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Abstract
Although the existing literature has evaluated the energy rebound effect (ERE) from various aspects, the estimates of differ-
ent types of ERE obtained by different methods still deserve further discussion. For this reason, by analyzing the pros and 
cons of assessment methods, this study offers a comparison between the direct and economy-wide EREs based on China’s 
transportation sector during the period of 2003–2019. Specifically, on the basis of the translog cost function, we use the 
dynamic ordinary least square (DOLS) method with seemingly unrelated regression (SUR) to evaluate the sectoral direct 
ERE. Considering that the direct ERE estimation is limited by its strict assumptions, this article further assesses the sectoral 
ERE from a macro perspective. By constructing the dynamic two-stage panel function, the generalized method of moments 
(GMM) was adopted to estimate the sectoral economy-wide ERE. The empirical results demonstrate that first, capital and 
labor relative to energy are Morishima substitutes; second, the sectoral short-term economy-wide ERE in China was 71.60%, 
while the long-term economy-wide ERE was 32.00% during the study period; third, there are significant regional differ-
ences in the EREs of Chinese transportation industry both for the short and long term, and the east China demonstrated the 
highest sectoral economy-wide ERE.

Keywords Direct energy rebound effect · Economy-wide energy rebound effect · Transportation sector · Regional analysis

Introduction

The transportation sector is a huge consumer of energy 
(consumed 326 million tons of oil equivalent in 2019), 
accounting for 15.53% of China’s final consumption (CEIC 
Database 2022). With the further investment in transport 
infrastructure, the transportation sector in China is expected 

to show substantial increases in activity and fuel use. Given 
the impact of the transportation sector on national energy 
security and air quality, continuous efforts have been made 
to curb energy use and carbon emissions from various trans-
portation modes.

Upgrade of transport equipment is one of the highest pri-
orities for China’ transportation sector to promote energy 
enhancement and emission reduction. Promoting energy effi-
ciency improvements is also a major focus at the environ-
mental policy level such as the “fuel consumption limits for 
passenger cars” and “fuel consumption evaluation methods 
and targets for passenger cars.” However, the actual energy-
saving effect of such policies is not as efficient as expected 
due to the existence of the energy rebound effect (ERE). 
Therefore, the existence of the ERE should be considered 
when implementing transport energy efficiency improve-
ment policies.

Existing literature has assessed the ERE from various 
aspects at national, regional, and sectoral levels (Lin and 
Liu 2013; Shao et al. 2014; Chen et al. 2021). Due to the 
differences in regional economic development and the unbal-
anced infrastructure constructions, as well as the industrial 
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structures, there are significant regional differences in the 
EREs in China’s economic sectors (Wang et al. 2012; Wang 
et al. 2014; Zhang et al. 2015; Zhang and Lin 2018; Li et al. 
2019). Although existing literature confirms the existence 
of the ERE in China’s transportation sector, it is still neces-
sary to further analyze the magnitudes as well as the secto-
ral short- and long-term EREs and the differences among 
regions.

This study focuses on the evaluation of ERE in the trans-
portation sector in China and compares the differences 
between direct and economy-wide EREs. The main con-
tributions of this study are summarized as follows. First, 
we adopt the dynamic ordinary least squares (DOLS) and 
seemingly unrelated regression (SUR), which consider the 
substitutional or complementary relationships between input 
factors, to evaluate the direct ERE of China’s transportation 
sector. Second, we adopt the generalized method of moments 
(GMM) and the two-stage dynamic panel data approach to 
evaluate the sectoral economy-wide ERE. The dynamic 
function allowed us to evaluate the magnitude of the ERE 
both in the short and long term, and the GMM can eliminate 
the “dynamic panel bias” problem compared with the tradi-
tional panel regression methods. Third, most of the existing 
literature on ERE estimates focuses on exploring the charac-
teristics and applicability of different measures while ignor-
ing the comparability of different ERE estimation results. 
For this reason, we compare the differences between direct 
and economy-wide ERE estimates in this study. According 
to the features of these two concepts, substitutional or com-
plementary relationships among input factors are analyzed 
in the framework of direct ERE estimates. Meanwhile, the 
short- and long-term comprehensive rebound indicators are 
calculated in the framework of economy-wide ERE.

The structure of the article is as follows: The “Literature 
review” section reviews the previous literature about the 
ERE. The “Methodology” section introduces the methods 
and models used in the research. The “Data source and pro-
cessing” section presents the data resource and data process-
ing. The “Empirical results and discussion” section demon-
strates the empirical results and analysis. The “Conclusions 
and implications” section provides the main conclusions and 
policy suggestions.

Literature review

Energy rebound effect (ERE) refers to the phenomenon that 
the potential energy consumption reductions resulting from 
improved energy efficiency are offset by increased energy 
demand (Saunders 1992). Based on market responses to 
changes in fuel efficiency, the ERE can be roughly divided 
into the following three categories: direct rebound effects, 
indirect rebound effects, and economy-wide rebound effects 

(Greening et al. 2000). The direct and indirect EREs are 
measured from the microeconomic perspective, in terms 
of the effect of the relative decrease in the price of energy 
services, and thus cannot consider the long-term effects of 
changes in the cost of capital (Ouyang et al. 2018a; Liu et al. 
2019). The measurement of economy-wide EREs is based 
on the macro perspective, which takes into account the re-
adjustment of price and quantities along with the dynamics 
of economic growth promoted by efficiency change (Adetutu 
et al. 2016).

An emerging literature documents the rebound effect of 
efficiency improvement on transport energy consumption 
from a specific sector such as urban road passenger traf-
fic (Wang et al. 2012; Lin and Liu 2013), passenger cars 
(Moshiri and Aliyev 2017), and road freight (Sorrell and 
Stapleton 2018). The existing studies on the ERE in the 
transportation industry has the following characteristics: 
first, most of the literature focuses on estimating the sec-
toral direct ERE, which and cannot incorporate the effect 
of dynamic changes in energy efficiency in the estimation; 
second, the differences between the estimates of the ERE 
obtained by using different estimation methods are relatively 
large, and there is a lack of comparative analysis of the esti-
mated results of different types of EREs.

The literature on economy-wide ERE expands the 
research perspective to the macro-level (Pfaff and Sartorius 
2015; Adetutu et al. 2016; Galvin 2020; Adha et al. 2021). 
The most common approach to estimate the economy-wide 
ERE is the computable general equilibrium (CGE) model 
(Broberg et al. 2015; Lu et al. 2017; Zhou et al. 2018; Du 
et al. 2020), the estimates based on which relies on strict 
assumptions such as market equilibrium, perfect competi-
tion, and constant returns to scale. Several scholars use the 
macroeconomic models and econometric analysis method 
(Brockway et al. 2021). For example, based on an energy 
efficiency index measured by the DEA model, Lin and Du 
(2015) used the ridge regression method to estimate the 
translog function of three types of inputs and calculated the 
final ERE in China during 1981–2011 with an average mag-
nitude of 34.3%. Adetutu et al. (2016) used the two-stage 
dynamic panel data method and stochastic frontier analysis 
(SFA) to estimate the magnitude of short-term and long-
term ERE of 55 countries from 1980 to 2010. The two-stage 
dynamic panel method divides the ERE estimation into two 
stages, which can avoid the use of alternative indicator or 
assumption for energy efficiency estimation.

The existing literature has analyzed the differences in 
EREs between regions in China. For example, based on Chi-
na’s provincial data of road passenger transportation from 
2003 to 2012, Zhang et al. (2015) used the dynamic panel 
quantile regression model to calculate the sectoral the short- 
and long-term ERE in China’s regions. Using China’s city-
level data on road transport from 2003 to 2013, Zhang and 
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Lin (2018) indicated that the eastern coastal region had the 
highest fuel efficiency (0.914) and the highest ERE (82.2%), 
while the northeast region had the lowest energy efficiency 
(0.612) and the lowest ERE (7.2%). Adopting China’s pro-
vincial data from 2003 to 2017, Zheng et al. (2022) used the 
nonlinear least square method to calculate the ERE in the 
transportation sector under the framework of endogenous 
growth theory. The result showed a decreasing trend of ERE 
from eastern to western regions which was attributed to the 
relationship between supply and demand of products.

To sum up, although the analysis of the ERE of China’s 
transportation sector has attracted increasing attention 
of scholars in recent years, there are still some rooms for 
improvement. Firstly, the estimation results of EREs depend 
on the corresponding assumptions (Bentzen 2004; Sorrell 
et al. 2009), and the strict assumptions can make the estima-
tion results prone to bias (Stapleton et al. 2016). The econ-
omy-wide ERE overcomes the deficiency of strict assump-
tions implicit in the estimation of the direct ERE (Yan et al. 
2019). Secondly, the estimation of the direct ERE also has 
its value; for example, through this method, we are able to 
make a further analysis of factor relationships in the process 
of factor price elasticity calculation (Sorrell and Dimitro-
poulos 2008). Therefore, the estimation of the direct ERE 
can not only provide a reference for the estimation results 
of the economy-wide ERE, but also can form a useful com-
plement to the estimation of the economy-wide ERE from 
the perspective of factor input relationship analysis. Finally, 
regional differences in the ERE are frequently studied from 
the perspective of direct ERE, and there were insufficient 
research on the explanations of regional differences from 
the macro perspective of ERE evaluation.

Methodology

Direct energy rebound effect

Cost‑share equation model

This study selects the translog cost function model to con-
struct the cost-share equation of each factor and further esti-
mate the price elasticity among input factors. Referring to 
Lin and Li (2014), the cost-share equation model based on 
the translog cost function is constructed by the following 
steps:

where Y is the output of the transportation sector measured 
by freight and passenger turnover, K is the capital stock of 
the transportation sector, L is the sectoral employment, and 
E is the amount of sectoral energy consumption.

(1)Y = Y(K, L,E)

Under the assumption that the output level and factor 
price are exogenous variables, the cost function can be writ-
ten as follows:

where C is the production cost of the transportation sector; 
Pk, Pl, and Pe denote the prices of input factors of capital, 
labor, and energy.

In the framework of the translog cost function, Eq. (2) 
can be written as:

where Ci is the cost, Yt is the output; Pit is the price of the 
ith input factor, Pjt is the price of the jth input factor, and εt 
is the random error.

According to Shepard’s lemma, the demand for each fac-
tor can be obtained by the partial derivatives of factor prices 
in the cost function (Xi=∂C/∂Pi). We took the derivatives of 
the factor price logarithm on both sides of Eq. (3), assum-
ing that the technological progress is Hicks-neutral, and 
added the term of the time trend. The cost-share equation is 
obtained as follows:

where

Xit is the input of the ith factor, Sit denotes the cost-share 
of the ith factor, and T is the time trend.

Equation (6) is the simultaneous equations consisting of 
three equations, which satisfy the following conditions under 
the framework of neoclassical theory:

Price elasticity calculation

After estimating the parameters of the above cost-share equa-
tion, we focus on the self-price elasticity σit and the cross-
price elasticity σij. The self-price elasticity of the energy factor 
is an alternative index to measure the direct ERE, while the 
cross-price elasticity of the factors reflects the sensitivity of 
demand for one factor to the price change of another factor. 

(2)C = C
(
Pk,Pl,Pe, Y

)

(3)
lnCt = �0 + �y lnYt +

∑
�i lnYt lnPit +

1

2
�yy

�
ln Yt

�2

+
∑

�i lnPit +
1

2

∑∑
�ij lnPit lnPjt + �t;

i, j = K, L,E

(4)

Sit = �i + �i lnYt +
∑

i

�ij lnPjt + �iT + �it i, j = K, L,E

(5)Sit =
� lnCt

� lnPit

=
Pit
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=
PitXit

Ct
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∑
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�ij = �ji
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Substitution possibilities of other factors on energy can be 
identified according to the cross-price elasticity (Lin and Tian 
2016).

The Allen-Uzawa elasticity of substitution (AES) has been 
commonly used to measure the substitution elasticity in the 
existing empirical studies:

If i = j, ωij = 1; if i ≠ j, ωij = 0
The AES is symmetric; that is, AESij = AESji. The symme-

try of AES has the advantages of simplicity and practicability; 
however, it has the disadvantage of inaccuracy in analyzing 
the changes in price, interest rate, and other variables (Chitnis 
et al. 2014). Thus, many scholars adopt the cross-price elastic-
ity (CPE) to amend the AES (Frondel 2004):

CPE provides reliable estimates of factor self-price elastic-
ity (i = j); however, the cross-price elasticity reflected by CPE 
describes the absolute substitution elasticity among factors and 
has weak explanatory power when the proportion of factors 
changes relatively. Therefore, we adopt the Morishima elas-
ticity of substitution (MES) proposed by Morishima (1967), 
which can be used to estimate the sensitivity of the proportion 
change of two input factors to the price change of one factor:

We use the estimates of parameters in Eq. (4) to calculate 
the factor self-price elasticities σii and the cross-price elasticity 
among factors (Morishima elasticity of substitution) σij:

Economy‑wide energy rebound effect

Short‑ and long‑term economy‑wide energy rebound effect

According to Sorrell and Dimitropoulos (2008), the economy-
wide ERE is defined as follows:

where ηξ represents the elasticity of energy consumption 
relative to energy efficiency d lnE

d ln �
 Therefore, the key to meas-

(7)AESij =
�ij + Si Sj − Si�ij

Si Sj

(8)CPEij = AESij + Si

(9)MESij = CPEij − CPEii

(10)�ij =
�ii + S2

i
− Si

Si

(11)

�ij = Si

(
�A
ij
− �A

jj

)
= Sj

(
�ij + Si ∙ Sj − Si

Si ∙ Sj
−

�ij + S2
j
− Sj

S2
j

)
i ≠ j

(12)R = 1 + ��

uring the ERE is to estimate the efficiency elasticity of 
energy consumption.

To estimate ηξ, we construct an unknown function com-
posed of the natural logarithm of energy price, output, 
and energy efficiency to represent the natural logarithm 
of energy consumption according to the economic theory:

where the subscript i represents the ith province and t repre-
sents time, E∗

it
 represents the optimal energy consumption, 

Pe
it is the price of energy, Yit is the transport turnover, ξit 

represents the energy efficiency, μi is the intercept of a spe-
cific province, and εit is the error term.

In addition, energy is the power we use for transporta-
tion (Li et al. 2019), which indicates that energy consump-
tion cannot be adjusted in an instant, so the actual change 
of energy consumption can be assumed to be a dynamic 
process (Adetutu et al. 2016).

Eit represents the actual energy consumption, while δ is 
the adjusted ratio. By combining Eqs. (13) and (14), the 
following relationship can be obtained:

Among them, αi = (1 − δ)μi andvit = (1 − δ)εit. Fur-
thermore, in order to estimate the elasticity of energy 
consumption relative to energy efficiency, we use the 
second Taylor expansion to approximate the value of 
f(lnPit, lnYit, lnξit). Therefore, Eq. (15) can be rewritten as:

Based on Eq. (16), the short-term elastic efficiency can 
be obtained:

The magnitude of the ERE calculated from Eq. (17) is 
not constant but depends on energy prices, income levels, 
and energy efficiency, which conforms to the intuition of 
economic theory.

The calculation of long-term energy efficiency should 
take into account the adjusted ratio δ, where δ is estimated 
by Eq. (16). Therefore, we can obtain the long-term effi-
ciency flexibility:

(13)lnE∗
it
= f

(
lnPe

it, lnYit, ln �it
)
+ �i + �it

(14)lnEit − lnEit−1 = (1 − �)
(
lnE∗

it
− lnEit−1

)

(15)
lnEit = � lnEit−1 + (1 − �)f

(
lnPit, lnYit, ln �it

)
+
(
�i + �it

)

(16)
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+

�4

2
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2
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2
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2
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)
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2
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Through the above two equations, the short-term and the 
long-term economy-wide EREs are calculated, respectively. 
Since all the parameters with estimated can be obtained from 
Eq. (16), the statistical noise may affect the accuracy of esti-
mates. In response to this problem, we refer to Zhang and 
Lin Lawell (2017) and use the Delta method to construct 
a 95% confidence interval based on the estimation results.

Dynamic energy efficiency metrics

As we discussed above, a comprehensive measurement 
of energy efficiency should incorporate not only the static 
efficiency of energy use but also the technical change 
regarding energy use. Accordingly, unlike the static effi-
ciency index suggested by Adetutu et al. (2016), we use a 
Malmquist energy productivity index (MEPI) as the proxy 
for the energy efficiency in this study. Following Du and Lin 
(2017), we measure the total energy productivity based on 
the Shephard energy distance function which is defined as:

where the superscript t denote time; K, L and E denote capi-
tal, labor, and energy inputs, respectively; Y denotes desir-
able outputs; Pt and refers to the production technology at 
time period t that can be expressed as:

The Shephard energy distance function describes the 
maximum reduction of energy input while keeping the 
other inputs (capital and labor) and the outputs unchanged 
with a certain level of production technology. The efficiency 
of energy utilization is usually defined as the ratio of the 
optimal (minimum) energy input to the actual energy input 
(Hu and Wang 2006). In this sense, it can be calculated as 
1∕Dt

E
(K, L,E, Y) . Obliviously, it is a static measurement of 

energy efficiency which does not considers the energy tech-
nological progress.

The Malmquist energy productivity index for province i 
is defined as:

Equation (21) measures the energy productivity change 
between time period t. It can be decomposed as:

(18)�lr
�,it

=
�3 +

�4

2
lnPit +

�5

2
ln Yit + �7 ln �it

1 − �

(19)Dt
E
(K, L,E, Y) = sup

{
�|(K, L,E∕�, Y) ∈ Pt

}

(20)Pt = {(K, L,E) can produce Y}

(21)
MEPI
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i
=
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D

t

E

(
K

t

i
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i
,Et

i
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i

)
× D

t+1
E

(
K
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i
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i
,Et

i
, Yt

i

)

D
t

E

(
K

t+1
i
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,Et+1
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, Yt+1
i

)
× D

t+1
E

(
K

t+1
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i

,Et+1
i

, Yt+1
i

)

] 1∕ 2

EFFCH
t,t+1

i
 indicates whether the ith DMU get closer to 

or farther away from the frontier. In this study, the trans-
portation sector of each province is regarded as a DMU. 
Thus, it refers to the change of energy utilization efficiency. 
TECCH

t,t+1

i
 reflects the shift of the production frontier 

alongside the energy direction, which measures the change 
of energy technology. Equation (22) shows that the energy 
productivity change is the result of energy utilization change 
and energy technology change. It is a dynamic energy effi-
ciency measurement which takes account into both changes 
in energy utilization efficiency and energy technology.

The data envelopment analysis (DEA) approach can be 
used to estimate MEPI. As a non-parametric approach, DEA 
approach is widely used for efficiency measurement in lit-
erature. Compared with the other mainstream approach sto-
chastic frontier analysis (SFA), DEA can avoid the potential 
model misspecification. Under the framework of DEA, the 
transportation of each province in the data set is regarded as 
a DMU, and the sectoral energy efficiency of each province 
during the corresponding period can also be well measured.

Data source and processing

This study employs a panel data set of China’s transporta-
tion sector in 30 provinces during the 2003–2019 period, 
including the capital, labor, and energy inputs, as well as its 
corresponding prices and outputs. The full sample is divided 
into eastern, central, and western regions according to the 
Fourth National Economic Census report of the National 
Bureau of Statistics1. Data sources include the CEIC China 
Premium database (2022) and various yearbooks such as 
the China Statistical Yearbook, the China Financial Year-
book, and the 2004 China Census Yearbook. All variable 
concerning prices were converted into the constant prices 

(22)

MEPI
t,t+1

i
=

Dt
E(K

t
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,Lt

i
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,Yt

i )
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,Et+1
i

,Yt+1
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×
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E (Kt+1
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,Lt+1
i

,Et+1
i

,Yt+1
i )×Dt+1

E (Kt
i
,Lt

i
,Et

i
,Yt

i )
Dt

E(K
t+1
i

,Lt+1
i

,Et+1
i

,Yt+1
i )×Dt

E(K
t
i
,Lt

i
,Et

i
,Yt

i )

]

≡ EFFCH
t,t+1

i
× TECCH

t,t+1

i

1 Specifically, the eastern region includes Beijing, Fujian, Guang-
dong, Hainan, Hebei, Jiangsu, Liaoning, Shandong, Shanghai, Tian-
jin, and Zhejiang; the central region includes Anhui, Heilongjiang, 
Henan, Hubei, Hunan, Jiangxi, Jilin, and Shanxi; and the western 
region includes Chongqing, Gansu, Guangxi, Guizhou, Inner Mongo-
lia, Ningxia, Qinghai, Shaanxi, Sichuan, Xinjiang, and Yunnan.
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in 2003. Specifically, the source and processing methods of 
each variable are described as follows:

(1) Input variables

Energy consumption (E)

The terminal energy consumption of coal, oil, natural 
gas, liquefied petroleum gas (LPG), and electricity was 
obtained from each province’s energy balance table of 
transportation, warehousing, and the postal sector in the 
CEIC China Premium database (2022). Due to the dif-
ferent energy units, we converted the physical quantity 
of different types of energy into a unified unit of million 
tons of standard coal, referring to the energy standard 
coal conversion coefficient of the transportation sector 
adopted by Xie and Hawkes (2015).

Capital input (K)

Since the estimation method of the capital stock has been 
relatively mature, we adopt the method of calculating the 
capital stock of the transportation sector infrastructure 
proposed by Li and Zhang (2016) and employ the per-
petual inventory method (PIM) to estimate the annual 
capital stock data of the transportation sector. The spe-
cific calculation method can be expressed as Kt=It+(1−δ
)∙Kt−1, where Kt and Kt−1 refer to the capital stocks in 
the transportation sector of year t and the previous year, 
respectively. It is the investment of fixed assets of the 
transportation sector that excludes the price factor in year 
t, and δ stands for the depreciation rate of fixed assets 
in the transportation sector. The specific index estima-
tion methods are described as follows: (1) Base period 
capital stock: the total capital stock of infrastructure was 
obtained by aggregating the capital stock of economic and 
social infrastructure from all provinces in 2004 (Ouyang 
et al. 2018b). Given the non-infrastructure capital, we can 
obtain the total fixed capital of the whole society. The 
investment price index of fixed assets is converted into 
prices regarding the index of 2004. The total capital stock 
of the transportation sector was estimated with the pro-
portion of the transportation sector infrastructure capital 
that accounted for the national infrastructure capital and 
the fixed capital of the whole society in 2004. It was con-
verted into prices regarding the index of 2003 based on 
the fixed asset investment price index to obtain the capital 
stock at the base period. (2) Fixed assets investment: the 
provincial fixed assets investment data in the transporta-
tion sector were obtained from the CEIC China Premium 
database (2022), and the investment in the previous years 
was converted into a constant price in 2003 based on the 

fixed asset price index. (3) Depreciation rate: the compre-
hensive depreciation rate of fixed assets in transportation 
sector was 8.76%.

Labor input (L)

After obtaining the number of employed people in highways, 
waterways, railways, and aviation in transportation sector 
from the CEIC China Premium database (2022), the labor 
input was calculated as the sum of private enterprises and 
individual employers and employees in urban units from the 
transportation sector of all provinces.

(2) Output of the transportation sector

The sectoral output is measured by the transport turnover of 
the transportation sector (100 million tons). The passenger 
and freight turnovers of the transportation sub-sectors (road, 
rail, water, aviation) in the CEIC China Premium database 
(2022) are employed as basic data. Passenger turnover is 
converted into freight turnover. The conversion ratios of 
road, rail, water, and aviation were 0.1, 1, 0.3, and 0.075, 
respectively.

Due to the availability of a more intuitive index “added 
value of transportation sector,” the transport turnover vol-
ume is a qualified alternative indicator for measuring output 
of transportation sector. As a productive sector, the transpor-
tation industry directly provides services to consumers while 
producing products. The transportation turnover volume is a 
reasonable index to estimate the output of the transportation 
sector based on pragmatism (Xie et al. 2018). On the other 
hand, the output of the transportation sector can be measured 
by constructing a comprehensive index by giving different 
weights to the transportation turnover volume of different 
transportation modes.

(3) Price variables

Energy price  (Pe)

(1) First, we collected price data for various energy sources 
of each province in 2004 from the China Coal Sector Sta-
tistics Compilation, the Petroleum and Chemical Sector 
Statistical Yearbooks, and the China Price Yearbooks. Due 
to the data availability, the prices of crude oil, fuel oil, 
and kerosene are the data at the national level, while the 
prices of gasoline, diesel, residential natural gas, and resi-
dential electricity are the data at city level, extracting from 
the energy price data of 36 large and medium-sized cities. 
(2) The above data are then weighted by the consumption 
amount to obtain the exact prices of coal, oil, natural gas, 
liquefied petroleum gas, and electricity. Specifically, the coal 
price is replaced by the raw coal price directly; the oil price 
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is weighted by the final energy consumption of crude oil, 
fuel oil, gasoline, kerosene, and diesel in the transportation, 
warehousing, and postal industries; and the natural gas and 
electricity prices are both weighted by the total consump-
tion of industrial prices and residential prices. (3) Finally, 
fuel and power price indexes of each province are employed 
to calculate the energy prices during the study period. The 
fuel and power price indexes in 2004 are collected from 
the statistical yearbooks of each province. The data of the 
2005–2012 period came from the China City (town) Life 
and Price Yearbooks, and the data of the 2013–2019 period 
came from the China Price Yearbooks. We calculated the 
growth rate of energy price based on the fuel and power 
price indexes of each province and obtained various energy 
price data from 2003 to 2019 in combination with prices in 
2004. According to the previously mentioned coal conver-
sion standard, we weighted each types of terminal energy 
consumption to obtain the energy input prices.

Capital price  (Pk)

According to Tao et al. (2009), the capital price is calculated 
as PK,t =

(
1 + ht

) 1−utzt

1−ut

(
qt−1rcp,t + qt� − �t

)
+ qt�t , among 

which ht refers to the VAT rate, ut represents the corporate 
income tax rate zt is the depreciation deductible present 
value rate, qt is the fixed asset investment price index, rcp, t 
is the return on assets, γt is the difference between the invest-
ment price index of year t and year t-1, and ωt is the property 
tax rate (Ouyang et al. 2019). The specific data processing 
is reported as follows. (1) Return on assets: the nominal 
interest rate. We employ the fixed deposit rate of the transac-
tions of the urban and rural residents and units within a year 
in China Financial Statistics Yearbooks. When there were 
multiple interest rates in 1 year, we performed a time-
weighted average calculation based on the Financial Institu-
tions Interest Rate Adjustment Table. (2) Depreciation 
deductible present value rate: stipulated by the relevant laws 

of China, the straight-line depreciation method is adopted 
by  e n t e r p r i s e s .  T h e  c a l c u l a t i o n  fo r m u l a , 
zt = ∫ r

0

e−rs

�
ds =

1−e−rr

r�
 , was used, where r stands for the nomi-

nal interest rate and τ represents the depreciation period. 
Based on relevant laws, the depreciation period of the trans-
portation sector is 15 years. (3) Corporate income tax rate: 
the enterprise income tax rate of each province is calculated, 
given the total income tax interests and profits of enterprises. 
(4) VAT rate: the statutory VAT rate of 17% is adopted. (5) 
Property tax rate: the property tax rate suggested by Tao 
et al. (2009) is 0.2%.

Labor price (Pl)

Regarding the labor price calculation method (Lin and Li 
2014), the labor remuneration of employees in various sub-
sectors of the transportation sector and the sectoral average 
number of employees are obtained from China Economic 
Census Yearbooks. Combined with the consumer price index 
(CPI), the sectoral real wages per capita of each province at 
the 2004 constant prices are calculated. We then associate 
them with the actual average wage index to calculate the 
actual wage growth rate and then obtain the sectoral actual 
average wages of employees in each province as the labor 
price. The consumer price index and the actual average wage 
index are derived from the CEIC China Premium database 
(2022).

(4) Input factor shares

The input factor shares (Se, Sk, Sl), are calculated according 
to Eq. (5). Specifically, the prices of each input factor men-
tioned above are multiplied by the amount of input to obtain 
the use cost of each input factor (Ce, Ck, Cl). The share of 
each factor’s cost is the proportion of the input cost of each 
factor to the total production cost, which is Si = Ci/CT.

Descriptive statistics of input and output variables are 
shown in Table 1.

Table 1  Statistical description of input and output variables.

Note: In the empirical analysis of the direct ERE, we use Sk, Sland Se calculated from Eq.(5) as the dependent variables

Variable Description Mean Std. dev. Min Max Obs

E Energy consumption (million tons of coal equivalent) 9.0208 6.4748 0.2700 36.4242 510
K Capital input (ten billion CNY) 27.5067 25.2479 0.3708 144.59 510
L Labor input (ten thousand people) 1.7303 1.0818 0.2011 6.4146 510
pe Energy price (million CNY per ton of coal equivalent) 50.0492 13.9437 18.9537 101.3926 510
pk Capital price (%) 13.9055 5.1819 2.6565 33.0824 510
pl Labor price (one hundred thousand CNY per capita) 40.6425 21.2883 9.8749 138.6566 510
Y Comprehensive transport turnover (hundred million tons) 4705.098 4919.818 142.67 30453.49 510
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Empirical results and discussion

Direct energy rebound effect

As for research methods, estimation errors are likely to occur 
when the sample size is small by using the OLS (Small and 
Dender 2007; Jin 2007). Therefore, this study referenced 
Bentzen (2004), Lin and Li (2014), and Lin and Tian (2016) 
by using a dynamic least square method (DOLS), which is 
suitable for small observations and variables with an order 
list of the whole data. Furthermore, the SUR can handle the 
problem of serial correlation that may occur by using the 
DOLS, thus improving the efficiency of estimation (Wester-
lund 2005). Therefore, combined with the SUR, the DLOS 
can effectively reduce the small sample bias and simultane-
ous bias, improving the reliability of estimated results (Stock 
and Watson 1993; Lin and Tian 2016).

Results of the unit root test (URT) show that lnY is sta-
tionary after the first-order differential. Considering the 
nature of the sample data and the application of factors share 
equations (SUR), this study uses the DOLS framework for 
parameter estimation. The factor cost-share equation can be 
written as:

According to the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) information guide-
lines, the first-order leading and lagging terms are selected 
for the data. As shown in Table 2, most parameters are sta-
tistically significant at the 1% and 5% significance levels. 
For the unit root test of the residuals of each equation, their 
residual sequences are all white noise processes at the sig-
nificant level of 1%.

(23)Sit = �i + �i lnQt +
∑

i �ij lnPjt + �T +
∑m

r=−m
�iΔ lnYt+r +

∑n

k=−n
�ijΔ lnPj,t+k + �it

i, j = L,K,E

Based on the parameter estimates in Table 2, we further 
calculate the price elasticity of each input factor in China’s 
transportation sector according to Eqs. (10) and (11). We 
calculate the self-price elasticity of each input of the trans-
portation sector and the Morishima substitution elastici-
ties between the input factors. The results are reported in 
Table 3.

As shown in Table 3, we discover that the self-price elas-
ticity and the Morishima substitution elasticity between the 
input factors are in a reasonable range. The results also indi-
cate that all the substitution elasticities are positive except 
for labor-energy and capital-labor. The two negative values 
indicate that when energy or labor price rises, the ratio of 
labor input to energy input or capital investment to labor 
input will decline. Particularly, both energy-capital and 
capital-energy substitution elasticities are positive, reflect-
ing that in the transportation sectors, capital and energy 
are the Morishima substitutes. However, since the absolute 
value of energy-capital substitution elasticity is less than 
the absolute value of capital-energy substitution elasticity, 
the capital to energy ratio will increase if both maintain the 
same price growth rate. Furthermore, the capital-energy 
substitution elasticity is greater than the energy-capital 

Table 2  Parameter estimation 
results of the factors share 
equations (SUR).

Note: The figures in the parentheses are the corresponding t statistic of the parameter estimates. *, **, and 
*** denote that the coefficient is statistically significant at the 10%, 5%, and 1% levels, respectively. {0} 
represents that the unit root does not exist in the data, implying that the data are stationary

Variables (1) (2) (3)
Si Sk Se

lnpl 0.0946*** (0.0072) −0.2093*** (0.0209) 0.1150*** (0.0179)
lnpk −0.0343 (0.0103) 0.2094*** (0.0302) −0.1752*** (0.0260)
lnpe −0.0502*** (0.0085) −0.1442*** (0.0247) 0.1943*** (0.0212)
Y −0.0053*** (0.0018) −0.0194*** (0.0054) 0.0247*** (0.0021)
T −0.0049*** (0.0008) 0.0367*** (0.0025) −0.0318*** (0.0021)
cons 0.1123* (0.0437) 0.9941*** (0.1286) −0.1066 (0.1106)
R2 0.416 0.610 0.655
Unit root test −9.4433 {0} −9.4433 {0} −9.4433 {0}

Table 3  Self-price elasticity and cross-price elasticity of alternatives 
in China’s transportation sector.

�ii∕�
M
ij

Energy (E) Capital (K) Labor (L)

Energy (E) −0.1089 0.0933 0.2927
Capital (K) 0.2100 −0.0779 −0.4495
Labor (L) −0.0273 0.0310 0.2029
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substitution elasticity, indicating that the change in energy 
price dominates the substitution relationship between energy 
and capital.

Given small absolute value of σLE, the complementary 
effect between labor and energy is not obvious. However, 
it is worth noting that the value σEL is the largest elasticity 
in Table 3, indicating that there is a significant substitute 
relationship once the labor price increases in the transporta-
tion sectors. Moreover, since the energy cost accounted for 
the highest share of 51.05% on average in the factor cost 
share, which shows that the transportation sectors are the 
energy-intensive sector and the energy price is not flexible. 
Therefore, when labor price rises, the substitution effect 
will increase the ratio of energy input to labor input. Since 
China entered the stage of high-quality development, vari-
ous changes shaped the labor market. Since 2010, China’s 
labor supply and demand pattern has shifted from total bal-
ance to insufficient labor supply. Considering the population 
structure and labor participation rate, it is expected that the 
supply scale of available labor in China will decline from 
76.134 million to 49.468 million from 2018 to 2050, with an 
average annual decline rate of 1.34% (Li 2020). As supply 
decreases, labor price is expected to continue to rise. With 
the trend of rising price, the substitutional effect of energy 
input over labor input will increase the energy consumption 
of the transportation sector in the foreseeable future.

On further examination of the energy self-price elastic-
ity, the estimated indicator of the direct ERE at the national 
level, the value of −0.1089 is relatively small, indicating 
the lack of elasticity of energy input regarding the change 
of energy price. The possible reasons are summarized as 
follows. First, as mentioned above, energy, especially oil, the 
power source and main raw material, is the dominant input 
factor for the transportation sector. The energy-dependent 

industrial structure of China’s transportation sector offsets 
the growth of energy price elasticity to a certain extent. 
Second, the deepening processes of energy price marketi-
zation reform promote the gradual transformation of energy 
price formation from government regulation to market ori-
entation. However, the price system is still in the process 
of continuous improvement. Energy prices are low under 
government intervention, and some parts of energy product 
prices cannot fully reflect its production, consumption, and 
environmental costs (Ouyang et al. 2019). Third, China is in 
the process of accelerating urbanization. With the improve-
ment of living standards and the vigorous development of 
the logistics sector, the expansion of passengers and freight 
transportation demand will inevitably lead to the increase in 
energy demand. However, current technology level and fac-
tor endowment hinder the development of alternative energy, 
thus reducing the possibility of energy substitution. In brief, 
all the factors mentioned above constitute an obstacle to the 
increase of energy price elasticity.

Economy‑wide energy rebound effect

Unlike static panels, fixed-effects model tends to have 
“dynamic panel bias” when estimating dynamic panels. 
System generalized method of moments (GMM) is widely 
used in the research with dynamic panel data model (Pat-
rícia and Pedro 2017; Li et al. 2019; Istemi et al. 2020). 
Table 4 shows the estimated results of Eq. (16). We use the 
least squares method (OLS) and fixed effects model (FE) to 
estimate the model in order to make a comparison with the 
result of GMM. It should be noted that the premise hypoth-
esis of the GMM estimation method needs to be verified by 
AR test and Sargan test. As shown in Table 4, it can be seen 
that there is no second-order serial correlation in the data 

Table 4  Parameter estimation 
results of the factors share 
equations.

Variable Parameter OLS FE sysGMM

L.lnE δ 0.8987*** (0.0118) 0.6481*** (0.0382) 0.5824*** (0.0503)
lnPe β1 0.2187 (0.4775) 1.7404** (0.7000) −1.3984 (0.9956)
lnY β2 0.5084*** (0.0957) 0.7557*** (0.1827) 0.8412 (0.6036)
Lnξ β3 −4.4200*** (0.3169) −3.3976*** (0.4861) −3.1198*** (0.6316)
0.5×lnPe×lnξ β4 1.8099*** (0.2003) 1.3415*** (0.2763) 1.2151*** (0.3131)
0.5×lnξ×lnY β5 0.1358*** (0.0479) 0.1124 (0.0822) 0.1155** (0.0488)
0.5×lnPe×lnY β6 −0.1971*** (0.0524) −0.2368** (0.0940) −0.4134 (0.4352)
0.5×[lnξ]2 β7 −0.0421 (0.0350) −0.0661** (0.0269) −0.0134 (0.0517)
0.5×[lnY]2 β8 −0.0078 (0.0108) −0.0159 (0.0180) 0.0214 (0.0461)
0.5×[lnPe]2 β9 0.1234 (0.1326) −0.1865 (0.1960) −0.0936 (0.5514)
Cons α −2.2531** (0.9282) −6.4423*** (1.4255) −6.2654 (2.4634)
AR(1) (p value) 0.0013
AR(2) (p value) 0.5151
Sargan test (p value) 1.0000
N 480 480 480
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processing according to the AR teat, and the null hypoth-
esis of the overall exogeneity of the instrument used in the 
GMM estimation cannot be rejected according to Sargan 
test. In summary, it can be concluded that the estimation of 
this research using GMM model is reasonable and effective.

Using the GMM estimation coefficients in Table 4, we 
use Eqs. (17) and (18) to calculate the economy-wide ERE. 
Table 5 shows the sectoral average short-term and long-term 
ERE point estimation results, as well as the specific estima-
tion results for each province within the 95% confidence 
interval (CI) from 2003 to 2019. The sectoral average short-
term ERE across the country is 71.60%, while the sectoral 
average long-term ERE is 32.00%. The sectoral short-term 
ERE within the 95% confidence interval falls between 67.19 

and 75.50%, and the sectoral long-term ERE within the same 
confidence interval falls between 6.90 and 59.88%.

We also find the cross-regional difference of the sectoral 
average economy-wide ERE based on results reported in 
Table 5. The sectoral average short-term ERE in the east-
ern provinces is 77.62%, while the sectoral average short-
term EREs in the central and western regions are relatively 
small (68.78% and 67.63%, respectively). The 95% confi-
dence interval of the sectoral short-term ERE in the east-
ern region falls between 74.86 and 80.38%. In contrast, the 
sectoral short-term ERE in the central region falls between 
63.81 and 73.75%, while the sectoral short-term ERE in 
the western region falls between 61.29 and 73.97%. The 

Table 5  Parameter estimation 
results of the dynamic energy 
consumption equation.

Province Short-term econ-
omy-wide ERE

95% confidence 
interval

Long-term econ-
omy-wide ERE

95% confidence 
interval

Anhui 74.18 69.68 78.68 38.17 16.20 60.14

Beijing 72.71 64.07 81.34 34.65 5.47 63.82
Fujian 81.50 77.56 85.44 55.70 42.13 69.26
Gansu 60.87 52.96 68.78 6.30 −33.04 45.64
Guangdong 72.84 66.22 79.46 34.97 8.77 61.17
Guangxi 74.82 71.04 78.60 39.71 19.29 60.12
Guizhou 77.40 69.45 85.36 45.89 21.73 70.05
Hainan 57.32 47.06 67.58 −2.20 −47.87 43.48
Hebei 79.79 75.48 84.11 51.61 35.71 67.52
Henan 82.66 79.71 85.61 58.49 47.89 69.08
Heilongjiang 78.89 72.46 85.33 49.46 29.29 69.63
Hubei 75.44 72.30 78.57 41.19 22.06 60.32
Hunan 76.41 73.50 79.32 43.51 25.85 61.17
Jilin 36.11 17.67 54.54 −52.98 −129.28 23.32
Jiangsu 74.65 70.45 78.85 39.31 18.18 60.44
Jiangxi 71.41 67.14 75.69 31.55 6.93 56.17
Liaoning 73.42 67.54 79.31 36.37 11.87 60.86
Inner Mongolia 59.96 50.88 69.04 4.12 −37.48 45.73
Ningxia 75.06 63.43 86.89 40.28 7.20 7335
Qinghai 25.44 3.55 47.33 −78.54 −169.19 12.12
Shandong 83.49 79.71 87.28 60.48 49.24 71.72
Shangxi 55.14 44.25 66.03 −7.41 −55.96 41.15
Shaanxi 72.06 67.81 76.32 33.11 9.25 56.97
Shanghai 89.85 83.45 95.25 75.70 62.06 89.34
Sichuan 73.77 68.83 78.71 37.19 14.42 59.97
Tianjin 86.05 81.91 90.19 66.59 57.43 75.76
Xinjiang 87.24 77.14 97.33 69.44 45.86 93.03
Yunnan 63.90 56.20 71.61 13.57 −22.40 49.55
Zhejiang 82.20 79.04 85.36 57.38 45.70 69.07
Chongqing 73.44 68.13 78.75 36.41 12.80 60.02
Eastern 77.62 74.86 80.38 46.41 30.14 62.68
Central 68.78 63.81 73.75 25.25 −2.79 53.28
Western 67.63 61.29 73.97 22.50 −8.17 53.17
National 71.60 67.19 75.50 32.00 6.90 55.88

90488 Environmental Science and Pollution Research (2022) 29:90479–90494



1 3

sectoral long-term EREs show the similar regional differ-
ences (Fig. 1). For details, please see Table 5.

In order to further clarify the regional differences in the 
economy-wide ERE, this article shows the sub-regional and 
national trend curves of the short-term ERE and the long-
term ERE from 2003 to 2019 in Figs. 2 and 3, respectively.

Through the observation of Fig. 1, all the curves have 
almost the same shape and generally show a continuous 
upward trend. It is notable that the magnitude of short-term 
ERE in the eastern region was higher than the national aver-
age from 2003 to 2019, while the magnitudes in the central 
and western regions were slightly lower than the national 
average. The above-mentioned differences in dynamic trends 

indicate that the relative economy-wide ERE in different 
regions has been changing over time, and the magnitude of 
short-term ERE in different regions in China has gradually 
converged to about 80% over time.

The long-term economy-wide ERE in Fig. 2 has basically 
the similar shape and trend as the short-term ERE in Fig 1. 
The main difference lies in the magnitude of the long-term 
ERE and the gap of long-term ERE magnitude among dif-
ferent regions. In recent years, the magnitudes of the long-
term EREs in the central and western regions are about 47%, 
while the long-term ERE in the eastern region is about 60%, 
which is significantly higher than the central and western 
regions.

Fig. 1.  Short-term economy-
wide ERE of China’s transpor-
tation sector among regions.

Fig. 2.  Long-term economy-
wide ERE of China’s transpor-
tation sector among regions.
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Based on the analysis of the economy-wide ERE magni-
tude of the transportation sectors, we present the following 
findings.

First, the sectoral economy-wide EREs in the short-
term exist in the eastern, central, and western regions with 
the average magnitudes of 77.62%, 68.78%, and 67.63%, 
respectively; while the sectoral economy-wide EREs in the 
long-term exist in the eastern, central, and western regions 
with the magnitudes of 46.41%, 25.24%, and 22.50%, 
respectively. Since the values are all smaller than 100%, 
indicating that although the energy efficiency policy is not 
fully effective on account of ERE, the energy-saving target 
can be fulfilled to some extent due to the improvement of 
energy efficiency. The magnitude of the sectoral short-term 
ERE is consistent with the result of other research, that is, 
the economy-wide ERE may erode more than half of the 
expected energy savings (Brockway et al. 2021). In addition, 
our research finds that the short-term ERE is significantly 
higher than the long-term ERE (Adetutu et al. 2016). On one 
hand, with the advancement of science and technology and 
the accumulation of knowledge, the sectoral productivity 
will continue to increase along with technological advances 
and energy use efficiency improvements. On the other, with 
the increased environmental awareness among residents, the 
concept of green consumption of residents will also force the 
industry to conserve energy and reduce emission.

Second, both the short-term and long-term economy-wide 
EREs show a trend of increasing first and decreasing after-
wards by reaching the peak in 2012. The sectoral economy-
wide ERE of China’s east fluctuates slightly around 60%, 
and the sectoral economy-wide EREs in the central and 
western regions are about 45%. China’s GDP growth target 
in 2012 was reduced to below 8% for the first time, marking 

that China’s economy entered a state of new normal, and the 
gear of growth is shifting from high speed to medium-to-
high speed. At the same year, the State Council Information 
Office of China issued the “China’s Energy Policy” white 
paper, clarifying that maintaining long-term stable and sus-
tainable use of energy resources is an important strategic 
task of the Chinese government. The government will adopt 
eight energy development policies including “saving prior-
ity” to build a modern energy industry system and realize 
the sustainable development of energy. At the macro policy 
level, energy-intensive industries, including transportation 
industry, have become key areas for energy conservation and 
emission reduction in China, helping to reduce the long-term 
economy-wide ERE and effectively achieve energy savings.

Third, the highest sectoral economy-wide ERE exists in 
China’s eastern region, followed by the central region and 
western region both in the short term and the long term. The 
ERE in the eastern region is significantly higher than the 
central and western region, and energy efficiency improve-
ment can bring about 30% of expected energy savings in the 
short term. In fact, the eastern region, which has the high-
est level of urbanization, population density, and industrial 
concentration in China, has the highest density and the best 
quality of transport infrastructures. As is shown in Fig. 3, 
the eastern region far exceeds the central and western region 
in terms of sectoral energy demand size and growth rate. 
Especially, the average annual growth rate of passenger and 
freight turnover in the eastern region during 2015–2019 was 
7.37%, much higher than that of central (2.28%) and west-
ern region (2.34%). At the same time, it was also slightly 
higher than the national level (5.38%), indicating that eastern 
region has become the main driving force for transportation 
demand. Geographically, the eastern region has developed 

Fig. 3.  Converted turnovers of 
the transportation sector among 
China’s regions.

90490 Environmental Science and Pollution Research (2022) 29:90479–90494



1 3

water transportation system compared to inland China. 
Six of the top ten airports, including Shanghai Hongqiao, 
Pudong International Airport, and Capital International 
Airport, are located in the eastern region, bringing greater 
demand for civil aviation. Due to the role of transportation 
hubs of major developed cities, the densities of railways and 
highways in the eastern region are also much higher than that 
in the central and western regions (Zhang et al. 2015). Over-
all, the higher economic development and urbanization level 
will bring about the higher the proportion of the secondary 
and tertiary industries, especially the rapid development of 
the transportation industry. On this foundation, the reduc-
tion of the actual transportation cost promoted by energy 
efficiency improvement will lead to the further expansion of 
sectoral development in the eastern region, leading to a surge 
in energy demand. In fact, the existing research showed that 
the eastern region has the highest absolute amount of the 
energy saving potential due to the highest share of sectoral 
energy consumption (Xie et al. 2018). Therefore, the gap of 
sectoral long-term ERE between eastern region and other 
regions can be partially explained by the inertia brought 
about by the historic energy consumption path.

Discussion

This research analyzed the difference of EREs at the national 
and sub-regional level of transportation industry in China 
from the perspectives of direct ERE and economy-wide 
ERE. First of all, we used the self-price elasticity of energy 
to estimate the magnitude of sectoral direct ERE. The sec-
toral ERE is evaluated by measuring the change in energy 
consumption under changes in the price of energy products 
or services. By adopting the cost share function in addition 
to the self-price elasticity of the energy input, the substi-
tution or complementarity relationships between various 
inputs can be measured. According to the relationships of 
different inputs, reasonable adjustments can be made to the 
ratio of inputs in the transportation sector to achieve energy 
saving and emission reduction. However, there exists a strict 
assumption that changes in energy efficiency can be fully 
captured by changes in energy prices while using the energy 
self-price elasticity to measure the direct ERE.

The hypothesis of symmetry between energy efficiency 
and energy price is questioned by relevant studies (Sorrell 
et al. 2009; Thomas and Azevedo 2013). Energy prices in 
China are in the process of marketization, and prices of sev-
eral types of energy are still regulated by the government. 
Specifically, the degrees of oil price distortion in the cen-
tral and western regions are greater than that in the eastern 
region (Sha et al. 2021), which leads to the result that energy 
efficiency improvement cannot be directly reflected in 
energy price changes to a certain extent. In addition, energy 
efficiency is correlated with the prices of other factor inputs 

other than energy price only. The direct ERE measured by 
price elasticity ignores the change of energy efficiency and 
other prices of inputs, resulting in potentially large bias in 
the estimates.

The direct ERE occurs when the increase in energy effi-
ciency reduces the cost of energy products and services, 
thereby partially increasing energy consumption and offset-
ting the contribution of energy efficiency on energy con-
servation. The economy-wide ERE, which measures from 
the macro perspective, can provide more reliable estimates 
than the direct ERE. In terms of estimation methods, the 
economy-wide ERE can avoid the strict hypothesis embed-
ded in the measurement of the direct ERE, which assumes 
the symmetry between energy efficiency and energy price. 
The evaluation of the economy-wide ERE also overcomes 
the endogenous problem to some extent, because it does 
not require that changes in the actual price of energy prod-
ucts or services will cause the prices of intermediate and 
final products in the entire industry to adjust accordingly. 
Therefore, the estimates of the economy-wide ERE are more 
scientific and reasonable. This article refers to Adetutu et al. 
(2016) to measure the dynamic energy efficiency at first, and 
then calculate the sectoral economy-wide ERE in short and 
long term so as to provide decision basis for scientific and 
reasonable design of energy saving and emission reduction 
planning in China’s transportation industry.

In summary, this study can provide a useful addition to 
the existing literature regarding the research content and 
methodological aspects. First, we use the cost share func-
tion to calculate the price elasticity of the input factors, so 
as to obtain the substitutional or complementary relation-
ships between the input factors in the transportation sector. 
Second, we evaluate the sectoral economy-wide ERE based 
on the dynamic energy consumption equation, which avoids 
the stringent assumptions required for direct ERE estima-
tion, thus enabling more reliable estimates. Third, this study 
summarizes the advantages and disadvantages of the two 
types of estimation methods and compares the differences 
between them in terms of estimation results. Meanwhile, 
this article reports more systematic and comprehensive 
estimation results concerning the sectoral ERE in China’s 
regions, which is expected to provide a more reliable refer-
ence for energy conservation and emission reduction policy 
formulation.

Conclusions and implications

This study adopted the dynamic OLS method and the SUR 
to estimate the direct ERE of the transportation sector in 
China based on the sectoral panel data of 30 provinces of 
China from 2003 to 2019. Considering the limitations of 
the direct ERE in the estimation method, this article further 

90491Environmental Science and Pollution Research (2022) 29:90479–90494



1 3

adopts the dynamic energy consumption and GMM method 
to estimate the sectoral economy-wide ERE in different 
regions in China.

First, there exists a substitutional relationship between 
capital and energy for the transportation sector in China. 
Specifically, the capital-energy price elasticity is 0.2100, 
larger than the energy-capital price elasticity, which indi-
cates that capital investment would increase to a greater 
extent when energy prices rise. The energy-labor price elas-
ticity is 0.2927, indicating that the energy input will increase 
to a greater extent as labor price rises. Second, the secto-
ral economy-wide EREs exist in the eastern, central, and 
western regions, which were 77.62%, 68.78%, and 67.63%, 
respectively. Third, the magnitudes of sectoral economy-
wide ERE are distinct between regions. The eastern region 
has the largest short-term and long-term economy-wide ERE 
(77.62% and 46.41%, respectively), followed by the central 
and western regions.

The policy implications are thus summarized as follows.
First, the public transportation and new-energy vehicles 

should be further promoted considering the substitutional 
effect between energy and labor. Results indicate that the 
promotion of public travel and new energy will ease the 
dependence on labor inputs and reduce the demand for fuel 
oil simultaneously. On the one hand, a convenient, economi-
cal, and environmentally friendly public transportation envi-
ronment can be created by accelerating the construction of 
public transportation systems such as rail transits, trolley-
buses, and underground railways. On the other hand, the 
concept of green and shared development in the transporta-
tion sector can be introduced by advocating short distance 
travel by guiding the establishment of the urban bike-sharing 
system.

Second, energy efficiency policies of the transporta-
tion sector should consider the offsetting effect of the ERE 
on energy conservation. In fact, one of the important fac-
tors affecting the magnitude of the ERE is energy price. 
From this viewpoint, the marketization process of China’s 
refined oil prices needs to be further improved. China has 
implemented a more market-oriented pricing mechanism 
for refined oil products since 2013, by shortening the price 
adjustment interval from 22 to 10 working days while 
removing the requirement of oil price change rate (4%). And 
starting from January 2016, the NDRC of China required 
that the domestic refined oil prices would no longer be 
adjusted in line with the international market if the interna-
tional crude oil price was below $40 per barrel. Therefore, 
in addition to considering crude oil prices in foreign markets 
and the supply and demand situation of domestic refined 
oil products, the pricing mechanism for refined oil products 
could also take local characteristics into account to better 
circumvent the ERE on the effectiveness of energy conserva-
tion in the transportation industry.

It is also necessary to design and evaluate differentiated 
energy-saving policies according to local conditions given 
that the sectoral EREs are distinct among China’s regions. 
China’s cities vary significantly in terms of resource endow-
ment and infrastructure, and the economic development 
among regions is highly uneven. The effect of environmental 
policies dedicated to improve energy efficiency is bound to 
be affected by regional EREs. Only by analyzing regional 
differences can we identify which region’s environmental 
policies can be more effective and which region’s energy 
efficiency improvement policies need to be accompanied 
by environmental taxes and other policies to achieve bet-
ter energy conservation and emission reduction effects. The 
adoption of locally appropriate and phased environmental 
policies by China’s cities is essential to promote the green 
transformation of urban economies.
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