergo partial/complete degradation or being transformed 
into other compounds (Zhang et al. 2014). Submerged mac-
rophytes are particularly noted for their ability to transform 
and/or degrade organic contaminants, being used for phy-
totransformation or phytodegradation programs (Alonso 
et al. 2021; de Morais et al. 2019). de Morais et al. (2019) 
observed 93% removal efficiency (phytoremediation capac-
ity) by diclofenac by E. densa and Ceratophyllum demer-
sum (L.); however, only 8.9% of the total amount of the 
drug was phytoaccumulated, suggesting that plants realized 
phytotransformation or phytodegradation. Similarly, Alonso 

et al. (2021) observed the great phytoremediation capacity 
but low accumulation of the herbicide saflufenacil in plant 
tissues of E. densa. According to these authors, submerged 
macrophytes promote physico-chemical alterations in water, 
such as changes in water pH, which favor the uptake of con-
taminants and their metabolism by biological oxidation. Our 
data also indicate that E. densa may employ the mechanism 
of phytotransformation or phytodegradation of Cipro, while 
S. molesta phytoaccumulate the antibiotic. This is supported 
by the fact that plants presented similar phytoremediation 
capacity (removing similar amounts of Cipro from water) 
but distinct Cipro concentration in their tissues. Since S. 
molesta showed greater RGR than E. densa, if both plants 
showed similar rates of Cipro metabolism, a diluting effect 
resulting in lower Cipro concentration in plant tissues was 
expected, and, in contrast, greater Cipro concentration was 
found in S. molesta plants (Table 4). It is important to note 
that the metabolism of organic compounds can generated 
toxic subproducts (Zhang et al. 2014), which could in part 
explain the greater negative effects of Cipro observed in E. 
densa than in S. molesta. This topic merits more attention.

BCF is a measure of a plant's ability to accumulate con-
taminants, and when that value is greater than 1, the plant 
is classified as a hyperaccumulator (Mishra et al. 2017; 

Table 3   Ciprofloxacin concentration in water, degradation and phytoremediation efficiency of Salvinia molesta and Egeria densa 
(means ± standard error of four replicates)

Lowercase letters indicate significant differences between times of exposure within the same Cipro concentration and treatment systems 
(P < 0.05); a single asterisk (*) indicates significant differences between systems with (+ Plants) and without plants (− Plants) within the same 
Cipro concentration and time of evaluation (P < 0.05); uppercase letters indicate significant difference among Cipro concentrations within the 
same evaluation times (P < 0.05). A single dollar sign ($) indicates significant difference between phytoremediation efficiency of macrophytes by 
T test. n.d: not detected

System Treatments
(µg.L−1)

Cipro concentration in water Degradation (%) Phytoremediation efficiency (%)

Initial (T0) 96 h 168 h 96 h 168 h 96 h 168 h

Salvinia molesta
 − Plants 0 n.d n.d n.d n.d n.d - -

1 1.39 ± 0.01 a 1.24 ± 0.02 a 1.10 ± 0.04 a 2.16 ± 0.09 a 6.25 ± 2.42 b - -
10 7.16 ± 0.95 a 5.59 ± 0.26 a 5.34 ± 0.15 a 14.67 ± 3.29 a 21.15 ± 10.47b - -
100 100.63 ± 9.58 a 74.01 ± 5.81 b 64.44 ± 2.07 b 21.70 ± 5.48 a 29.01 ± 4.00 b - -

 + Plants 0 n.d n.d n.d b - - -
1 1.39 ± 0.01 a 0.57 ± 0.00 b* n.d b - - 63.75 ± 1.68 aA 93.74 ± 2.42 bA

10 7.16 ± 0.95 a 1.01 ± 0.08 b* n.d b - - 72.15 ± 1.30 aB 78.85 ± 6.04 aB

100 100.63 ± 9.58 a 2.47 ± 0.17 b* 1.51 ± 0.18 b* - - 76.61 ± 3.21 aB 69.39 ± 2.44 aB

Egeria densa
 − Plants 0 n.d n.d n.d n.d n.d - -

1 1.01 ± 0.51 a 0.97 ± 0.04 a 0.93 ± 0.04 a 3.12 ± 0.92 a 7.75 ± 0.64 b - -
10 10.81 ± 0.05 a 9.16 ± 0.39 a 8.38 ± 0.43 b 15.14 ± 0.86 a 22.47 ± 0.92b - -
100 106.00 ± 3.91 a 85.75 ± 4.37 a 72.69 ± 1.69 b 19.18 ± 1,57 a 31.24 ± 2.04 b - -

 + Plants 0 n.d n.d n.d - - -
1 1.01 ± 0.51 a 0.17 ± 0.03 b* 0.01 ± 0.01 b* - - 75.03 ± 4.33 bA 90.36 ± 1.29 bA

10 10.81 ± 0.05 a 2.44 ± 0.26 b* n.d b* - - 58.26 ± 2.01 aB$ 77.53 ± 0.92 aB

100 106.00 ± 3.91 a 12.08 ± 1.33 b* 0.50 ± 0.24 b* - - 66.61 ± 3.01 aB$ 68.08 ± 1.74 aB
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Yan et al. 2019b). We observed decreased BCF and phy-
toremediation capacities by S. molesta as Cipro concentra-
tions increased in the media. BCF levels generally tend to 
decrease when substrate contaminant levels increase (Zhao 
et al. 2003). According to Pence et al.(2000), decreased 
BCFs may result from chemical uptake saturation and/or 
decreased root-to-shoot transport when internal contami-
nant concentrations are high. Upon uptake, pharmaceutical 
products are mainly transported from the roots to the shoots 
by passive diffusion, and compounds with high molecular 
weights, such as Cipro, can saturate the absorption capacity 
of plants (Xiong et al. 2017; Adesanya et al. 2021). Although 
the phytoremediation capacity of S. molesta decreased when 
exposed to high Cipro concentrations, the plants showed a 
high removal capacity (> 69.39) in addition to a BCF > 1—
regardless of the exposure time or the Cipro concentration in 
the medium. The lower BCF observed for E. densa in rela-
tion to S. molesta (but similar removing capacity), indicate, 
once more, the possible phytodegradation or phytotransfor-
mation process employed by this species. Although studies 
have indicated Cipro degradation by plants, studies on the 
mechanisms of transformation and the toxicity of Cipro by-
products are claimed (Yan et al. 2020, 2021).

Conclusion

Despite the physiological alterations, both macrophyte spe-
cies presented tolerance mechanisms to avoid the deleterious 
effects of Cipro, such as the increase of antioxidant systems 
to avoid oxidative damages and growth reduction. Our results 
indicated that S. molesta (floating) and E. densa (submerged) 
are candidates for Cipro removal from contaminated water. 
Both macrophytes species are efficient at reclaiming the anti-
biotic (> 60%) even when at very high concentrations, such 
as those found in effluents from hospitals and pharmaceutical 
industries (concentrations varying from 2.3 to 341 µg.L−1); 
the species showed phytoremediation efficiency of up to 90% 
with Cipro concentrations commonly found in surface waters 
and effluent/sewage treatment plants (concentrations varying 
from 0.018 to 82.8 µg.L−1). Although the species did not dif-
fer from their phytoremediation capacity, they might employ 
different strategies to reclaim Cipro from contaminated water: 
while the floating species accumulate high concentrations in 
their tissues, the submerged species appears to transform and/
or degrade the antibiotic. This has important implications for 
phytoremediation programs aiming Cipro removal from water. 
In the case of areas with easy access and management of the 
macrophyte biomass, S. molesta must be a good choice. Its 
biomass can be recovered and then used for bioenergy through 
direct combustion or for biogas or bioethanol production, 
avoiding the return of the contaminant to the environment 
(Kochi et al. 2020). In contrast, E. densa is indicated for the 

removal of Cipro mainly when the management of the pro-
duced biomass is difficult, and, apparently, by the biotransfor-
mation of the antibiotic, this species may favor its permanent 
removal from water. It is important, however, to evaluate the 
toxicity to aquatic organisms of the Cipro by-product pro-
duced by plants as well as their biomagnification through the 
aquatic web.
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