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Abstract
To integrate the location, inventory, and routing (LIR) problems arising in designing a resilient sustainable perishable food 
supply network (RSPFSN), a bi-objective optimization model is developed. To improve the resiliency and sustainability of 
the RSPFSN, a dynamic pricing strategy is used to cope with the disrupting events, along with minimizing the total cost and 
 CO2 emission of the whole network. One of the important features of the proposed model is taking into account the effects 
of route disruptions and traffic conditions on the deterioration of products. To solve the mixed-integer nonlinear bi-objective 
optimization model, a novel hybrid method is developed using the Heuristic Multi-Choice Goal Programming and Utility 
Function Genetics Algorithm (HMCGP-UFGA). To improve resiliency, the dynamic pricing strategy, considering the traf-
fic condition, can lead to around a 20% improvement in both cost and  CO2 emission, based on the results of our case study 
in a dairy supply chain. Besides, the results of sensitivity analysis display the high flexibility of the proposed approach for 
various problems.
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Introduction

The food supply chain differs from other chains in various 
industries in several ways, one of which is the consider-
able and continual diminishing in the quality of food prod-
ucts through the supply network (Bloemhof and Soysal 
2017). Usually, the freshness of products is not constant 
and decreases over time until the expiration of the product 
(Babazadeh and Sabbaghnia 2018). In 2019–2020, the pan-
demic, caused by COVID-19, bolded the importance and 

susceptibility of the food supply chain against disruptive 
events (Aday and Aday 2020). For instance, dairy farmers 
in American cooperatives considered that 14 million liters 
of milk is being dumped every day due to interrupted supply 
chains. In England, the chair of dairy farmers reported that 
approximately five million liters of milk is at risk in a week. 
Furthermore, it was reported that tea plants are being lost 
because of the logistical challenges in India (BBC 2020).

Designing a perishable food supply network should there-
fore be considered regarding its special features that involve 
a variety of decisions such as locating facilities, finding best 
routes, and balancing the rate of producing, storing, and sell-
ing products. Because of the perishability of food products 
and the operations needed for manufacturing, processing, 
and distributing them, addressing sustainable development, 
i.e., economic, social, and environmental issues, in food sup-
ply chains is unavoidable. Customers, public, and private 
decision-makers are increasingly interested in designing 
sustainable supply chains (Gholizadeh et al. 2020a; Saz-
var and Sepehri 2020; Bhattacharya et al. 2021; De et al. 
2021). Nowadays, customers not only care about how food 
is processed, manufactured, and distributed but also con-
tribute to decreasing the impacts of the food industry on the 
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environment and the health of society (Navazi et al. 2021). 
On the other hand, governors and policymakers have put 
pressure on the food manufacturers and distributors to moni-
tor their social and environmental impacts (Nicholson et al. 
2011).

Another characteristic of food supply chains is the impor-
tance of logistic decisions since the distribution of perish-
able food has a pivotal role in the survival of food companies 
in a competitive market. Therefore, it is indispensable and 
important to manage perishable food transportation through 
the network, besides route management and optimal invest-
ments in marketing. Viewed in this way, limited time win-
dows, high transportation frequency, and traffic congestion 
increase the costs of the system. As well, since the perisha-
ble cargo transportation system highly increases pollution in 
the atmosphere (Zulvia et al. 2020), various factors affecting 
gas emissions, such as the type of vehicles, slope of roads, 
and traffic conditions, should not be ignored. Therefore, the 
redundancy of transporting perishable goods and supplying 
products to promote sustainable development is undeniable.

One major approach to integrating the logistical decisions 
is the location-inventory-routing (LIR) problem which is 
well-noticed in designing supply networks to reduce costs 
and increase competitiveness. Which route and by which 
place the product is selected to be transported to the desti-
nation and how much of the product is stored are crucial to 
reduce costs (Ahmadi-Javid and Seddighi 2012). This prob-
lem is of special importance in the supply chains of perish-
able goods because of the costs of product holding, quality 
loss, and product spoilage in addition to the cost of losing 
sales due to a lack of timely supply (Li and Teng 2018). 
Therefore, the location of the facilities, the distance between 
them, and the transportation system become more important 
for perishable products. Improper selection for distribution 
centers causes problems in the routing of vehicles and trans-
portation as well as the unbalanced workload of distribution 
centers. Given that, inventory costs are directly related to 
the location of the facility, and improper choice of facility 
location increases inventory costs. Delivery time, which is 
the most important factor in the distribution process due to 
the short life of food, is also affected by the decision about 
facility location. Moreover, the ordering time depends on 
various factors such as shipping mode. Different modes of 
transportation involve an inverse relationship between cost 
and time. Considering decisions on location, allocation, 
routing, and inventory management separately leads to sub-
optimization, while integrating these decisions into design-
ing a food supply chain can greatly contribute to reducing 
costs, increasing responsiveness, and improving customer 
service levels (Yavari et al. 2020). More specifically, with 
increasing efficiency in transportation systems, routing and 
inventory decisions are influential. Hence, an integrated 
LIR decision for perishable food products is an inevitable 

necessity. However, previous studies on LIR problems (for 
example, Zheng et al. 2019; Asadi et al. 2018; Karakostas 
et al. 2019) have rarely studied this issue.

The LIR problem will be more difficult if we also con-
sider the fact that supply chains are due to some disruptions 
such as natural disasters, strikes, sanctions, and terrorist 
attacks leading to short-term or long-term loss of sales, 
delays in orders, increased shipping costs, increased con-
sumption of energy, and environmental impacts (Rayat et al. 
2017). To do this, the researchers used flexibility strategies 
to reduce the supply chain’s risk effects, such as additional 
inventory holding, twice allocation, using backup facilities, 
allowing backup capacity reservation, multi-resource provi-
sioning, and facility enrichment (see, for example, Fahimnia 
and Jabbarzadeh 2016; Rezapour et al. 2017; Zahiri et al. 
2017; Jabbarzadeh, et al. 2016a; Yavari and Zaker 2020).

The main goal of this research is examining the mentioned 
key aspects related to perishable food supply chains, such as 
environmental impact, economical aspect, and resiliency, 
along with focusing on essential innovative factors in theory 
and practice, including traffic condition and its effect on per-
ishability. Accordingly, this study presents a mixed-integer 
multi-objective optimization model minimizing the costs and 
environmental impacts of a food supply network inspired from 
real-world conditions. Although social aspect is not embedded 
as an objective function in the proposed optimization model, 
the integrating LIR decisions in the context of traffic-related 
disruptions will include customer satisfaction regarding the 
social dimension. In other words, optimizing environmen-
tal effects, freshness, and costs undoubtedly improve the 
customer satisfaction. On the other hand, pricing of perish-
able products and the longevity of these products have been 
important and effects on the demand function (Zulvia et al. 
2020). Therefore, the present study addresses a multi-period, 
multi-product, multi-level, multi-objective LIR problem by 
considering dynamic pricing and dynamic transportation as 
a resilient strategy to overcome disruptions with related traf-
fic conditions and related time windows. In addition, a novel 
hybrid method is proposed for solving the mixed-integer non-
linear optimization model. The findings of this study will be 
of great use to both scientists and engineers in the realm of 
perishable food supply chain. The general framework of this 
paper is illustrated in Fig. 1.

In summary, major contributions of this research can be 
described as follows:

• Proposing a bi-objective mathematical model for design-
ing a resilient sustainable food supply chain network 
(RSFSCN), respecting perishability.

• This study considers a dynamic pricing strategy with 
related traffic condition and related time window under 
disruptions along with considering the shelf-time of 
products.
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• This study applies a novel efficient hybrid solution 
method based on the Heuristic Multi-Choice Goal Pro-
gramming and Utility Function Genetics Algorithm 
(HMCGP-UFGA).

After reviewing some relevant papers in “Literature 
review,” the optimization model as well as the proposed 
hybrid solution method is presented in “Problem statement.” 
In “Case study,” we present a case study and apply the pro-
posed approach. “Managerial implications” provides manage-
rial implications by a comparative study. Finally, conclusion 
and future research directions can be found in “Conclusions.”

Literature review

Food supply chains are progressively addressed by aca-
demic and industrial drivers involved in managing changes 
caused by various conditions, including extreme weather 
and economic and political conditions (Ivanov et al. 2015; 

Tendall et al. 2015). The impact of strategic level flexibil-
ity on design decisions is therefore identified as one of the 
substantial factors for a food supply network to guarantee 
its resiliency and continuousness (Bourlakis and Weight-
man 2008; Nayeri et al. 2022). In the concept of food sup-
ply chains, controlling the quality of production, inventory 
management, and selecting pricing policy are determined 
as highly important concerns (Buisman et al. 2019). Raafat 
(1991) and Sazvar et al. (2013) reviewed the primary models 
of inventory management considering the deterioration of 
products. Wang et al. (2019) put forth an inventory control 
approach in a two-echelon fresh food network and performed 
different restocking strategies under certain conditions.

One of the striking aspects of a food supply chain dis-
cussion is designing a sustainable food supply network that 
has recently been contemplated by different investigators. 
Costa et al. (2014) addressed a sustainable supply chain of 
perishable vegetables by considering some technical-eco-
logical constraints. They employed a two-stage stochastic 
programming approach to deal with demand uncertainties. 

Fig. 1  The research framework
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Zhang et al. (2019) used a MILP model for a closed-loop 
supply network with consideration of returnable transporta-
tion in a food supply chain to improve sustainable develop-
ment. The primary goal was to raise the total profit of the 
holistic system. Meneghetti and Monti (2015) worked on 
the optimization of automated storage and retrieval (ASR) 
systems of goods requiring refrigerators by using constraint 
programming (CP), and by considering energy consump-
tion and  CO2 emission. Saif and Elhedhli (2016) developed 
a mixed-integer optimization model minimizing costs and 
emissions of an eco-friendly supply chain and applied two 
case studies of perishable goods, including vaccines and 
meat. Biuki et al. (2020) formulated a mixed-integer math-
ematical model for LIR problems to design a sustainable 
supply chain of perishable products with uncertain demand. 
They solved the optimization problem by a hybrid method 
including particle swarm optimization (PSO) and genetic 
algorithm (GA). The important result of their research is 
that improving sustainability dramatically increases costs. 
In another research, a multi-objective linear programming 
model was developed to plan a sustainable agro-food supply 
network (Sazvar et al. 2018). They discovered that the more 
organic products supply chains contain, the more social sat-
isfaction the supply chain encounters. The importance of 
organic food products is also tractable for enhancing the 
environmental efficiency of the supply chain. Recently, De 
and Bhattacharya et al. (2022) studied a pollution-sensitive 
Marxian production inventory model for deteriorating prod-
ucts under uncertain conditions. They applied a pollution 
generation model to calculate the environmental emission 
of a production system. As well, to address the pollution of 
supply chains, Bhattacharya and De (2021a, b) and Bhat-
tacharya et al. (2022) applied a game theoretic approach to 
determine optimal logistics solutions.

Based on the aforementioned papers, logistics and trans-
portation system management play a fundamental role in the 
supply chain management of perishable products due to their 
limited lifetime (Ghorbani and Jokar 2016). Concerning per-
ishable products, several investigators have examined their 
inventory management in a food supply chain (Chen et al. 
2014; Hsieh and Dye 2017; Herbon and Ceder 2018; Li and 
Teng 2018). Likewise, the perishability of goods is a signifi-
cant issue in the LIR problem, which indicates that the qual-
ity of items decreases over time and that they are no longer 
usable once their expiration date has passed. Although lim-
ited papers have addressed LIR problems considering the 
perishability of goods, many scholars integrated inventory 
and routing decisions for perishable products (Soysal et al. 
2018; Indah Saragih et al. 2019; Karakostas et al. 2019; Qiu 
et al. 2019). Rahimi et al. (2017) developed an optimization 
model with some objective functions to cope with the per-
ishability of products in an inventory-routing problem. They 
used GA to attain satisfactory solutions in an acceptable 

time horizon. Hu et al. (2018) integrated inventory and rout-
ing problems regarding perishable products to minimize 
transportation and energy costs. In another research, integra-
tion of inventory and routing problems is addressed regard-
ing the perishability of goods in supply chains to minimize 
inventory costs and green gas emissions (Alkaabneh et al. 
2020). Several heuristic models are employed by Alvarez 
et al. (2020) to solve the inventory-routing (IR) problem for 
decaying goods to find a near-optimal solution in a reason-
able time, especially for large-size problems. The IR prob-
lem in a supply chain of foods was noticed by Li et al. (2018) 
to maximize the average food quality and minimize the total 
cost of production, inventory, and transportation. Among 
the above studies, a few research works have analyzed the 
LIR problem for perishable products. For example, Rafie-
Majd et al. (2018) formulated the LIR problem in a supply 
network of perishable products with three echelons of sup-
pliers, several distribution centers, and retailers. Zhao and 
Ke (2017) analyzed the LIR problem in a waste logistics 
network to minimize the risk and the environmental impacts 
as well as the total cost. Navazi et al. (2021) developed a 
mathematical model for a Closed-Loop Location-Routing-
Inventory Problem (CL-LRIP). They embedded some real-
world conditions in the developed model such as applying 
multi-compartment trucks with simultaneous pickup and 
delivery, and the risk of urban traffic.

On the other hand, many researchers have focused on 
integrating inventory and pricing decisions into supply 
chains. Maihami et al. (2019) addressed the inventory con-
trol and pricing of deteriorating products in a three-echelon 
supply chain by four strategies and developed a heuristic 
method to find the optimal solution. By considering the 
expiration date–based pricing (EDBP) policy, Vahdani and 
Sazvar (2022) examined a coordinated dynamic pricing and 
inventory control problem for a perishable product by con-
sidering social learning.

With contemplating the distribution of perishable food 
supply chain, adopting risk mitigation policies is impor-
tant to confront disruption. Resilient supply chain design 
is therefore an extensively prominent approach to tackling 
disruptive events in supply chains. Resilience can be defined 
as applying a set of strategies to decrease the vulnerability of 
a supply chain. The prevailing policies to mitigate the impact 
of disruption in designing a resilient supply network are as 
follows: (i) holding excess stock (Garcia-Herreros et al. 
2014; Kristianto et al. 2014), (ii) facility fortification (Hasani 
and Khosrojerdi 2016; Jabbarzadeh et al. 2016a), (iii) apply-
ing backup suppliers (Hasani and Khosrojerdi 2016; Madadi 
et al. 2014; Sadghiani et al. 2015), (iv) twice allocation (Cui 
et al. 2010; Zahiri et al. 2017), and (v) multi-sourcing (Azad 
et al. 2014; Hasani and Khosrojerdi 2016). Besides, numer-
ous investigations reveal that varied studies have examined 
diverse resiliency techniques (Nooraie and Parast 2016; 
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Jabbarzadeh et al. 2016b). These studies implied several pro-
active and reactive resiliency policies. Ivanov et al. (2015) 
similarly analyzed various proactive and reactive strategies 
for reconfiguration of the network throughout a dynamic 
and a linear optimization model. Furthermore, a multi-stage 
stochastic optimization model was developed for a generic 
supply network by Fattahi et al. (2017). They concluded that 
reactive strategies besides fortification plans can mitigate 
the lost capacity after disruptive events. Saha et al. (2020) 
evaluated demand substitution and backorder offer to tackle 
supply disturbance.

Finally, dairy supply chains are one of the most impor-
tant perishable supply chains, especially in the recent food 
crisis era, which are the target of this paper. Shafiee et al. 
(2021) proposed a multi-objective model to minimize the 
total costs and environmental impacts and maximize the 
social impacts of a multi-period and multi-product chain 
from the dairy industry, by emphasizing on the delivery 
time and the First-In First-Out (FIFO) warehouse manage-
ment. To solve the proposed model, a hybrid method based 
on a heuristic algorithm and the augmented ε-constraint 
method was developed. Validi et al. (2014) concentrated 
on a dairy distribution network to minimize overall costs 
and  CO2 emissions of a food supply network using GA. 
However, their model has not directly addressed the per-
ishability of goods. Table 1 reviews most related papers 
to the topic of this paper.

Although several studies have explored PFSCN, there are 
still several research gaps in this area. To the best of our 
knowledge, despite the real-world significance of designing 
a sustainable resilient food supply chain considering perish-
ability and dynamic pricing, no study has explored it in the 
PFSCN problem so far. Furthermore, as a major constraint, 
traffic condition–related time windows have rarely been 
addressed in the previous studies.

To fill in these research gaps, in this study, a novel multi-
objective MINLP is suggested to design a resilient sustain-
able PFSCN considering LIR decisions, traffic-related time 
windows, perishability of products, and dynamic pricing 
policy. The proposed model implicitly addresses the social 

aspect of sustainability by enhancing customer satisfaction 
with better pricing and freshness of the products. A real 
dairy supply chain in Iran is selected as a case study to ana-
lyze the results. Based on the literature, some prominent 
features that distinguish this paper from the existing research 
are as follows:

– First, while there is a broad range of studies dedicated 
to the LIR problem, to the best of our knowledge, this 
paper might be the first attempt at analyzing the LIR 
concept for designing RSPFSN with perishable products 
and dynamic pricing policy under disruptions, which is 
highly significant from theoretical and practical view-
points.

– Second, in this research some new considerations such 
as dynamic pricing strategy and traffic-related time win-
dows along with supply chain resiliency and limited 
shelf-time of products are taken into account, inspired 
by the real world, thus contributing to the RSPFSN lit-
erature.

– Third, this research proposes a new hybrid algorithm 
(HMCGP-UFGA) to find optimal solutions especially in 
the case of large-size problems. Applying the proposed 
algorithm for a real case of the dairy industry in Iran 
approves its accuracy and applicability.

Problem statement

As stated in “Introduction,” this study focuses on LIR deci-
sion-making strategies for perishable food supply chains 
under a resilient strategy to reduce disruptions of traffic 
conditions related to time windows under considering the 
longevity of perishable products. It incorporates dynamic 
pricing and transportation policies to minimize costs as well 
as environmental impacts. For this purpose, we consider a 
perishable food supply chain including production centers 
(PCs), distribution centers/warehouses (DCs/W), and retail-
ers. Through this supply network, products are transferred 
from PCs to DCs and from DCs to retailers (see Fig. 2). 

Table 1  Relevant research works

Paper SC Resilience Sustainability Approach Problem

(Shafiee et al. 2021) Dairy SC No Yes Multi-objective robust OPT Inventory and production
(Costa et al. 2014) Vegetable SC No Yes Multi-stage stochastic OPT Network design
(Saif and Elhedhli 2016) Vaccine SC No Yes Mixed-integer OPT LIR
(Jabbarzadeh et al. 2016b) Closed-loop SC Yes No Robust OPT Network design
(Yavari et al. 2020) Food SC Yes No Mixed-integer OPT LIR
(Sazvar et al. 2018) Food SC No Yes Multi-objective OPT Network design
(Jouzdani and Govindan 2021) Dairy SC No Yes Multi-objective OPT Network design
(Talouki et al. 2021) Perishable SC No Yes Robust OPT Transportation
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There are various routes for transferring to retailers. These 
routes are subject to traffic disruption. Each route starts from 
candidate DCs, and after delivering the product to one or 
more retailers, it returns to the candidate DCs. Different 
vehicles with different capacities can be used for transporta-
tion. If an order is received at the start of period (t), it will be 
expired at the start of period (t + LFp ), where LFp represents 
the product’s lifetime.

In this paper, we intend to determine the location of DCs 
and allocate the optimal route according to the traffic distur-
bance related to the time window, optimal inventory levels 
according to the product longevity, and allocation of retailers 
to the DCs, and the DCs to the manufacturer. Finally, we 
want to determine the selling price of perishable products 
according to the product longevity in different scenarios of 
traffic disruption. The major objective of this research is the 
minimization of overall costs and environmental impacts of 
the supply chain.

Optimization model

This section introduces indices, decision variables, param-
eters, and ultimately the proposed optimization model based 
on the assumptions expressed below.

Assumptions

In order to model the considered RSPFSN problem, the fol-
lowing assumptions are considered:

1. According to the literature, the use of refrigerated 
vehicles for transporting perishable products is usual 
(Song and Ko 2016; Jouzdani and Govindan 2021). 
This research also assumes that all types of vehicles are 
equipped with refrigerators.

2. It is necessary to note that the quality of the product will 
be affected when it does not get to its destination on time 
even if the product is transferred with vehicles equipped 
with refrigerators. The reason is that vehicles’ doors get 
opened and closed several times to put or take out prod-

ucts, which alters the temperature of the container, lead-
ing to a decrease in the freshness of products (Song and 
Ko 2016). Therefore, products are perishable even when 
they are in a vehicle equipped with a refrigerator.

3. There are several different perishable products with dif-
ferent lifespans.

4. Similar to Yavari et al. (2020), the amount of demand 
from retailers varies over time, depending on the fresh-
ness and price of the products.

5. Similar to Zulvia et al. (2020), the environmental aspect 
is evaluated by the total amount of  CO2 emitted by trans-
portation, inventory, and production processes.

6. The travel time is not constant and calculated by the 
speed, the distance of trips, and the traffic conditions.

7. Similar to Yavari et al. (2020), this paper considers the 
price function based on the retailers’ price given the 
product longevity.

8. Price-susceptible demand and zonular price function 
entailing the product longevity (day), adapted from 
Adenso-Díaz et al. (2017).

9. The shortage is not allowed.

Proposed mathematical model

Sets and indices:

N  The set of existent routes

R  The set of retailers, r = {1, 2, 3, …, R}

P  The set of products, p = {1, 2, 3, …, P}

T  The set of periods, t = {1, 2, 3, …, T}

V  The set of vehicles, v = {1, 2, 3, …, V}

D  The set of potential locations for DCs, d = {1, 2, 3, …, D}

Fig. 2  The proposed network 
problem
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M  The set of PCs, m = {1, 2, 3, …, M}

Parameters:
Cost parameters ($):

FCmt  Fixed cost of opening PC m at period t

FCdt  Fixed cost of opening DC d at period t

FCdmt  Fixed cost of allocation DC d to PC m at period t

FCrdt  Fixed cost of allocating retailer r to DC d at period 
t

SCmdvt  Shipping cost from PC m to DC d with vehicle v at 
period t

SCdrvt  Shipping cost from DC d to retailer r with vehicle 
v at period t

CHIdt  Cost of holding inventory in DC d at period t

PCpmt  Production cost of product p in PC m at period t

CFvt  Fuel cost of vehicle v by considering traffic condi-
tion at period t

Environmental parameters (ton):

REmt   CO2 emission rate due to opening PC m at period 
t

REdt   CO2 emission rate due to opening DC d at period 
t

REpdt   CO2 emission rate due to holding product p in DC 
d at period t

REpmdvt   CO2 emission rate due to transporting product p 
from PC m to DC d with vehicle v at period t

REpdrvt   CO2 emission rate due to transporting product p 
from DC d to retailer r with vehicle v at period t 
considering traffic condition

REvrt   Rate of  CO2 emission at restarting vehicle v in 
retailer r at period t

REpmt   CO2 emission rate due to producing product p in 
PC m at period t

Other parameters:

MDprt(kg)  Maximum demand of products p in retailer 
r at period t

MSdrvt

(

km

h

)

  The maximum speed allowed with considering 
traffic condition on the existing routes from 
DC d to retailer r with vehicle v at period t

Dsdr(km)  The distance between DC d and retailer r

Cv(kg)  Capacity of vehicle v

CDd (kg)  Capacity of DC d

CPm(kg)  Capacity of PC m

PErpt

(

kg

$

)

  Demand elasticity of retailer r for product 
p at period t

STLrvt(h)  Late service time of retailer r at period t by 
vehicle v

STErvt(h)  Early service time of retailer r at period t 
by vehicle v

LSTrvt(h)  Service time of latest for retailer r at period 
t by vehicle v

ESTrvt(h)  Service time of earliest for retailer r at 
period t by vehicle v

RCFvdrt C(l/h)  Consumption rate of fuel for vehicle v while 
delivering product from DC d to retailer r 
under traffic condition at period t

M  A large number

RVDndt  1 if route n goes to DC d at period t, other-
wise 0

RVRnrt  1 if route n goes to retailer r at period t, 
otherwise 0

LFp (day)  The lifespan of product p

Decision variable:
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SLrvt(h)  Service level of retailer r with vehicle v at 
period t

ATvrt(h)  The time of arriving vehicle v to retailer r at 
period t

DTvrt(h)  The time of leaving vehicle v from retailer r 
at period t

ADrpt(kg)  The actual demand of retailer r for product p 
at period t affected by pricing

Xpdpmdvt(kg)  The amount of product p transported from 
PC m to DC d with vehicle v at period t

Xdrpdrvt(kg)  The amount of product p transported from 
DC d to retailer r with vehicle v at period t

Xppmt(kg)  The amount of product p produced in PC m 
at period t

Ipdt(kg)  The inventory level of product p in DC d at 
period t

SPprt($)  Maximum sale price of product p in retailer 
r at period t

USPprt($)  The sale price of product p in retailer r at 
period t

ILprt(kg)  Inventory level of product p in retailer r at 
period t

ODdt  1 if DC d at period t is opened, otherwise 0

OPmt  1 if PC m at period t is opened, otherwise 0

γrdt  1 if retailer r is allocated to DC d at period t, 
otherwise 0

δdmt  1 if DC d is allocated to PC m at period t, 
otherwise 0

μvnt  1 if vehicle v is selected for route n at period 
t, otherwise 0

Ynvrt  1 if route n is used by vehicle v delivering to 
retailer r starting at period t, otherwise 0

Znt  1 if route n is selected at period t, otherwise 
0

minZ2 =
∑P

p=1

∑M

m=1

∑D

d=1

∑R

r=1

∑V

v=1

∑T

t=1
Dsdr.MSdrvt.

�

REvrt + Xpdpmdvt.REpmdvt + Xdrpdrvt.REpdrvt

�

+
∑P

p=1

∑D

d=1

∑T

t=1
REpdt.Ipdt +

∑M

m=1

∑T

t=1
REmt.OPmt +

∑D

d=1

∑T

t=1
REdt.ODdt

+
∑P

p=1

∑M

m=1

∑T

t=1
REpmt.Xppmt (1)

min Z1 =
∑M

m=1

∑T
t=1 FCmt .OPmt +

∑D
d=1

∑T
t=1 FCdt .ODdt +

∑D
d=1

∑M
m=1

∑T
t=1 FCdmt.�dmt +

∑R
r=1

∑D
d=1

∑T
t=1 FCrdt .�rdt

+
∑P

p=1

∑M
m=1

∑T
t=1 PCpmt .Xppmt +

∑P
p=1

∑D
d=1

∑T
t=1 CHIdt .Ipdt

+
∑P

p=1

∑M
m=1

∑D
d=1

∑V
v=1

∑m∪d
n=1

∑T
t=1 SCmdvt .Xpdpmdvt +

∑P
p=1

∑D
d=1

∑R
r=1

∑V
v=1

∑r∪d
n=1

∑T
t=1 SCdrvt .Xdrpdrvt

+
∑D

d=1

∑R
r=1

∑r∪d
n=1

∑v
v=1

∑T
t=1 Ynvrt .CFvt .RCFvdrt .

�

Dsdr

Msdrvt

�

(2)

Objective functions

Constraints:

(3)Xppmt =

D
∑

d=1

V
∑

v=1

Xpdpmdvt ∀m, p, t

(4)
Ipd(t−1) +

∑M

m=1

∑V

v=1
Xpdpmdvt =

∑V

v=1

∑R

r=1
Xdrpdrvt

+Ipdt∀p, d, t

(5)

∑D

d=1

∑V

v=1
Xdrpdrvt + ILpr(t−1) = ADprt + ILprt ∀p, r, t

(6)
∑P

p=1
Ipdt ≤ CDd.ODdt ∀d, t

(7)
∑P

p=1
Xppmt ≤ CPm.OPmt ∀m, t
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(8)Ipd(t−1) ≤
∑R

r=1

∑t�≤(t+LFp)
t�≥t

ADprt� .�rdt� ∀p, d, t

(9)ILpr(t−1) ≤
∑t�≤(t+LFp)

t�≥t
ADprt� ∀p, r, t

(10)
∑M

m=1
Xppm(t−1) ≤

∑t�≤(t+LFp)
t�≥t

ADprt� ∀p, t

(11)
∑P

p=1

∑M

m=1

∑D

d=1
Xpdpmdvt ≤ Cv.�vnt ∀v, n, t

(12)
∑P

p=1

∑D

d=1

∑R

r=1
Xdrpdrvt ≤ Cv.�vnt ∀v, n, t

(13)
∑P

p=1

∑V

v=1
Xdrpdrvt ≤ M.�rdt ∀r, d, t

(14)
∑P

p=1

∑V

v=1
Xpdpmdvt ≤ M.�dmt ∀m, d, t

(15)�rdt ≤ ODdt ∀r, d, t

(16)�dmt ≤ ODdt ∀d,m, t

(17)�dmt ≤ OPmt ∀d,m, t

(18)
∑D

d=1
�rdt ≤ 1 ∀t, r

(19)
∑M

m=1
�dmt ≤ 1 ∀t, d

(20)ADprt = MDprt − PEprt.USPprt ∀p, r, t

(21)
USPprt =

�

USPpr(t−1) −
SPprt

LFp

�

.

�

1 −
∑D

d=1
�rdt

�

+ SPprt .

�

∑D

d=1
�rdt

�

∀p, r, t

(22)SLrvt ≤
1+0.15

(

DTvrt−ATvrt
Cv

)4

−STLrvt

LSTrvt−STLrvt
∀r, v, t

(23)SLrvt ≥
STErvt−1+0.15

(

DTvrt−ATvrt
Cv

)4

STErvt−ESTrvt

∀r, v, t

(24)
∑r∪d

n=1
Znt.RVRnrt ≤ 1 ∀r, t

(25)Znt ≤
∑D

d=1
RVDndt.ODd ∀n, t

(26)DT
vrt

≤ AT
vrt

+
∑D

d=1

DS
dr

Ms
drvt

.

�

1 + 0.15

�

DT
vrt
−AT

vrt

C
v

�4
�

+M.
�

1 − Y
nvrt

�

∀v, r, t, n

Objective functions:

Equation (1) is the first objective of minimization of the 
total cost including the fixed cost of opening the facility, the 
fixed cost of allocation, the cost of production, the cost of 
holding inventory, the cost of transportation, and the cost of 
vehicle fuel due to the traffic conditions respectively. Equa-
tion (2) shows the second objective function, minimizing the 
total amount of  CO2 emissions, which includes the amount 
of  CO2 emissions depending on traffic conditions and trans-
portation between facilities as well as the amount of  CO2 
emitted through holding products in the DCs, opening facili-
ties, and production processes respectively.

Flow constraints:

Constraints (3) to (5) indicate that the amount of input 
and output of facilities must be equal.

Capacity constraints:

Constraints (6) and (7) indicate the inventory capacity 
constraint at distributers and the production capacity con-
straint of manufacturing respectively. As well, constraints 
(11) and (12) guarantee the capacity of vehicles.

Social constraints:

Constraints (8) to (10) avoid producing and holding 
inventories more than requirements to decrease the amount 
of expired food.

Allocation constraints:

Constraints (13) and (14) ensure that flow is zero between 
unallocated pairs. According to constraints (15) to (17), allo-
cation must be attributed to established facilities. Constraint 
(18) (constraint (19)) ensures that a retailer (distributor) can 
be allocated to a maximum of one distributor (manufacturer).

Pricing constraints:

(27)

DT
vrt

≥ AT
vrt

+
∑D

d=1

DS
dr

Ms
drvt

.

�

1 + 0.15

�

DT
vrt
−AT

vrt

C
v

�4
�

−M.
�

1 − Y
nvrt

�

∀v, r, t,

(28)ATvrt ≥ STLrvt ∀v, r, t

(29)DTvrt ≤ STErvt ∀v, r, t

(30)
∑N

n=1
�vnt ≤ M.Znt ∀n, t

(31)
∑R

r=1
Ynvrt ≤ M.�vnt ∀v, n, t
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Constraints (20) to (21) are inspired by Adenso-Díaz et al. 
(2017) and Afshar-Nadjafi (2016) to demonstrate the per-
formance of price dynamics that depends on the longevity 
of the product as well as the sensitivity of demand to price. 
In general, these constraints indicate the relation among 
demand, price, price dynamics function, and longevity of 
products. On the other hand, constraint (21) indicates the 
dependence of each DC service on retailer demand, which 
occurs when allocation is made.

Time windows constraints:

Constraints (22) to (29) show the level of retailer’s ser-

vice with respect to the t(X) = t0

(

1 + 0.15

(

x

k

)4
)

 in the time 

window where t(X) is the logit function, t0 is the beginning 
travel time, k is the capacity of vehicles, and x is the travel time 
(Zulvia et al. 2020). These constraints indicate the service level 
at arrival and departure time based on traffic conditions, 
expressing the best service level to retailers at the time of the 
first service and the time of the last service because of random-
ness in service time. Constraints (26) and (27) calculate the 
time for each node to get the vehicle that will carry products 
along the road, with the traveled distance of routes determined 
by the vehicle’s speed. Upper bounds and lower bounds of time 
windows, specifying the service level provided by the retailer, 
are known as constraints (28) and (29) respectively.

Linearization

The model developed above is categorized as a mixed-inte-
ger nonlinear optimization (MINLO) model due to some 
nonlinear expressions such as constraints (8), (21), (22), 
(23), (26), and (27). The linear equivalents of the last four 
constraints cannot be formulated. However, there are various 
methods in the literature to turn constraints (8) and (21) into 
linear ones. For example, Eq. (32) shows the linearization 
techniques used by several researchers such as Gholizadeh 
et al. (2020a). To address a nonlinear term in the form of 

X1 ∗ X2 where X1 is a binary variable and X2 is a continuous 
variable, we can use variable Z = X1 ∗ X2. When X1 is equal 
to 1, then Z = X2. Otherwise, Z = 0. Hence, the inequalities 
(32) need to be added to the model.

Solution method

In this section, we will introduce the solution methods used 
in this article. As mentioned in the previous sections, this 
paper employed a new hybrid method based on HGAMCGP-
UF. The multi-choice goal programming with utility func-
tion (MCGP-UF) has been used to change the multi-objec-
tive model into a single-objective model. On the other hand, 
due to the complexity of the problem, a GA and a heuristic 
method have been used. According to the recent literature, 
some researchers have combined various types of goal pro-
gramming with GA (e.g., Moradgholi et al. 2016). But the 
most main difference of the proposed method in this paper is 
the combination of the heuristic algorithm with MCGP-UF 
and the GA. We first combine the heuristic method with the 
MCGP-UF and then incorporate it into the GA.

MCGP‑UF

Goal programming (GP) is a prevailing approach for solv-
ing multi-objective models. There are different versions of 
GP such as weighted GP, Multi-Choice GP (MCGP), Meta 
GP, and MCGP with Utility Function (MCGP-UF). In this 
paper, the MCGP-UF method, introduced by Chang (2011), 
is applied to develop a solution approach for the proposed 
model. The main advantage of this method over the other 
versions of GP is incorporating experts’ opinions on the 
problem (Jadidi et al. 2015). The corresponding formula-
tion is as follows (Chang 2011):

(32)
Z ≤ X2

Z ≤ MX1

Z ≥ X2 −M.
(

1 − X1

)

(33)

MCGP-UF to solve the SR-SCND model

Model constraints set
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In the above model, Uk, max and Uk, min represent the 
upper and lower bounds of the kth objective aspiration level, 
respectively. yk is a continuous variable where d+

k
 and d−

k
 

are the positive and negative deviations of fk(X) from yk. λk 
shows utility values and �−

k
 shows the normalized deviation 

of yk from Uk, min. It should be noted that the model can be 
normalized as follows (if needed):

In the above equation, for the minimization objective 
functions, f +

k
=
{

min fk(X)
}

 and f −
k
=
{

max fk(X)
}

.�−
k

 do 
not need to be normalized because 0 ≤ �−

k
≤ 1;∀k.

Heuristic method

Besides the MCGP-UF method, we provide a heuristic method 
for the proposed model to decrease computations significantly. 
The heuristic algorithm is based on relaxing binary variables. 
The steps of the heuristic method are as follows:

1. The constraints with binary variables must be relaxed. 
We assume the binary variables related to allocating and 
opening facilities (for example, ODdt, OPmt, γrdt, δdmt, 
μvnt) are non-negative variables so that the new formula-
tion is a relaxation.

2. Solve the relaxation to optimality.
3. Record all non-zero quantities of the relaxed variables 

obtained from relaxed model results.
4. Set each strictly positive value of the relaxed variables 

to 1, and add them as constraints to the main model.
5. Solve to optimality.

GA

Considering the reported efficiency of GAs for a wide range 
of complex decision problems (Gholizadeh et al. 2020b), this 
study will adopt a customized GA as a solution approach. The 
first step in solving a problem with metaheuristic methods 
is to create an appropriate structure for potential solutions 
to the problem which randomly generates a set of practical 
solutions (population) and calculates the fitness function for 
each chromosome. Then, to improve the initial population, a 
new population is generated, using crossover and mutation 
operators. In selecting chromosomes, the proposed GA is using 
the method roulette wheel according to the proportionality of 
each chromosome with the objective function (fitness function).

Since each chromosome must have information about the 
routing, the retailers assigned to the DCs and the location of 
the DCs, as well as the allocation of the means of transport 
to the DCs, and retailers at each period, Fig. 3 shows an 
example of a chromosome string for 6 retailers, 3 DCs, 4 

(34)Min
∑

k

[

wd
k
.

(

d+
k
+ d−

k

f −
k
− f +

k

)

+ w
�

k
.
(

�−
k

)

]

vehicles with different capacities, and 2 periods. As you can 
see, each chromosome is divided into 3 parts.

The first part shows the location of DCs and allocation 
decisions in each period. The second part shows the location 
of retailers and allocation decisions in each period. Finally, the 
third part deals with the allocation decisions for the vehicle to 
the DCs and retailers, which takes the optimal route. In the 
first part, each gene is related to the candidate location of DCs 
in a relevant period, and the value of the gene in this part is 
the number of retailers assigned to DCs in a specific period. 
For example, in period 1, DC 1 serves retailers 1, 2, and 3, 
or in the same period, DC 3 serves retailer 6. A value of zero 
means that in this period, no retailer is assigned to the DC. In 
the second part, the value of each gene is the place related to 
allocating DCs to retailers in order to prioritize routing. For 
example, in period 2, DC 3 serves to 5 retailers. According to 
the order route D3-4-6-2-5-3-D3, it is necessary to select the 
vehicle considering its capacity, which is described in the third 
part. The third part has two sections. The first one is allocating 
the vehicle to the DCs which are randomly assigned to each 
gene. Here, each idle vehicle is shown with zero. But in the 
second section, the allocation of the vehicle to the retailers for 
optimal routing is shown with the number of genes equal to 
the total number of retailers and the vehicle. In the first step, 
the number of genes is selected from the number of vehicles 
randomly, and then, the number of genes is selected from the 
number of retailers and the remaining vehicles and assigned.

Crossover In the world of evolutionary algorithms, the 
crossover operator improves the explorative behavior of the 
algorithm. From the proposed GA, the first step, we used 
here is single-point crossover. In the second step, a pair of 
preferred chromosomes randomly selected from sets consists 
of DCs and retailers for each string. Finally, the boundary 
points between each period in the second step help the child 
to practically inherit all the genes from the parents to the 
crossover point. Figure 4 shows an example of a crossover 
operator.

Mutation The mutation operator generally does an exploit-
ative behavior to find a new neighbor of a solution. This 
is very important because it prevents the algorithm from 
staying in a local optimal solution, and, on the other hand, 
causes randomly searching in the solution space. If a gene 
can be any binary string, it can be easily mutated by a simple 
rule. However, if it needs to belong to a set, it can be mutated 
by choosing another chromosome from the set randomly. 
Alternately, a part of it can be mutated by choosing another 
element of that set. In this study, the mutation is applied to 
the third part of a chromosome, i.e., the allocation of the 
vehicle to DCs and retailers. Based on the period, if the 
chromosome is forced to allocate more DCs, Find your way 
in such a way that the optimal solution is available in the 
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order of the retailers in another period. Figure 5 shows an 
example of a mutation operator.

Parameter setting

Here, we will discuss about the parameter’s value of the pro-
posed solution approach. Since incorrect adjustment causes 
inefficient behavior of the algorithm, the Taguchi technique 

is used to adjust the parameters (Fakhrzad et al. 2019; Rao 
et al. 2020). In this study, three levels for the algorithm 
parameters are considered and presented in Table 2.

To select the best level of parameters, “the larger 
value is better” is used to rank GA’s parameters with 
respect to the signal-to-noise (S/N) ratio (Naderi 
et al. 2011). Figure 6 presents the S/N graphs for the 
experiments.

Fig. 4  Crossover operator T1 T2 T1 T2

Parent 1
3 2 1 0 1 5 3 2 4 6 1 5 1 5 6 2 4 3

Parent 2
2 3 1 3 0 3 4 5 2 3 6 1 3 4 1 6 2 5

Child 1
3 2 1 0 1 5 3 2 4 6 6 1 3 4 1 6 2 5

Duplicate

Parent 1
3 2 1 0 1 5 3 2 4 6 1 5 1 5 6 2 4 3

Parent 2
2 3 1 3 0 3 4 5 2 3 6 1 3 4 1 6 2 5

Child 2
3 2 1 0 1 5 3 2 4 6 1 5 3 4 1 6 2 5

Fig. 3  Chromosome representa-
tion

Periods Distribution centers (warehouses) Retailers Vehicles

T1 T2 D1 D2 D3 R1 R2 R3 R4 R5 R6 V1 V2 V3 V4

T1 T2 T1 T2

3 2 1 0 1 5 3 2 4 6 5 1 1 4 6 2 5 3

1 3 0 0 0 1 7 1 0 3 0 8 0 2 0 6 10 4

0 0 1 0 2 0 10 0 4 2 0 1 1 0 3 9 7 0

0 1 0 3 0 1 5 9 3 1 6 4 0 0 0 8 2 10

2 0 0 0 1 0 0 2 10 0 4 5 3 7 1 0 0 0
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The optimal level of each parameter of the algorithm is 
reported in Table 3.

Case study

Here, we conduct a case study to answer “how” and “why” 
questions in a real context to evaluate the proposed model 
and the impact of perishable food supply chain design 
parameters. As the consumption of dairy products is increas-
ing rapidly, it is expected that the demand and production 
of these products will increase in the future, thus creating 
investment opportunities for organizations to design efficient 
chains. Therefore, to help the different stages of the study, 
including valuing the parameters, analyzing the results, and 
evaluating the objectives, in this study, we examine Kalleh 
Dairy which is an Iranian dairy, food, and drink company 

headquartered in Amol, Iran. Kalleh Industrial Dairy Group 
(KIDG) is a well-known dairy product producer in Iran. In 
line with KIDG’s development strategies and compliance 
with government regulations, KIDG seeks to improve its 
supply chain. Due to the geographical location of KIDG and 
due to the high volume of distribution of products in each 
city in the region, there is a potential place to establish DCs 
which serve one or more retailers.

In general, most parameters are collected from experts, 
documents, and databases of KIDG. It is also assumed that 
different vehicles, for example, heavy pickup, light truck, 
heavy truck, and trailer, are used to transport products. On 
the other hand, products in different packages have different 
lifespans, for example, milk products in plastic bags con-
taining pasteurized milk, which is more sensitive to trans-
portation and traffic conditions, and also have a lower price 
with a shorter lifespan and higher demand. On the other 

Fig. 5  Mutation operator T1 T2 T1 T2

Parent 1
3 2 1 0 1 5 3 2 4 6 1 5 1 5 6 2 4 3

3 0 1 3 0 1 0 2 0 1 3 0 1 2 0 0 1 2

Child 1
3 2 1 0 1 5 3 2 4 6 1 5 3 2 4 6 1 5

3 0 1 3 0 1 0 2 0 1 3 0 0 2 0 1 3 0

Table 2  Values of parameters for various levels

Algorithm Parameter Level 1 Level 2 Level 3

GA Crossover probability 0.6 0.7 0.8
Mutation probability 0.1 0.2 0.3
Population size 100 170 250
Maximum of iteration 150 250 350

Fig. 6  Mean S/N ratio at each 
level for GA

Table 3  Optimal values of the proposed algorithm parameters

Algorithm Parameter Best level Value

GA Crossover probability 3 0.8
Mutation probability 1 0.1
Population size 1 100
Maximum of iteration 1 150
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hand, milk products come in aseptic packages with a longer 
lifespan, lower sensitivity, and higher prices, resulting in 
lower demand. To show the reliability of the proposed model 
and the proposed algorithm, we first examine the problem 
in several different test problems in terms of the value of 
objectives, solution time, and the amount of deviation. This 
analysis for the suggested optimization model is imple-
mented in the MATLAB 2013 software and GAMS 2017 
software with solver BARON. All program runs are made 
on a PC with Intel(R) Core (TM) i5-5200U CPU @ 2.20 
GHz under Windows 10. Due to company policies, it was not 
possible to extract information from it. Therefore, according 
to the behavior of KIDG data, we use a random distribution 
approximated according to real data of KIDG to implement 
the proposed approach. Table 4 shows generating real data 
according to the behavior of KIDG data.

Validation of the proposed model

In this section, 15 test problems are set to evaluate the per-
formance of the model. Figure 7 and Table 5 illustrate that 
the proposed method can achieve optimal or near to optimal 
solutions at the best MCGP-UF time and the time of both 
methods is growing at roughly the same rate by increasing 
the dimension. The problem escalates to the point that for 
problems 12 to 15, the MCGP-UF cannot provide an optimal 
solution in 15,000 s. Figure 7 compares the CPU time of the 
HMCGP-UFGA with the exact method. From Fig. 7, by 
increasing the problem size, the CPU time of the MCGP-UF 
grows exponentially. However, the performance of the 
HMCGP-UFGA is reasonable in terms of CPU time. Fig-
ure 8 shows the gap of the solution obtained by the HMCGP-
UFGA for each objective. The term Hybridsol−MCGP−UFsol

MCGP−UFsol
× 100 is 

applied to compute the gap where  Hybridsol denotes the solu-
tion obtained by the hybrid method and MCGP −  UFsol is the 
solution obtained by MCGP-UF. It should also be noted that 
for the MCGP-UF model, the weight of each objective 

function is considered w1 = 0.6, w2 = 0.4 according to expert 
opinions.

Based on the results, the average gap between the 
HMCGP-UFGA and MCGP-UF is 2.46%. The optimiza-
tion gaps obtained for all instances show an admissible range 
(less than 5%) and the HMCGP-UFGA reduces the solu-
tion time by at least 8% in comparison with the MCGP-UF, 
bringing up that the former outperforms when used for large-
scale problems. This indicates the good performance of the 
proposed algorithm.

Also, for this case study, four major products, namely 
milk, yogurt, cheese, and butter, are considered. On the other 
hand, the number of DCs, PCs, and retailers’ outlets is shown 
in Fig. 9. Keep in mind that the demands and market sizes are 
almost the same for each location and its covered area.

Considering the weight of each objective func-
tion w1 = 0.6, w2 = 0.4, the value for the two objectives is cal-
culated as 27,154,556,785.36 and 16253670.19. Obtained in 
the optimal solution, four DCs (Gorgan, Borujerd, Zahedan, 

Table 4  Generate real data according to behavior KIDG data

Parameter Corresponding random distribution Parameter Corresponding random distribution Parameter Corresponding ran-
dom distribution

FCmt Uniform (550000, 2350000) MDprt Uniform (2000, 148000) RCFvdrt Uniform (100, 650)
FCdt Uniform (400000, 1500000) CPm Uniform (5000, 150000) REmt Uniform (1000, 6000)
FCdmt Uniform (10000, 96000) CDd Uniform (1000, 180000) REdt Uniform (800, 5500)
FCrdt Uniform (9500, 85450) Cv Uniform (5000, 100000) REpdt Uniform (300, 3000)
SCmdt Uniform (1500, 7500) PErt Uniform (0, 0.5) REpmdvt Uniform (750, 8000)
SCdrt Uniform (2700, 50000) STLrvt Uniform (50, 150) REpdrvt Uniform (750, 15000)
CHIdt Uniform (150, 980) STErvt Uniform (30, 120) REvrt Uniform (500, 2500)
PCpmt Uniform (105, 780) LSTrvt Uniform (20, 100) REpmt Uniform (1500, 7000)
CFvt Uniform (100, 850) ESTrvt Uniform (150, 350) LFp Uniform (1, 5)
MSdrvt Uniform (20, 650) Dsdr Uniform (20, 850) M 10000000

Fig. 7  CPU time of the HMCGP-UFGA against MCGP-UF for differ-
ent problem sizes
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and Kerman) and two PCs (Hamedan and South Khorasan) 
have been opened (see Fig. 10).

According to the proposed algorithm, the optimal route 
considering the traffic is in Fig. 11. We have shown the opti-
mal route for a candidate DC (Borujerd) in periods T1 and 
T2 (under traffic) (Fig. 11b), and periods T3 and T4 (with-
out traffic) (Fig. 11a). The numbers in Fig. 11 indicate the 
amount of product delivered by different types of vehicles. 
Figure 11b indicates an alternative route and that by add-
ing a vehicle, the amount of product delivered to retailers 
has a larger share than the traffic-free mode. For example, 
according to this figure, in period 1 (T1), the light truck has 
transferred 45368-unit milk, 2451-unit yogurt, and 91345-
unit butter.

As mentioned earlier, dynamic pricing and demand man-
agement strategies along with dynamic transportation are 

considered to deal with perishable food supply chain disrup-
tion. Based on this, the pricing system is examined in differ-
ent modes. In the first mode, the selling price of products is 
fixed and the demand depends on the price of the product. 
In the second mode, the selling price of the products varies 
according to the traffic conditions. Finally, in the third mode, 
the selling price of the products, besides the traffic condi-
tions, also depends on the product’s longevity and expiration 
date of the product. According to Table 6, as you can see in 
the no-traffic mode, the adoption of dynamic pricing (the 
third mode) has resulted in an approximate 13% and 8% 
improvement for the objective functions of total cost and 
 CO2 emission, compared to the first modes. But in traffic 
conditions, the adoption of dynamic pricing (the third mode) 
results in 27% and 18% improvement in the total cost and 
 CO2 emission respectively.

Fig. 8  Gaps in objective func-
tions values obtained from the 
HMCGP-UFGA and MCGP-UF 
for different problem sizes

Fig. 9  Locations of different 
facilities of KIDG

PCs

DCs(w)

Retailers
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(b) with considering traffice condition (a) without considering traffice condition
1 vehicle’s trip =ID-11-12-10-9-8-13-ID 1 vehicle’s trip =ID-11-12-10-9-8-7-13-ID

2 vehicle’s trip =ID-1-4-6-7-5-ID 2 vehicle’s trip =ID-1-4-6-5-3-2-ID

3 vehicle’s trip =ID-2-3-ID

Optimal flow of products

period T1 T2

Vehicle 
Type / 

Product

heavy 

pickup
light truck

heavy 

truck

heavy 

pickup
light truck

milk 87321 45368 - 78245 -

yogurt 32142 2451 14735 - 45856

cheese 5515 - 102125 - 123400

butter 66314 91345 - 91454 -

Optimal flow of products

period T3 T4

Vehicle 
Type / 

Product

heavy 

pickup

light 

truck

heavy 

truck

heavy 

pickup

light 

truck

milk 75314 32147 - 21435 9754

yogurt 15247 - - 6471 10110

cheese - 62140 - 18951 2147

butter 23451 8957 - 4786 10102

Fig. 11  Optimal routes for transferring products

Fig. 10  Locations of candidate 
DCs and PCs of KIDG

PCs

DCs(w)

Retailers

Candidate PCs

Candidate 
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Sensitivity analysis

Here, the effect of some important parameters of the pro-
posed model on the solution is investigated. Thus, the prob-
lem is solved with various values for the related parameters 
and the results are analyzed.

The effect of price elasticity on the problem

This section is devoted to investigating the effect of price 
elasticity on different pricing strategies. To do this, we 
solve the problem for different values of the price elasticity 
(−20%, −10%, −5%, +5%, +10%, and +20%). The results of 
sensitivity analysis are exhibited in Tables 7 and 8. Accord-
ing to the results obtained in Tables 7 and 8, the pricing 
strategy in modes 1 and 3, when the PErt values are respec-
tively smaller or greater than the values  PErt = 0.095,0.110, 
0.087, 0.090, 0.105, and 0.125 , improves the objectives 
of the problem. As shown in Tables 7 and 8, if the other 
problem parameters are constant and the PErt changes, for 
markets that are more sensitive to higher prices, it shows 
the increasing trend of cost and the environmental effects 
in mode 3 under disruption. On the other hand, by reducing 
the value of the PErt, mode 3 will improve the objective 
functions. As a result, by choosing a mode 3 pricing policy 
for markets with PErt changes of −5%, it will have a 21% 
improvement in cost performance and a 15 improvement 
in environmental performance compared to mode 1, while 
the choice of the pricing policy of mode 3 for markets with 
PErt changes of +5% has approximately 21% improvement 

in cost performance and 15% for the improvement of envi-
ronmental performance compared to mode 1.

The impact of product longevity on objective functions

This section is exploring the effect of product longevity on 
the solution. Thus, the problem is solved for various val-
ues of the mentioned parameters. The results of sensitiv-
ity analysis are exhibited in Figs. 12 and 13. As shown in 
Fig. 12, by increasing product longevity, the total cost and 
the environmental impacts are decreased, too. Also, based 
on the obtained results, adopting the third mode policy leads 
to reducing the total costs of the logistics system compared 
with the other pricing strategies for different values of the 
lifetime parameter. On the other side, Fig. 13 shows that 
increasing the shelf-time results in decreasing the  CO2 emis-
sions. It should be noted that in terms of environmental 
impact, again the third mode strategy has fewer emissions.

The impact of product demand on objective functions

Figure 14 exhibits the results of sensitivity analysis of the 
demand parameter. Based on this figure, increasing the 
demand parameter leads to increasing both objective func-
tions. In this regard, a 30% decrease (increase) from the 
primary case results in a 20% (22%) decrease (increase) in 
the first objective function. Alternatively, a 30% decrease 
in demand leads to a 20% decrease in the second objec-
tive function while a 30% growth in demand leads to a 25% 
growth in the second objective function.

Table 6  Comparison of different pricing strategies on objectives objective functions

Pricing strate-
gies

Scenario Minimization Total 
cost

Mean total cost Standard devia-
tion

Minimization 
 CO2 emission

Mean  CO2 
emission

Standard 
deviation

Mode 1 Without traffic 28,481,789,407.03 27,391,113,288.13 6,529,588,853.30 17,140,855.62 16,707,285.76 3,699,709.07
With traffic 34,486,287,117.41 19,179,330.82

Mode 2 Without traffic 28,985,891,874.41 28,806,871,557.38 6,928,778,353.86 17,458,278.87 17,002,834.23 3,982,740.89
With traffic 35,029,378,253.11 19,504,404.23

Mode 3 Without traffic 25,205,123,369.05 26,179,840,077.21 5,696,567,436.69 15,871,162.61 14,938,047.25 3,592,976.70
With traffic 27,154,556,785.36 16,253,670.19

Table 7  The impact of price elasticity on the total cost objective ($)

Pricing policy +20% +10% +5% −5% −10% −20%

Mode 1 Without traffic 23905477894 25704814940 27057699937 28140007934 30391208569 33734241511
With traffic 28945202935 31123874123 32761972762 34072451672 36798247806 40846055064

Mode 2 Without traffic 24328583697 26159767417 27536597281 28638061172 30929106066 34331307733
With traffic 29401032902 31614013873 33277909340 34609025714 37377747771 41489300026

Mode 3 Without traffic 21155290172 22747623841 23944867201 24902661889 26894874840 29853311072
With traffic 22791498374 24506987499 25796828946 26828702104 28974998272 32162248082
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The impact of weights of the objective functions

This section is dedicated to investigating the effect of the 
weight of the objective functions on the solution. Thus, the 
problem is solved with different values for the weight of the 
objective functions, and the results are depicted in Table 9. 
Based on Table 9, when the weight of the first objective 
function is decreased from 0.8 to 0.2, the value of this func-
tion is increased by about 7.30%. However, by raising the 
weight of the second objective function from 0.2 to 0.8, the 
value of this function decreased about 13.53%. In general, 
based on Table 9, by increasing the weights of each objective 
function, the value of that function is improved.

Managerial implications

A manager’s tasks include setting objectives, identifying a 
path to achieve them, and making strategic, tactical, and 
operational decisions. To keep this promise, it is critical to 
supply managerial insights, and in this section, we provide 
some of the useful insights from the proposed PFSCN.

• First of all, this research provides a benchmark model for 
PFSCN managers to successfully implement and manage 
LIR decisions under disruption and meanwhile address 
sustainable goals in the dairy industry. Many require-
ments of PFSCN problems were ignored or addressed 
partially in the literature, such as environmental, multi-
product, multi-period, and multi-level effects. Theoreti-
cally, in this study, considering the resiliency aspects 
helps to determine the best strategies to cope with dis-
ruptions in a PFSCN. This study also directly addresses 
integrated approaches from several different perspectives 
by designing the PFSCN with pricing policies and LIR 
issues under disruption. To clarify, unlike other mod-
els, the impact of traffic conditions related to the time 
window has been considered to increase customer sat-
isfaction in our study. Also, different pricing strategies 
have been discussed. According to the obtained results 
of the “Case study” section, the proposed approach helps 
PFSCN managers to make valuable decisions to manage 
demand under disruptions.

• According to the results of Tables 6 and 7, after examin-
ing the markets of their products, managers can achieve 

Fig. 12  Sensitivity analysis of 
the first objective function over 
the longevity parameter
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Table 8  The effect of price elasticity on the environmental impact objective (t)

Pricing policy +20% +10% +5% −5% −10% −20%

Mode 1 Without traffic 14386748.64 15469622.2 16283812.84 16935165.35 18289978.58 20301876.22
With traffic 16097691.84 17309346.07 18220364.28 18949178.85 20465113.16 22716275.61

Mode 2 Without traffic 14653169.91 15756096.68 16585364.93 17248779.52 18628681.89 20677836.89
With traffic 16370534.08 17602724.82 18529184.02 19270351.38 20811979.49 23101297.23

Mode 3 Without traffic 13321063.56 14323724.26 15077604.48 15680708.66 16935165.35 18798033.54
With traffic 13642111.73 14668937.35 15440986.68 16058626.15 17343316.24 19251081.03
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the best policy to reduce costs. Thus, profitability can 
be increased by categorizing the market into less price 
elasticity and more price elasticity, to properly manage 
demands during disorder.

• As discussed in the theoretical section, the model’s 
results favor the organization in two ways. Using a 
dynamic pricing policy, economic costs have decreased 
by 13%, and  CO2 emission has decreased by 8% without 
traffic conditions. Moreover, a dynamic pricing policy 
causes economic costs to decrease by 27% and  CO2 emis-

sions to decrease by 18% with traffic conditions. None-
theless, considering Iran’s developing economy, environ-
mental responsibility may often be ignored, although it 
is a critical concern in the business world. Therefore, 
choosing a suitable pricing policy, sales planning pro-
cess, and demand management can be a good lever for 
food supply chain resilience.

• According to Figs. 12 and 13, the pricing policy is shifted 
to periods with less probability of disruption in the event 
of potential disruptions to meet customer demand. This 

Fig. 13  Sensitivity analysis of 
the second objective function 
over the longevity parameter
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the demand parameter
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is fine if the demands of subsequent courses are met at 
a lower price. As a result, inventory levels in DCs and 
retailers are limited by increasing product longevity. 
However, adopting a dynamic pricing policy reduces 
costs and carbon emissions by increasing product lon-
gevity expectancy. On the other hand, by reducing prod-
uct longevity, more costs will be imposed on the chain. 
However, perishable and price dynamics have been suf-
ficiently recorded. As a result, the inventory policy at the 
strategic level increases product longevity, causing manu-
facturers to compete fiercely in designing their PFSCN.

Conclusions

This study presented a multi-objective mixed-integer opti-
mization formulation to design a perishable food supply 
chain for the LIR problem under disruption, which aimed 
to minimize the total cost and environmental impact in a 
real dairy industry case. According to the recent literature 
review, the issue of LIR in the design of supply chains for 
perishable food should be examined carefully. To the best 
of our knowledge, this article is among the first research 
work that addresses a multi-period, multi-product, multi-
level, multi-objective LIR problem. Additionally, dynamic 
pricing and transportation are considered resilient strate-
gies to reduce the effects of disruptions with related traffic 
conditions. On the other hand, several characteristics such 
as fuel consumption, traffic effects, different capacities for 
vehicles, and the speed of vehicles under traffic were consid-
ered to analyze environmental and economic impacts. Since 
the traffic-related time window was defined for DCs serv-
ing retailers, the level of satisfaction of retailers was also 
considered. A seldom-noticed characteristic, which is stud-
ied in this research, is the consideration of several planning 
periods and the introduction of dynamic pricing strategies 
taking into account product life and traffic disturbances in 
the calculations. Besides, a new HMCGP-UFGA algorithm 
is proposed to solve the LIR problem for the perishable food 
supply chain. Based on the results, the proposed method 

HMCGP-UFGA has an efficient and effective effect on the 
quality of solution and solution time in large-size problems. 
On the other hand, the results of sensitivity analysis showed 
that the dynamic pricing strategy had a greater impact on 
the objectives of the problem than other strategies and 
can improve the objectives with or without traffic disrup-
tions. Also, increasing the life of products, by, for example, 
efficient packaging, has reduced costs and environmental 
effects. However, it is worth to mentioning that the effect of 
a good dynamic pricing policy has been more than increas-
ing the life of the product.

Limitations

The limitations of this research are summarized as follows:

1- It is assumed that all input parameters are deterministic 
and available. However, some parameters have some 
uncertainties, such as demand, in the real world.

2- The numerical results are attained by applying the pro-
posed model to a case study of the dairy industry in 
Iran. More studies and practical implementations of the 
proposed model can lead to more solid results.

3- We use a heuristic approach to provide near-optimal 
solutions in a reasonable time. However, optimal solu-
tions of the proposed model are more favorable than 
those provided by the heuristic approach; the existing 
commercial solvers have some technical limitations to 
solve the large-scale sample of this NP-complete prob-
lem in a reasonable time.

Directions for future research

Given the limitations of this research, researchers can 
expand this research in several ways. Since the situation in 
the real world is always accompanied by uncertainty, this 
study can be made more realistic under the uncertainties in 
the data of real-world problems. On the other hand, using 
approaches in this study to design a closed-loop food supply 
chain can more comprehensively examine the environmental 

Table 9  The effect of changing 
the objective function’s 
importance

Problem w1 w2 Z1 Percentage of 
change (Z1)

Z2 Percentage of 
change (Z1)

1 1 0 27154556785 0.00% 17306908.02 0.00%
2 0.8 0.2 27154556785 0.00% 17306908.02 0.00%
3 0.6 0.4 28066949893 3.36% 16253670.19 −6.48%
4 0.5 0.5 29009999409 3.36% 16253670.19 −6.48%
5 0.4 0.6 30620054377 5.55% 14753456.43 −9.23%
6 0.2 0.8 32855318346 7.30% 12757313.78 −13.53%
7 0 1 35253756585 7.30% 12757313.78 −13.53%
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and cost effects. Additionally, one of the intriguing subjects 
for future research might be a full comparison of the per-
formance of the proposed HMCGP-UFGA with other algo-
rithms in the literature on solution time and solution quality.
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