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Abstract
As a class I carcinogen, arsenic has been reported to cause diseases accompanied by circRNAs regulating proliferation and 
apoptosis at the molecular level, but whether circP50 (circBase ID: hsa_circ_0008012) does the same has not been demon-
strated. The aim of this study is to provide the basis for anti-lung cancer mechanism research, by studying the expression of 
circP50 under arsenic-induced conditions, and the effect and mechanism on the proliferation and apoptosis of A549 cells 
based on the circP50 knockdown models. To explore whether the circP50 is responsive to arsenic exposure, the qRT-PCR 
was applied to discover that the relative expression of circP50 in A549 cells increased only with increasing  NaAsO2 dose and 
independent of its metabolites. We further determined the mechanism of circP50 by establishing circP50 knockdown mod-
els. The results of cell viability and EdU assays indicated the proliferation of A549 cells. According to the western blotting, 
phosphorylation of p53 at Ser15, Ser376, and Ser392 and acetylation of p53 at Lys370 and Lys382 were inhibited, resulting 
in the deficiency of p53 expression. Subsequently, the expression of genes downstream of p53 was reduced, including p21, 
PUMA, Caspase3, and Bcl-xS. Furthermore, the expressions of IKB-α, p65, and p50 decreased, but C-myc expression did 
not change significantly, referring to the NF-κB pathway was not dominant. The results suggest that circP50 mainly functions 
through the p53 pathway to mediate apoptosis in response to arsenic exposure.
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Introduction

Arsenic is present in the form of inorganic arsenic in nature 
and usually accumulates in various forms after oxidation. 
Inorganic arsenic can convert into monomethylarsenic acid 
(MMA) and dimethylarsenic acid (DMA) by methylation 
metabolism in the human body and excrete through the 

kidney (Bozack et al. 2018). Arsenic exposure diseases are 
typical biogeochemical diseases. According to statistics, 
about 6 to 10 million people worldwide are exposed to high 
arsenic levels (Rahman et al. 2019). Long-term exposure to 
arsenic enhances the risk of lung, liver, kidney, skin, and 
bladder cancer (Chen and Costa 2021; Ferragut Cardoso 
et al. 2020; Islam and Takeyama 2021). Arsenic has been 
classified as a class I carcinogen, but its carcinogenic mecha-
nism has not been elucidated.

Some scholars propose that arsenic may induce tumori-
genesis and development by participating in cell prolifera-
tion, apoptosis, oxidative stress, DNA damage, and chro-
mosomal aberrations (Mar Wai et al. 2019; Medda et al. 
2021; Wang et al. 2020; Wu et al. 2019; Zang et al. 2020). 
As an essential tumor suppressor regulatory gene, the p53 
regulatory network is closely related to the known mech-
anisms of arsenic toxicity. The p53 is subject to complex 
regulation, and it is currently accepted that post-translational 
modifications of p53 play significant roles in the regulation 
of its activity, including phosphorylation and acetylation 
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modifications and so on (Chen et al. 2020). It has been 
shown that sodium arsenite  (NaAsO2) can activate p53 phos-
phorylation and acetylation through PUMA overexpression 
and enhance p53 activity, thereby promoting the apoptosis 
of arsenite-treated A549 cells (Zhou et al. 2022). Besides, in 
tumor studies, it is generally assumed that the NF-κB path-
way promotes tumorigenesis, proliferation, invasion, and 
metastasis through the transcriptional regulation of related 
genes after activation (Mitchell et al. 2016). NF-κB is an 
important family of transcription factors in mammals, with 
five members: Rel (cRel), p65 (RelA), RelB and p50 (NF-
κB 1), and p52 (NF-κB 2) (Williams and Gilmore 2020). 
It has been proved that the NF-κB family also has a tumor-
suppressive effect (Taniguchi and Karin 2018). The role of 
p50 depends largely on its dimerization partners, the co-
factors, cell types, and cancer types so that gene expression 
can either be suppressed or activated, hindering or driving 
tumorigenesis (Concetti and Wilson 2018).

Recently, the role and the mechanism of linear RNA 
and circRNA in disease development have attracted much 
attention. CircRNAs are a special class of non-coding RNA 
with a covalent bond closed loop structure (SMeng et al. 
2017, Zhang et al. 2018), which participate in the develop-
ment of environmental chemical exposure-related diseases, 
which can regulate proliferation, apoptosis, metastasis, 
and inflammation at the molecular level (Nan et al. 2017; 
Xiao et al. 2018; Xue et al. 2018; Yang et al. 2018). Cir-
cRNA biological functions include serving as a miRNA 
sponge, regulating gene splicing and transcription, serv-
ing as an RNA-binding protein sponge, regulating protein 
translation, etc. (Chen 2020, Du et al. 2017, Huang et al. 
2021, Prats et al. 2020, Zhang et al. 2020). The circRNA is 
formed by precursor RNA by shear, followed by head-to-
tail ligation of the linear RNA. Some studies believe that 
linear RNA can affect the expression of proteins associated 
with lung cancer, and circRNA can be used as a feasible 
and important biomarker for the diagnosis, prognostic 
judgment, and clinicopathological features of lung cancer 
(Dong et al. 2021; Van Der Steen et al. 2020). Many stimuli 
such as cytokines, protein kinase C activators, oxidants, 
etc. can activate the transcription of p50 gene, and its acti-
vation can be involved in the regulation of genes such as 
inflammation, cell proliferation, and apoptosis. It has been 
reported that p50 cooperates with the promoter-binding 
protein of inflammatory cytokines to promote the growth 
of tumor cells in lung cancer (Dai et al. 2019). However, 
the exact mechanism by which p50 gene-spliced circP50 
(circBase ID: hsa_circ_0008012) expression in lung cancer 
has not been illustrated.

As a result, we explored the expression of circP50 under 
arsenic-induced conditions in the research. Lung cancer 
caused by arsenic compounds has been listed as a legal 

occupational disease in China (Sun et al. 2021), and many 
scholars have studied the effect of arsenic on lung cancer 
(Pietrzak et al. 2021). We targeted the human lung adenocar-
cinoma cell line to explore its effect on A549 cell prolifera-
tion and apoptosis and its mechanisms by interfering with 
the expression of circP50. The aim is to provide the basis 
for anti-lung cancer mechanism research by observing and 
analyzing the experimental results.

Materials and methods

Introduction to circP50

In combination with the circBase database, we selected 
hsa_circ_0008012 (circP50) as a subject spliced from the 
p50 (NF-κB 1) gene (Glazar et al. 2014), and its sequence 
length is 265 bp which is located at chr4:103446668-
103459113. For more information, please visit: http:// www. 
circb ase. org/.

Cell treatment and culture

We consult when purchasing cell lines and cultivate in the 
laboratory, RPMI 1640 medium is suitable for A549 cell 
growth (Sun et al. 2020). Therefore, human lung adenocar-
cinoma cell line A549 cells from Kunming Institute of Zool-
ogy, Chinese Academy of Sciences were seeded in RPMI 
1640 containing 10% FBS in a 37 °C, 5%  CO2 incubator, 
and the medium was replaced every 2 days. Logarithmic 
growth stage A549 cells were cultured into 6-well plates 
at 9 ×  104 cells/well. The concentration of  NaAsO2 (CAS 
7784-46-5; purity ≥ 90.0%) was adjusted to 0, 20, 40, and 
60 μM with fresh mediums for another 22 h. Furthermore, 
in 6-well plates seeded with the same number of cells, we 
replaced the culture medium with 60 μmol/L  NaAsO2, 
dimethylarsenic acid (DMA) (MF:  C2H7AsO2; CAS 75-60-
5; purity ≥ 99.0%), and monomethylarsenic acid (MMA) 
(MF:  CH5AsO3; CAS 124-58-3; purity ≥ 99.0%). Only fresh 
medium was added into cells from the control group without 
any treatment. Total RNAs were extracted for analysis after 
another 48 h of incubation.

RNA preparation and quantitative real‑time PCR 
(qRT‑PCR)

Total RNA was extracted from A549 cells by the Trizol 
method, and the Roche Reverse Transcription kit (Roche, Ger-
man) was applied to cDNA synthesis. The relative expression 
of circP50 mRNA was detected by the LightCyler®96 real-
time PCR instrument (Roche, German). Reaction conditions 
were preincubation at 95 °C for 120 s, followed by 45 cycles 
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of 95 °C for 10 s, 55 °C for 10 s, and 72 °C for 10 s. β-actin 
is accurate and stable as an internal reference (Januszyk et al. 
2020), and is highly expressed in A549 cells and can be eas-
ily detected. Therefore, for the internal reference, we used 
β-actin. All experiments were repeated in triplicate, and the 
results were evaluated by  2−∆∆ CT method. CircP50 primers: 
Forward: GAC TAC CTG GTG CCT CTA GT Reverse: GCA 
GTG CCA TCT GTG GTT G; β-actin primers: Forward: GCC 
GAG GAC TTT GAT TGC AC Reverse: TGG ACT TGG GAG 
AGG ACT GG.

Cell transfection

Logarithmic growth stage A549 cells with a density of 9 × 
 104 cells/well were seeded into 6-well plates for 19 h after 
incubation in Penicillin-Streptomycin-free medium. Cells 
were transfected with RFect (Changzhou, China) and circP50 
siRNA (Shanghai, China), formulation of RFect and siRNA 
in serum- and Penicillin-Streptomycin-free medium, and the 
medium containing serum and Penicillin-Streptomycin solu-
tion was replaced after 24 h incubation according to instruc-
tions. The NC, siRNA-1, and siRNA-2 three groups were the 
grouping of cells. The NC sequence is sense: 5′-UUC UCC 
GAA CGU GUC ACG UTT-3′; antisense: 5′-ACG UGA CAC 
GUU CGG AGA ATT-3′. The siRNA-1 sequence is sense: 
5′-CCU CAG GUC AAA CUU CAG ATT-3′; antisense: 5′-UCU 
GAA GUU UGA CCU GAG GTT-3′. The siRNA-2 sequence is 
sense: 5′-AGG UCA AAC UUC AGA AUG GTT-3′; antisense: 
5′-CCA UUC UGA AGU UUG ACC UTT -3′. Transfection effi-
ciency was determined by fluorescence microscopy at 6 h and 
qRT-PCR detection for the expression of circP50 at 72 h after 
transfection, respectively. After 72 h transfection, cells were 
harvested for western blotting analysis.

Detection of cell viability

Cell Counting Kit-8 (CCK-8, CAS 193149-74-5) (MedChem-
Express, China) was used for the cell viability assay according 
to the manufacturer’s protocol. A549 cells were seeded into 
96-well plates at a concentration of 2500 cells/well, followed 
by maintained in 100 μl buffer involving 10 μl CCK-8 for 1–4 
h after 72 h transfection. Grouping and siRNA sequences refer 
to the “Cell transfection” section, 4-6 replicate wells for each 
treatment group. The optical density (OD) value was detected 
at 450 nm by the enzyme mark instrument (Bio-Rad, USA). 
The test was repeated three times and the calculation formula 
of cell viability is:

cell viability(%) =

[

(ODexperiment − ODblank)

(ODcontrol − ODblank)

]

× 100

Cell proliferation assay

A549 cells were seeded into 6-well plates at a density of 
6 ×  104 cells/well. Grouping and siRNA sequences refer 
to the “Cell transfection” section, 72 h after transfec-
tion, the single proliferating cell was detected using the 
 BeyoClickTM EdU-555 kit (Beyotime, Shanghai, China). 
According to the manufacturer’s protocol, cells were 
stained within azide-555 and Hoechst-33342 and visual-
ized by inverted microscope with red and blue fluores-
cence, respectively, and after fluorescence microscopy 
analysis, the percentage of EdU-positive cells was counted 
from three random fields in three wells.

Protein preparation and western blotting

Total protein samples were extracted from cells transfected 
with circP50-siRNA for 72 h; cells were lysed with RIPA 
buffer (Thermo Fisher Scientific lnc. USA) involving pro-
tease inhibitors determined the concentration of protein 
through the BCA Protein Assay kit (Beijing Biotechnology 
Co., China). Proteins were electrophoresis in 10% SDS-
PAGE (30 μg/well) and transferred to PVDF membranes 
(Roche, German). After blocking for 20 min, the mem-
branes were maintained with the primary antibody over-
night in a 4 °C fridge and then maintained with secondary 
antibodies for 2 h at RT. Bands were visualized using a 
BeyoECLPlus chromorendering substrate, and band inten-
sities were assessed utilizing the Gel-Pro Analyzer soft-
ware (Media Contronetics). The band intensity of western 
blotting was quantified by ImageJ software. Primary anti-
bodies included in this study are available in Table 1.

Table 1  The primary antibodies used in western blot analysis

Antibody Manufacturer Dilution

IKB-α HuaBio, Hangzhou, China 1:8000
p65 HuaBio, Hangzhou, China 1:3000
p50 Bioss, China 1:1500
C-myc Proteintech, USA 1:1400
p53 Santa, UK 1:500
p53-Ser15 Affinity Bioscience, USA 1:1000
p53-Ser376 HuaBio, Hangzhou, China 1:800
p53-Ser392 HuaBio, Hangzhou, China 1:2500
p53-K370 HuaBio, Hangzhou, China 1:1200
p53-K382 Abclonal, Inc., USA 1:1100
p21 Abclonal, Inc., USA 1:4000
PUMA Abclonal, Inc., USA 1:4000
Caspase3 Abclonal, Inc., USA 1:2000
Bcl-X HuaBio, Hangzhou, China 1:2400
β-actin PTG, USA 1:9000
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Statistical analysis

All experiments were repeated in triplicate. Data analysis 
was carried out using the GraphPad Prism 6.0 and ImageJ 
software. Experimental data met a normal distribution, and 
the statistical analysis was performed by student’s t-test. 
Mean ± standard deviation (SD) is the final form to pre-
sent the outcomes. P < 0.05 was considered as significant 
differences.

Results

Expression of circP50 in A549 cells responding 
to  NaAsO2, DMA, and MMA

We analyzed whether inorganic arsenic affected circP50 
expression in A549 cells by qRT-PCR. The  NaAsO2 treat-
ment (40, 60 μM) significantly increased the circP50 expres-
sion than in control and 20 μM. Compared with the con-
trol, it was 4.8-fold increase in 40 μM; 9.3-fold increase 
in 60 μM, p < 0.05 (Fig. 1a), implying that the expression 
of circP50 in A549 cells was increased with the increas-
ing  NaAsO2 concentration. Figure 1b shows that the rela-
tive expression of circP50 was significantly decreased in the 
DMA and MMA as compared to the  NaAsO2 group (73% in 
DMA, p < 0.01; 85% in MMA, p < 0.01). On the other hand, 
the expression of circP50 elevated 7.2-fold with  NaAsO2 
treatment (p < 0.0001), while no significant differences 
existed among the control, MMA, and DMA groups.

Knockdown of circP50 in A549 cells

The circP50 expression in the siRNA-1 group and siRNA-2 
group was reduced by 79% and 83%, respectively, with a 
significant difference when compared to the NC group, fol-
lowing the qRT-PCR results (Fig. 2a). It is suggested that 
the siRNA can successfully knock down the circP50. The 
results in Fig. 2b and c showed that the RFect transfection 

reagent successfully transferred siRNA into A549 cells, 
and the cells had a good growth state. It was suggested that 
RFect and siRNA showed no obvious cytotoxicity.

Effect of circP50 knockdown on cell viability

We knocked down the circP50 in the A549 cells and exam-
ined cell viability changes. The results showed that the cell 
viability was higher in the siRNA-1 and siRNA-2 groups 
than in the NC group, and the difference was statistically 
significant (19% in siRNA-1, p < 0.01; 29% in siRNA-2, 
p < 0.0001). It is suggested that circP50 may be involved 
in regulating cell proliferation and apoptotic behavior 
(Fig. 3a). We observed cell proliferation in the NC and 
circP50-siRNA groups by staining with the  BeyoClickTM 
EdU-555 cell proliferation assay. The results reflected that 
the low circP50 expression of the siRNA-1 and siRNA-2 
groups significantly increased A549 cell proliferation 
when compared to the NC group (Fig. 3b). A statistically 
significant difference in the percentage of EdU-positive 
cells of the siRNA-1 and the siRNA-2 groups, as com-
pared to the NC group (36% higher for siRNA-1, p < 0.05; 
56% higher for siRNA-2, P < 0.01), following results in 
Fig. 3c. The above results demonstrated that knockdown of 
circP50 expression could significantly promote the viabil-
ity of human lung cancer A549 cells.

The protein expression of IKB‑α, p65, p50, 
and C‑myc in A549 cells after knockdown of circP50

We found that expressions of IKB-α (2.5-fold in siRNA-1; 
1.5-fold in siRNA-2), p65 (1.8-fold in siRNA-1; 1.2-fold 
in siRNA-2), and p50 (1.2-fold in siRNA-1; 1.5-fold in 
siRNA-2) were decreased, and C-myc expression did not 
change significantly in circP50 knockdown cells between 
the siRNA-1 and siRNA-2 compared with the NC group, 
p < 0.05 (Fig. 4a, b).

Fig. 1  Expression of circP50 
was detected after infection of 
A549 cells with  NaAsO2, DMA, 
and MMA. (a) A549 cells were 
treated with the indicated con-
centration of  NaAsO2 for 72 h. 
(b) A549 cells were treated with 
DMA, MMA, and  NaAsO2 for 
72 h. The control group set the 
same as others without arsenic 
exposure. Compared with the 
control group, ****P < 0.0001, 
*P < 0.05
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Knockdown of circP50 inhibited the activity 
of the p53 pathway

In A549 cells, p53 (2.8-fold in siRNA-1; 6-fold in siRNA-
2), p53 phosphorylated at Ser15 (2.9-fold in siRNA-1; 
11.1-fold in siRNA-2), 376 (2.9-fold in siRNA-1; 2.5-fold 
in siRNA-2), and 392 (1.3-fold in siRNA-1; 1.2-fold in 
siRNA-2), as well as p53 acetylated at Lys370 (5.3-fold 
in siRNA-1; 3.2-fold in siRNA-2) and 382 (1.2-fold in 
siRNA-1; 1.3-fold in siRNA-2), were downregulated after 
circP50 knockdown, p < 0.05 (Fig. 4c, d). In addition, the 
protein expression of the pro-apoptotic genes, including 
p21 (1.4-fold in siRNA-1; 1.6-fold in siRNA-2), PUMA 
(1.8-fold in siRNA-1; 2.3-fold in siRNA-2), Caspase3 
(2.7-fold in siRNA-1; 2.7-fold in siRNA-2), and Bcl-xS 
(3.2-fold in siRNA-1; 3.3-fold in siRNA-2), was signifi-
cantly decreased in the siRNA-1 and siRNA-2 groups 
when compared to the NC group, p < 0.05 (Fig. 4e, f).

Discussion

Arsenic lung cancer was included in the occupational dis-
ease in China in 2013 (He et al. 2020). Arsenic and its com-
pounds often enter the body through drinking water, air, or 
food and induce acute and chronic arsenic poisoning. As a 
natural metalloid, arsenic can be metabolized in the human 
body and can cause systemic multisystem, multiple organ 
damage, and even cancer (Bjorklund et al. 2020; Chen and 
Costa 2021). Arsenic has “two sides” from toxicity to drug 
nature. On the other hand, it can induce tumors by causing 
abnormal cell proliferation. In cancer, the coordinating role 
between uncontrolled cellular metabolism, proliferation, 
and apoptosis is crucial for tumorigenesis (Martinez-Reyes 
and Chandel 2021). Furthermore, diseases associated with 
exposure to environmental chemicals follow the aberrant 
expression of specific circRNA. Increasing studies suggest 
that the expression of circRNAs perhaps be an integral part 

Fig. 2  Knockdown of circP50 
in A549 cells. (a) At 72 h after 
transfection with siRNA-
circP50 successfully knocked 
down circP50 expression. (b, c) 
At 6 h after the transfection of 
A549 cells with FAM-siRNA, 
the cell transfection efficiency 
was measured by fluorescence 
microscopy. Compared with the 
NC group, **p < 0.01
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of the mechanism of lung cancer (Fan et al. 2017). Several 
reports have demonstrated that aberrant circRNAs expres-
sion can promote or inhibit the occurrence and progression 
of lung cancer. For instance, functional experiments showed 
that circITCH has inhibitory effects on lung cancer cell pro-
liferation and circHIPK3 promotes the proliferation of lung 
cancer cells by its interaction with miR-379, IGF1 (Tian 
et al. 2017). In addition, hsa_circ_0013958 promotes lung 
adenocarcinoma cell proliferation and invasion (Zhu et al. 
2017). Therefore, it is feasible to explain the arsenic car-
cinogenesis mechanism from the perspective of circRNA; 
however, whether circP50 expression after inorganic arsenic 
exposure can directly act on cells and affect lung cancer 
progression is unclear.

According to the results of qRT-PCR, the expression 
of circP50 was independent of MMA and DMA. Still, the 
expression level of circP50 gradually increased in cells 
treated with different doses of  NaAsO2 and showed a cer-
tain dose-response relationship. What’s more, it has been 
shown that arsenic exposure can directly affect the expres-
sion of circRNAs, which can regulate the relevant signal-
ing pathways alone or together with other factors to induce 
disease. For example, the expression of circ100284 (Dai 

et al. 2018; Xue et al. 2017), circLRP (Xue et al. 2018) 
was significantly increased in arsenite-treated cells, which 
is similar to our results. However, it has also been found 
that circ008913 is reduced by arsenic exposure in HaCaT 
cells (Xiao et al. 2018) since circRNA can act as a miRNA 
sponge to regulate cell growth by absorbing multiple miR-
NAs; meanwhile, arsenic exposure can regulate the direct 
target level of miRNA, leading to the circRNA expression 
being increased or downregulated under arsenic exposure 
due to differences with the miRNA binding sites.

Based on this, we explored whether circP50 has a func-
tion to regulate human lung cancer A549 cells proliferation. 
Our results showed that the knockdown of circP50 promoted 
the A549 cells proliferation, suggesting that circP50 may 
be involved in the regulation of cell proliferation. When it 
comes to proliferation, it has to be mentioned that in many 
cancer cells, the NF-κB pathway can protect cancer cells 
from apoptosis by upregulating the expression of genes that 
promote cell migration and invasion and apoptosis-repressed 
or inhibiting pro-apoptotic factors or activating persistent 
growth signaling pathway molecules (Giridharan and Srini-
vasan 2018). Our research found that the expression of IKB-
α, p50, p65 was reduced, but the expression of C-myc did 

Fig. 3  Detection of cell viability and proliferation after circP50 
knockdown in A549 cells for 72 h. (a) The results of the CCK-8 
assay revealed that the cell viability was elevated significantly after 
circP50-siRNA transfection. (b) Cell proliferation assay showed 
that knockdown of circP50 significantly promoted cell proliferation, 
assessed by fluorescence microscope. A blue light represents all cells 

in the observation field, and red represents cells in the proliferative 
phase. (c) Knockdown of circP50 significantly promoted cell prolif-
eration efficiency by counting the percentage of EdU-positive cells. 
Compared with the NC group, *p < 0.05, **p < 0.01 and ****p < 
0.0001
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not change significantly. We believe that the NF-κB pathway 
may not be suppressed and needs to be regulated with other 
mechanisms, so we mainly studied the p53 pathway in sub-
sequent experiments.

The p53 is an important tumor suppressor that acts 
as a transcription factor that transcribes its downstream 
genes, regulates multiple cellular stress responses, and 
exerts its tumor suppressor function. When cellular stress, 
p53 undergoes serial post-translational modifications and 
altered protein levels and activity, acting mainly as tran-
scription factors to regulate the expression of multiple 
downstream target genes, thus initiating cytological effects 

such as cell cycle arrest, apoptosis, senescence, and dif-
ferentiation (Liu et al. 2019). Post-translational modifica-
tions of p53, including phosphorylation and acetylation, 
are the most extensive and effective types of regulating 
p53 function and are essential for regulating p53 stabil-
ity and activity (Chung et al. 2014). Different roles were 
reported for the different p53 phosphorylation and acety-
lation sites; for example, Ser15 can slow down inhibition 
or degradation of p53, leading to stabilization and activa-
tion of p53 (Han et al. 2021); Ser376, Lys370 (Kon et al. 
2021) and Lys382 (Lin et al. 2020) can affect nonspecific 
DNA binding (Appella and Anderson 2000); meanwhile, 

Fig. 4  The protein expression of 
p53 phosphorylation, acetyla-
tion, and the genes downstream 
of p53, as well as IKB-α, p65, 
p50, and C-myc in A549 cells 
after knockdown of circP50. 
(a, b) The expression of IKB-α, 
p65, p50, C-myc in A549 cells. 
(c, d) The expression of phos-
phorylation of p53 at Ser15, 
376, 392, as well as acetylation 
of p53 at Lys370, 382. (e, f) The 
detection of protein expression 
levels, including p21, PUMA, 
Caspase3, Bcl-xS
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Ser392 can enhance the ability of p53 to bind to DNA 
(Pospisilova et al. 2004). According to the western blotting 
assay, knockdown of circP50 inhibited p53 phosphorylated 
at Ser15, 376, 392, and p53 acetylated at Lys370, 382, 
ultimately reducing p53 expression. In the meantime, our 
data showed that knockdown of circP50 inhibited related 
genetic changes in the p53 pathway, including knockdown 
of protein levels like p21, PUMA, Caspase3, and Bcl-xS. 
In these downstream genes of p53, p21 can arrest cell 
cycle progression (Lai et al. 2020), the protein encoded 
by PUMA is important in the mitochondrial apoptosis 
pathway (Ma et al. 2016). Caspase3 is a cleaved house-
keeping protein, and DNA fragments are considered a key 
effector molecule involved in the apoptotic pathway (Jiang 
et al. 2020); excessive expression of Bcl-xS can accelerate 
the progression of apoptosis (Stevens and Oltean 2019). 
Therefore, our results suggest that knockdown of circP50 
may inhibit the p53-dependent apoptotic signaling path-
way, which is mediated by p53 phosphorylation and acety-
lation and promotes A549 cells proliferation.

In conclusion, our results indicate that inorganic arsenic 
increases circP50 expression in A549 cells, and knockdown 
of circP50 inhibits p53 phosphorylation, acetylation as well 
as downstream target genes, thereby promoting A549 cell 
proliferation, suggesting that circP50 functions as a stimulus 
to the p53 pathway in response to inorganic arsenic expo-
sure. Moreover, the contribution of circP50 to the response 
of arsenic exposure to the NF-κB pathway has been elusive, 
and it does not exclude its potential as a specific therapeutic 
target for lung cancer.
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