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Abstract
Solid oxide fuel cells (SOFCs) are emerging as energy conversion devices for large-scale electrical power generation because 
of their high energy conversion efficiency, excellent ability to minimize air pollution, and high fuel flexibility. In this context, 
this critical review has focussed on the recent advancements in developing a suitable electrolyte for SOFCs which has been 
required for the commercialization of SOFC technology after emphasizing the literature from the prior studies. In particular, 
the significant developments in the field of solid oxide electrolytes for SOFCs, particularly zirconia- and ceria-based electro-
lytes, have been highlighted as important advancements toward the production of sustainable and clean energy. It has been 
reported that among various electrolyte materials, zirconia-based electrolytes have the potential to be utilized as the electrolyte 
in SOFC because of their high thermal stability, non-reducing nature, and high mechanical strength, along with acceptable 
oxygen ion conductivity. However, some studies have proved that the zirconia-based electrolytes are not suitable for low and 
intermediate-temperature working conditions because of their poor ionic conductivity to below 850 °C. On the other hand, 
ceria-based electrolytes are being investigated at a rapid pace as electrolytes for intermediate and low-temperature SOFCs due 
to their higher oxygen ion conductivity with good electrode compatibility, especially at lower temperatures than stabilized 
zirconia. In addition, the most emerging advancements in electrolyte materials have demonstrated that the intermediate tem-
perature SOFCs as next-generation energy conversion technology have great potential for innumerable prospective applications.
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Introduction

Expanding economies largely depend on fossil fuels for the 
fulfillment of rising needs of energy for both transporta-
tion and stationary sectors. However, fossil fuels are non-
renewable, and their availability is limited. Furthermore, 
burning fossil fuels releases greenhouse gases such as 
CO, CO2, SOx, and NOx, contributing to global warming 

and air pollution. Furthermore, mining fossil fuels from 
the depths of the earth has a negative impact on the eco-
system. Therefore, it is essential to create clean, sustain-
able energy technologies to satisfy the enormous growth 
in global energy consumption (Wei and Li 2008; Li et al. 
2014; Sacanell et al. 2017). The progress of multidisci-
plinary research is emerging faster because of increasing 
global connectivity, which will replace multiple materials 
and equipment that are being used recently. The future world 
would be a combination of advanced materials and new 
sustainable energy sources because it needs to protect the 
environment and human health and maintain the increasing 
demand for social, economic, and industrial needs (Hassen 
et al. 2016b; Morales et al. 2018; Hou et al. 2021). The 
demand for electrical energy is increasing because of the 
growing world population and rapid industrialization. The 
world energy demand is dependent mainly on fossil fuels, 
but various disadvantages related to fossil fuels like limited 
availability, greenhouse gas emissions, and environmental 
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pollution divert the global energy research trend from fossil 
fuels to renewable energy sources. Expanding economies 
predominantly depend on fossil fuels that are mainly used 
to fulfil escalating demands of energy for both transporta-
tion and stationary sectors. However, fossil fuels are non-
renewable, and their availability is limited. A few sustainable 
technologies, such as solar cells, wind power, tidal energy, 
and hydropower can be used to supply clean energy by uti-
lizing renewable energy sources (Zhang et al. 2019; Jang 
et al. 2020; Ren et al. 2020a). Hence, the search for renew-
able and sustainable energy sources is needed to meet the 
same. Besides, traditional energy sources cause a hazard to 
human health by generating greenhouse gases. Therefore, 
the world needs a power source that is less pollutant, highly 
efficient, and high capacity for energy supply to meet the 
global demand for an energy crisis (Eigenbrodt et al. 2011; Ji 
et al. 2015). The internal combustion engine (ICE) has been 
considered the most popular energy conversion device for 
various applications, from transportation to electric power 
supply, for an extended period. The hydrocarbons are used as 
fuel for the same device. But, several drawbacks of the ICE 
have been realized by a large number of scientists, including 
emission of most common greenhouse gas (CO2), very low 
efficiency of energy conversion about 15–25%, generation of 
several unwanted by-products, creation of unwanted noise, 
and generation of power from non-renewable fuels (Yang 
et al. 2015; Pan et al. 2019).

A few sustainable technologies, such as solar power, 
wind power, tidal energy, and hydropower can supply clean 
energy by utilizing renewable energy. Fuel cell technology is 
one of the most promising technologies that can use renew-
able energy to produce power with high efficiency. The fuel 
cell converts chemical energy into electrical energy with-
out directly burning the fuel, eliminating greenhouse gas 
emissions such as CO2 and CO in the environment (Hassen 
et al. 2016a; Zhao et al. 2017; Zhang et al. 2020). Fuel cell 
technology is one of the most promising technology among 
them that can utilize renewable energy sources to produce 
electricity with high efficiency. The fuel cell converts the 
chemical energy of fuel into electrical energy without the 
direct combustion of fuel which eliminates or decreases the 
emission of greenhouse gases like CO2 and CO in the envi-
ronment. Fuel cell technology is one of the most promising 
technologies for increasing renewable energy production 
because fuel cells have higher efficiency than conventional 
combustion devices (Hao et al. 2017; Lu et al. 2018; Hanif 
et al. 2021). The efficiency can be increased further by using 
the produced heat. Fuel cells are distinguished from other 
traditional energy conversion devices by their high energy 
conversion efficiency and low pollutant emission (Sund-
macher 2010; Qiao et al. 2020). Furthermore, compared to 
traditional energy generation methods, fuel cell operation 
is vibration-free, resulting in less noise pollution. Recently, 

several researchers have shown interest in developing vari-
ous types of fuel cells because of their high efficiency, neg-
ligible noise, simple design, sustainability, and easy scal-
ability. Various types of fuel cells are available depending on 
electrolyte, fuel, and operating temperature. There are vari-
ous fuel cells available in the market such as hydrogen fuel 
cells (Chen et al. 2017), direct methanol fuel cells (Huang 
et al. 2022), and microbial fuel cells (Tran et al. 2022). 
Despite having a lot of constraints that must be solved, all 
existing fuel cells offer a significant promise to create clean, 
sustainable energy with high energy conversion efficiency 
(Kang et al. 2017; Son et al. 2021; Zahid et al. 2022). In 
addition, fuel cells are categorized as polymer electrolyte 
fuel cells, solid oxide fuel cells, phosphoric acid fuel cells, 
alkaline fuel cells, and molten carbonate fuel cells based on 
the type of electrolytes employed. Among various fuel cells, 
solid oxide fuel cells (SOFCs) are considered the most desir-
able fuel cell for generating electricity from hydrogen and 
hydrocarbons (Muñoz-García et al. 2014; Xu et al. 2020). 
Figure 1 depicts the number of articles published each year 
on SOFCs from 2011 to 2020. In the twenty-first century, 
fuel cells are the most promising, silent, and eco-friendly 
source of electrical energy (Lucia 2014). The major evo-
lutionary changes that occur during the development of 
fuels can be summarized according to Table 1. This green 
technology came into existence in 1839 when the fuel cell 
was invented by Sir William R. Grove. In 1889, Ludwig 
Mond and Carl Langer developed a new form of gas bat-
teries where they used hydrogen to produce electricity and 
introduced the name “fuel cell” for the first time. In 1959, 
Francis Thomas Bacon (Andújar and Segura 2009) success-
fully constructed a stack of 40 fuel cells that could develop 
5 kW of electrical power. After 100 years of invention, Pratt 
and Whitney (Williams 1994) modified the Bacon’s cell to 
install in the Apollo space vehicle that enabled astronauts 
to land on the moon in 1969 as an efficient technology for 
power generation and to provide drinking to the crew mem-
bers. It continued a long history in itself to flourish for mar-
ket application in the present scenario. Today, scientist and 
technologist all over the world are working to commercialize 
fuel cells to meet the local and global energy needs.

Among the different kinds of available fuel cells, solid 
oxide fuel cells (SOFCs) have achieved great attention in 
various applications such as transportation and station-
ary electrical power supply because of their high fuel 
flexibility, efficiency, durability, and simple design (Liu 
et al. 2014; Hua et al. 2016; Chen et al. 2019). Solid oxide 
fuel cell (SOFC) systems are the best choice for station-
ary high-power energy generation among the different 
types of fuel cells (Chao et al. 2011; Xia et al. 2016). As 
solid electrolytes, SOFCs use ceramic materials that can 
conduct oxygen ions or protons. In addition, SOFCs use 
various ceramic and ceramic–metal composite materials 
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such as cathode and anode. SOFCs function at high tem-
peratures, often between 800 and 1000  °C (Wei et  al. 
2018; Yang et al. 2020). In contrast to low-temperature 
fuel cells, which have poor impurity tolerance and can 
only use high-purity hydrogen, high-temperature fuel cells 
(such as SOFCs) can use a variety of fuels, including H2, 
CO, CH4, and C2H6. On the other hand, the high working 
temperatures of SOFCs place restrictions on the materi-
als (functional and structural components) utilized in the 
cells. For example, electrolytes, electrodes, and inter-
connects should all have identical linear coefficients of 
thermal expansion in order for the SOFC to heat up from 
room temperature to working temperatures without crack-
ing due to thermal expansion mismatch. Furthermore, high 

operating temperatures lengthen fuel cell-based systems’ 
start-up and cool-down times, reducing their commer-
cial viability. In addition, chemical reactions between the 
electrolyte and the electrode materials are more likely to 
occur at high temperatures. The properties of the fuel cell 
deteriorate as a result of these reactions, and the cell life-
time decreases. Due to the limitations of high-temperature 
SOFCs, several research groups are focusing on the devel-
opment of intermediate-temperature SOFCs which can 
operate at intermediate temperatures (600–800 °C). The 
intermediate-temperature SOFCs’ low working tempera-
tures remove limits on the thermal expansion properties 
of the materials utilized, allowing for faster start-up and 
cool-down times. However, the low working temperatures 

Fig. 1   Number of articles pub-
lished each year on SOFCs from 
2011 to 2020. Google Scholar 
was used to search using the 
term “solid oxide fuel cell”

Table 1   Key developments the field of in fuel cell technology

Years Invention Reference

1839 The first fuel cell was created by William Grove (1811–1896). He called it a “gas voltaic battery.” (Andújar and Segura 2009)
1889 Charl and Mond built on Grove’s created a fuel cell that can generate 2 A current (Grimes 2000)
1893 The theoretical performance of fuel cells was discussed Ostwald (Abdalla et al. 2018)
1939 Bacan created alkaline fuel cells (AFCs) with a high-power density (1.11 A/cm2 at 0.6 V) (Perry and Fuller 2002)
1959 The proton exchange membrane fuel cell was created by General electric (Jamil et al. 2022)
1961 Nafion membrane were created by DuPont (Perry and Fuller 2002)
1969 Fuel cell technology was utilized in space by NASA (Steele 2001)
1990 A direct methanol fuel cell has been created for the first time (Dadashzadeh et al. 2016)
2007 Honda announced to produce fuel cell car (Morikawa et al. 2009)
2009 In Japan, portable fuel cell battery chargers were widely available (Wilberforce et al. 2016)
2014 Toyota introduced the first commercial fuel cell vehicle (Yoshida and Kojima 2015)
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have several disadvantages. Reaction rates at electrodes 
in the intermediate-temperature SOFCs are lower which 
reduces the fuel cell efficiency. In addition, ionic conduc-
tivity in solid oxide electrolyte is significantly reduced at 
lower temperatures. As seen by the growing number of 
publications in this field, there has been much interest in 
developing materials for intermediate-temperature-SOFCs 
in recent years which could bring appropriate solution of 
the current problem of intermediate-temperature SOFCs 
(He et al. 2017; Wei et al. 2017; Yang et al. 2020). An 
ion-conducting electrolyte, an anode, and a cathode are 
the basic components of a fuel cell, as shown schemati-
cally in Fig. 2a. Figure 2b–c shows a planar and a tubular 
of SOFC. The planar SOFC design is a commonly utilized 
in single cell fabrication because it allows to achieve high 
fuel cell performance while keeping the manufacturing 
process cost low. In general, companies have used the pla-
nar SOFC design since it is less expensive and takes less 
time to produce each component than the tubular SOFC 
design. Furthermore, this architecture is appropriate for 
developing a tiny SOFC stack for portable applications. 
The working principles of oxygen ion-conducting SOFCs 
(O–SOFC) and proton-conducting SOFCs (P–SOFC) 
are compared in Fig. 2d–e. P–SOFCs have potential to 
achieve high performance at low temperatures because 
proton conduction in solid oxides has a lower activation 
energy than oxygen-ion conduction. The development of a 
suitable electrolyte is essential for the commercialization 

of SOFCs. Doped Bi2O3, CeO2, ZrO2, and LaGaO3-based 
materials have been extensively investigated as solid oxide 
electrolytes for fuel cell applications.

According to previous research reports, all forms of solid 
oxide electrolyte materials have advantages and disadvan-
tages that may be related to the materials’ fundamental 
characteristics. The role of various components, operating 
principles, and potential applications of SOFCs has been dis-
cussed in the first section of this review. Subsequently, this 
article highlights various recent advancements in solid oxide 
electrolytes which has been used in fuel cells, particularly 
zirconia- and ceria-based electrolytes, as major advance-
ments toward sustainable and clean energy production 
because zirconia- and ceria-based electrolytes are regarded 
as the most promising electrolyte material for SOFCs due to 
their various properties, including excellent ionic conduc-
tivity, superior chemical, mechanical, and thermal stability 
over a wide temperature range, and good compatibility with 
the other cell components. Various successes, prospects, 
and challenges of zirconia- and ceria-based electrolytes for 
the practical implementation in SOFCs have been reviewed 
as important steps toward achieving sustainable and clean 
energy production. Its relevance in the current global energy 
crisis and environmental pollution is thought to be quite 
effective.

Fig. 2   a Schematic of a SOFC, b Schematic of a planar SOFC unit, 
c a tubular SOFC unit (Ng et  al. 2019).  Reproduced with permis-
sion from the ref. (Ng et al. 2019), Copyright 2019 Elsevier, working 

principle of d oxygen ion-conducting SOFC unit, e proton-conduct-
ing SOFCs (Duan et al. 2015). Reproduced from the ref. (Duan et al. 
2015)
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Solid oxide electrolyte used in fuel cells

The main components of a single SOFC unit are cathode, 
anode, and electrolyte. The solid oxide electrolyte, which 
conducts oxygen ions, is the most significant component 
of a SOFC unit. In general, the required features of each 
SOFC component are comparable for every application, 
ranging from large-scale to small-scale. Interconnect is 
used in the stack of SOFCs to create an electrical connec-
tion between single cells. The number of cells in the stack 
of SOFCs depends on the required output for particular 
applications (Chao et al. 2011; Ghezel-Ayagh et al. 2013; 
Chen et al. 2017). For large-scale applications of SOFCs, 
the size and the number of single cells should be large 
enough to generate the required power. In contrast, for 
portable applications of solid oxide fuel cells (SOFCs), the 
cell size should be small enough to carry from one loca-
tion to another (Sandhu et al. 2016; Abdalla et al. 2018; 
Afroze et al. 2019; Khan et al. 2020). The requirement 
properties and the function of the component are illus-
trated in the following section. The electrolyte is sand-
wiched between the porous cathode and the porous anode 
in a conventional SOFC, and it serves as following key 
functions: (i) it separates the anode and cathode gases and 
(ii) it transfers ions between the anode and the cathode. 
Electrolytes should have excellent ionic conduction, high 
compactness, and chemical and thermal stability to attain 

high SOFC performance. SOFCs can be classed based on 
type of ion conductions through electrolyte as (i) oxygen 
ion-conducting SOFCs (O–SOFC), where oxygen ions are 
transported through the electrolyte, (ii) proton-conducting 
SOFCs (P–SOFC), where protons are transported through 
the electrolyte, and (iii) dual ion conducting SOFCs 
(D-SOFC), where both protons and oxygen ions are trans-
ported through the electrolyte. The solid oxide electrolyte, 
which conducts oxygen ions, is the most significant com-
ponent of a SOFC unit. It is the heart of SOFC. The use 
of zirconia-based electrolytes as an electrolyte material in 
SOFCs has been extensively investigated. Pure zirconia 
exhibits three crystallographic polymorphs (as shown in 
Fig. 3a). At room temperature, monoclinic (m) is the stable 
form of zirconia. During heating m-ZrO2 to t-ZrO2 and 
t-ZrO2 to c-ZrO2, phase transformations occur at 1170 °C 
and 2370 °C, respectively. The cubic form is stable up to 
its melting point (2680 °C). All these phase transforma-
tions are reversible on cooling, although the temperature 
at which the tetragonal to monoclinic phase transformation 
occurs during cooling is somewhat lower (950–1000 °C) 
(Badwal 1992; Fini et al. 2018). For an oxygen ion con-
ductor, conduction occurs via the oxygen vacancy hopping 
mechanism. In the hopping mechanism, oxide ion jumps 
from its original tetrahedral site to an adjacent oxygen 
vacant site, and a counter migration of ions and vacancies 
takes place, as shown in Fig. 3b (Mahato et al. 2015). Oxy-
gen ion diffusion is achieved by creating oxygen vacancy 

Fig. 3   a Polymorphism of 
zirconia, b schematic show-
ing oxygen vacancy hopping 
mechanism in fluorite structured 
Sc2O3-doped ZrO2, c cubic 
fluorite crystal structure of ceria 
(Anwar et al. 2016).  Adopted 
from the ref. (Anwar et al. 
2016) d–e cubic perovskite 
structure of LaGaO3 (Malavasi 
et al. 2010). Reproduced from 
the ref. (Malavasi et al. 2010)

64493Environmental Science and Pollution Research (2022) 29:64489–64512



1 3

defects inside the lattice. Examples of such crystal struc-
tures with predominant oxygen vacancy are doped Bi2O3, 
CeO2 (Fig. 3c), and ZrO2-based oxides with fluorite struc-
ture, LaGaO3-based perovskites (Fig. 3d–e), Bi4V2O11, and 
La2Mo2O9-based derivatives (Ishihara et al. 2006; Guan 
et al. 2015). The main requirements for the material to be 
used as the electrolyte in SOFC are high oxide ion conduc-
tivity, chemical stability, and mechanical stability.

Most of the highly ionic conductive oxide materials pos-
sess cubic fluorite structures. The interstitial octahedral site 
of cubic fluorite remains unoccupied, which results in a rela-
tively open crystal structure. These unoccupied interstitial 
sites give an easy pathway for oxygen ion conduction and 
make the oxide favorable as an anionic conductor (Kharton 
et al. 2004). Ceria-based electrolytes exhibit higher ionic 
conductivity than the doped zirconia-based electrolyte, but 
the reduction of Ce4+ cations, present in ceria, to Ce3+ under 
a typical SOFC anode condition leads to the lowering of 
open circuit potential and performance of cells (Yasuda et al. 
2012). The next higher conducting oxide is doped zirconia, 
which possesses good mechanical stability in both oxidiz-
ing and reducing atmosphere. Scandia-stabilized zirconia 
(ScSZ) has shown the highest ionic conductivity (Fig. 4) 
among doped ZrO2 systems because of the similar ionic 
radius of Sc3+ and Zr4+. It has been reported that at 850 °C, 
the ionic conductivity of 11 ScSz is 108 mS/cm, which is 
1.5 times higher than the conductivity of 8 mol. % yttria-
stabilized zirconia (8YSZ) (78 mS/cm) (Badwal and Ciac-
chi 2000). However, the conductivity of 11ScSZ drops sud-
denly around 600 °C due to the transformation from a highly 
conductive, vacancy-disordered, and cubic fluorite phase 

to a low conductive, vacancy-ordered, and rhombohedral 
β-phase (Politova and Irvine 2004). In addition, the presence 
of multiple poor conducting and metastable phases in lower 
Sc2O3 (5–9 mol. %) containing compositions adversely 
affect the overall conductivity of ScSZ electrolytes (Fuji-
mori et al. 1998). In the composition range of 5–7 mol. % 
Sc2O3-ZrO2, tetragonal phase is present with lower sym-
metry monoclinic phase, which is a poor conducting phase 
(Fujimori et al. 1998). In 7–9 mol. % Sc2O3, phase com-
position consists of a metastable t′ and t″-phase along with 
a stable tetragonal phase (Badwal et al. 2000). The ionic 
conductivity of the metastable t′-phases decays with anneal-
ing as it decomposes to a Sc-rich cubic matrix and fine pre-
cipitates of Sc-deficient lower conducting tetragonal phase 
at the fuel cell operating temperature (800–1000 °C). The 
high conducting cubic phase is stable in a very narrow range 
of Sc2O3 doping concentration (9–10 mol. % Sc2O3) (Ruh 
et al. 1977). Since cubic is the highest conducting phase 
of doped zirconia, a second dopant, i.e., co-dopant (CeO2, 
Y2O3, Yb2O3, Al2O3, Ga2O3, etc.), is typically added to 
improve the stability of cubic phase over other lower con-
ducting and metastable phases (Zhuiykov 2000; Arachi et al. 
2001; Omar et al. 2012). It has been reported that 1 mol. % 
CeO2 co-doped with 10 mol. % Sc2O3-ZrO2 system shows 
the highest ionic conductivity (16.7 mS/cm) at 600  °C 
(Omar et al. 2012). This phase composition shows no phase 
transition or oxygen vacancy ordering phenomena in aging 
at high temperatures (Lee et al. 2005). The effect of 1 mol. 
% CeO2 addition on phase stability and ionic conductiv-
ity in the Sc2O3-ZrO2 system at low Sc2O3 concentration 
(5–9 mol %) is still unexplored. In this study, 1 mol. % CeO2 
has been co-doped in ScSZ system to stabilize the high sym-
metry phases at lower scandia content (5–11 mol. %) and 
thereby increase ionic conductivity. Lowering the Sc2O3 
content in ScSZ system improves the mechanical property 
(Fleischhauer et al. 2015) and lowers the cost of fabrication 
since the cost of Sc2O3 is 10 times more than the cost of 
CeO2 and ZrO2 (Kumar et al. 2016). Lowering the scandia 
content also reduces the effect of local defect structures on 
lowering the ionic conductivity which is significantly high at 
higher doping concentration (greater than 10 mol. % Sc2O3) 
(Omar et al. 2008).

In the case of proton-conducting electrolytes, proton dif-
fusion requires less activation energy than the transportation 
of oxygen ions. As a result, it is easier to achieve higher pro-
ton conductivity than oxygen ion conductivity at lower and 
intermediate temperatures. The conductivity of oxygen ions 
of ceramic electrolytes often decreases quickly as the operat-
ing temperature drops due to the high activation energy (Ea) 
of oxygen ion conduction. As a result, proton-conducting 
solid oxide materials are more appropriate as intermediate 
and low-temperature electrolytes than oxygen ion-conduct-
ing solid oxide electrolytes. The vehicle mechanism and the 

Fig. 4   Ionic conductivity in fluorite structure oxides at different tem-
peratures (Omar et al. 2006).  Reproduced with permission from the 
ref. (Omar et al. 2006). Copyright 2006 Elsevier
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Grotthuss method are the two basic proton transport mecha-
nisms for proton-conducting electrolytes (Cao et al. 2021). 
Until now, the most common proton-conducting electro-
lytes are BaCeO3 and BaZrO3–based materials. The oxygen 
vacancies are linked to proton conduction in perovskite-type 
crystal structures. In addition, mixed oxygen ion and pro-
ton conduction may arise inside these perovskite oxides, 
leading to the development of dual ion-conducting SOFCs. 
According to previous research, all three types of accessi-
ble oxygen ion-conducting electrolyte materials have flaws, 
which could be related to the materials’ inherent properties 
(Irshad et al. 2016; Rashid et al. 2019; Vostakola and Horri 
2021). Proton-conducting electrolytes have low activation 
energy and can be employed at low operating temperatures. 
As a result, developing a suitable electrolyte for SOFC is 
critical for the commercialization of fuel cell technology. 
The following section shows various advancements in solid 
oxide electrolytes used in fuel cells, particularly zirconia- 
and ceria-based electrolytes.

Zirconia‑based electrolyte used in fuel cells

Zirconia-based materials are the most commonly used 
electrolytes because of their outstanding mechanical and 
chemical durability and reasonable oxygen ion conductiv-
ity. Among the many types of electrolyte materials, yttria-
stabilized zirconia (YSZ)-based electrolyte materials are the 
most widely researched for SOFC applications. YSZ-based 
electrolytes are most widely explored for SOFC applications 
among the various type of electrolyte materials because of 
their acceptable ionic conductivity (Vostakola and Horri 
2021). YSZ becomes an oxygen ion (O2−) conductor above 
800 °C; zirconia-based SOFCs perform in a temperature 
range of 800 to 1100 °C. The contribution of the electrolyte 
to the ohmic loss in the SOFC is maintained to a minimum 
with a thin electrolyte (25–50 μm). Many factors influence 
the ionic conductivity of zirconia-based electrolytes, includ-
ing dopant concentration, defect dissociation, sample prepa-
ration, oxygen partial pressure, and temperature. In order 
to promote high oxide ion conductivity, all the oxygen ions 
should have equal or similar energy. Thus, high symmetry 
structures are preferred for oxygen ion conduction. As a 
result, the cubic phase of zirconia should be stabilized to use 
as a solid oxide electrolyte. In the cubic fluorite structure, 
cations form the face-centered cubic sub lattice, while the 
oxygen ions occupy all the tetrahedral sites. The octahedral 
sites remain unoccupied which provide an easy pathway for 
oxygen-ion conduction. However, the size of Zr4+ cation is 
too small to retain the cubic fluorite structure (Chen et al. 
2016b; Vostakola and Horri 2021). Thus, doping with larger 
cation stabilize the cubic structure in ZrO2. Furthermore, 
the incorporation of anion vacancies in the lattice by doping 

with acceptor dopant can reduce the repulsion between ani-
ons and stabilize the fluorite phase. These metal cations sub-
stitute the Zr4+cation to create oxygen vacancies as a charge 
compensating defects (Shimada et al. 2017; He et al. 2018; 
Hou et al. 2019; Wei et al. 2019). Scandia-stabilized zirconia 
(ScSZ) is the most promising candidate for the electrolyte 
application in SOFC as it possesses highest ionic conduc-
tivity among doped ZrO2 system. ScSZ materials have a 
high ionic transference over a wide temperature range and 
good thermomechanical properties, allowing them to work 
at lower temperatures (Aguadero et al. 2012; Mahato et al. 
2015; Ito et al. 2019). Doping of Sc2O3 in ZrO2 creates 
oxygen vacancy. This oxygen vacancy is responsible for the 
ionic conduction in ScSZ system. Thus, with the increase 
in scandia dopant concentration, the concentration of oxy-
gen vacancy also increases resulting in an increase of ionic 
conductivity. However, at a certain dopant concentration, 
ionic conductivity goes through a maximum after which it 
decreases. The oxygen vacancies tend to interact with dopant 
cations at high dopant concentrations (> 10 mol%) (Bhat-
tacharyya and Omar 2018; Sudarsan and Krishnamoorthy 
2018). These interactions result in a local defect structures or 
complex defect associates, which reduces the effective num-
ber of mobile oxygen vacancies and consequently decreases 
the conductivity.

Apart from high initial ionic conductivity, minimal con-
ductivity degradation at operating temperature is equally 
important for the electrolyte material. The conductivity 
deterioration of electrolytes should not exceed 0.1% per 
1000 h (Accardo et al. 2017; Kumar et al. 2020). The cubic 
phase shows the highest ionic conductivity and lower con-
ductivity degradation in aging in Sc2O3-ZrO2 system. A 
second dopant (Y3+, Yb3+, Al3+, Ga3+, Gd3+, etc.) has been 
added within the Sc2O3-ZrO2 system to improve the sta-
bility of cubic phase over rhombohedral β-phase at room 
temperature and to inhibit the transformation from cubic 
to vacancy ordered β-phase during the aging of electrolyte 
(Kumar et al. 2017; Nikonov et al. 2017). Politova and Irvine 
(2004) have shown that only 1 mol. % addition of Y2O3 in 
(Y2O3)x(Sc2O3)(11 − x)(ZrO2)89 system successfully sta-
bilized the cubic phase over rhombohedral β-phase, which 
results in a linear Arrhenius plot of conductivity without 
any step. A similar type of cubic phase stabilization effect 
and linear Arrhenius plot was also observed by Arachi et al. 
(2001) on the addition of CeO2 and Ga2O3 as a co-dopant 
in the Sc2O3-ZrO2 system. The effect of CeO2 addition 
on phase stability and conductivity behavior in the Sc2O3-
ZrO2 system has been well studied by several researchers. 
Lee et al. (2005) have reported that the addition of 1 mol. 
% CeO2 in 10ScSZ composition successfully stabilizes the 
cubic phase. It is also reported that this composition pos-
sesses much higher ionic conductivity in the temperature 
range of 300–1100 °C and better long-term stability than 
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other Sc2O3-ZrO2-based electrolytes. Wang et al. (Wang 
et al. 2005) have shown that the addition of CeO2 beyond 
1 mol. % in 10ScSZ leads to a decrease in conductivity due 
to an increase in lattice strain. Omar et al. (2012) have also 
reported that CeO2 co-doped with Sc2O3-ZrO2 shows far 
better conductivity among the various co-dopant used for 
phase stabilization in Sc2O3-ZrO2 system. Solid oxide 
electrolytes as oxygen ion conductors are of tremendous 
interest in various research areas, including solid oxide fuel 
cells (Smeacetto et al. 2010; Hanif et al. 2021), ionic mem-
branes (Kerman and Ramanathan 2014), and gas sensors 
(Park et al. 2003). Stabilized zirconia-based electrolytes are 
perhaps the most well-known oxygen ion conductor. At high 
temperatures, stabilized zirconia-based electrolytes possess 
good ionic conductivity and extraordinary mechanical and 
chemical stability. For SOFC applications, numerous materi-
als have been investigated as electrolytes for fuel cell appli-
cations; the most frequent materials utilized for the oxide-
conducting electrolyte are YSZ and gadolinium-doped ceria 
(GDC). YSZ becomes an oxygen ion (O2−) conductor above 
800 °C; zirconia-based SOFCs perform in a temperature 
range of 800 to 1100 °C. At 1000 °C, YSZ has an ionic con-
ductivity of approximately 0.1 to 0.2 S cm−1 (Xu et al. 2020; 
Hanif et al. 2021; Huang et al. 2021). The contribution of the 
electrolyte to the ohmic loss in the SOFC is maintained to a 
minimum with a thin electrolyte (25–50 μm). Many factors 
influence the ionic conductivity of zirconia-based electro-
lytes, including dopant concentration, defect dissociation, 
sample preparation, oxygen partial pressure, and temperature 
(Shimada et al. 2019; Ren et al. 2020b; Xu et al. 2020). In 
ZrO2-based systems, ionic conductivity initially rises with 
rising concentrations of acceptor dopant cations upto a cer-
tain level. It is widely accepted that the oxygen ion conduc-
tivity of YSZ is highest when the Y2O3 content is ~ 8 mol.%. 
As the dopant concentration rises further (above 8 mol.%. of 
the Y2O3), the flow of mobile oxygen vacancies is slowed, 
resulting in a decrease in oxygen ion conductivity (Hao et al. 
2017; Singh and Chavan 2019; Li et al. 2021). The oxygen 
ion conductivity of typical 8 mol % Y2O3-stabilized ZrO2 
(YSZ) is suitable for fuel cell applications at 1000 °C; how-
ever, the oxygen ion conductivity of YSZ is dramatically 
lowered with lower temperatures (Yamamoto et al. 1995; 
Smeacetto et al. 2010). On the other words, the ionic con-
ductivity of these electrolytes at intermediate temperatures 
is insufficient for most technical applications, necessitating 
the search for ways to increase it. As a result, novel ways 
either to increase the conductivity of existing materials or 
develop new electrolyte materials are required for their real-
istic application in intermediate temperatures.

Nanostructuring or changing the shape and grain size of 
solid electrolytes is an obvious technique for enhancing ionic 
conductivity. The improvement in ionic conductivity of the 
YSZ electrolyte of up to two orders of magnitude has been 

documented using this method. In certain situations, there 
has been no improvement in ionic conductivity. As a result, 
the conductivity of nanoscale YSZ has a wide range of val-
ues. The challenge of managing both the microstructure and 
the chemical composition of grain boundaries in polycrystal-
line ceramics is one of the main reasons for the disparities in 
results. The ionic conductivity of zirconia solid electrolytes 
is determined by both the type and concentration of doping 
oxide. The conductivity reaches its peak at a given dopant 
concentration (as shown in Fig. 5). The maximum ionic con-
ductivity is noticed in YSZ at roughly 8 mol% yttria, which 
is considered the low-concentration boundary for the phase 
stability of cubic zirconia. In the case of scandia-doped zir-
conia (ScSZ), maximum ionic conductivity is observed at a 
doping concentration of 10–11 mol%. It is observed that the 
position of the maximum is related to the difference in ionic 
radii between the dopant cation and Zr4+. The lower the 
dopant concentration is needed to attain maximal conduc-
tivity when the radii difference is greater. YSZ is the most 
extensively utilized electrolyte for high-temperature SOFCs 
among zirconia-based materials because it has a sufficiently 
good ionic conductivity at high temperatures, 0.12 S/ cm at 
1000 °C (Wang et al. 2019), and low-cost in comparison to 
other zirconia-doped electrolytes. At working temperatures 
of 500–600 °C, the ionic conductivity of YSZ is insufficient; 
it is only around 0.001 S/cm. Because of the low activation 
energy for oxygen vacancy diffusion, scandia-stabilized zir-
conia electrolyte (ScSZ) has better ionic conductivity than 
YSZ (Ng et al. 2016; Azim Jais et al. 2017).

However, ScSZ has several drawbacks, such as being 
more expensive than YSZ and deterioration under operating 
conditions. ScSZ electrolyte deterioration is more noticeable 
when scandia doping levels are less than 8 mol% (Haering 
et al. 2005; Spirin et al. 2012). Although ScSZ electrolytes 

Fig. 5   Variation of the ionic conductivity of zirconia-based electro-
lytes depending upon doping concentration at 1000  °C (Zhigachev 
et al. 2021).  Reproduced from the ref. (Zhigachev et al. 2021)
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with 10–12 mol% show the highest measured conductiv-
ity, it has drawbacks as well. When these electrolytes are 
cooled to 500–700 °C, the cubic zirconia phase converts 
into a rhombohedral phase with ordered oxygen vacancies, 
which has a conductivity at least an order of extent lower 
than the cubic phase (Arachi et al. 1999). As a result, the 
use of ScSZ electrolytes in IT-SOFCs is restricted until a 
solution for suppressing the cubic to rhombohedral phase 
transformation while chemical stability and maintaining 
ionic conductivity are discovered. Voltage vs. current den-
sity plot are very important to understand the performance 
of a fuel cell. There are three types of voltage losses in a 
fuel cell polarization curve are as follows: mass transport 
losses, ohmic losses, and activation polarization losses. The 
reaction kinetics occurring at the electrodes is the primary 
source of activation polarization losses. Resistances in the 
materials employed in the cell are the primary cause of 
ohmic losses (Qiao et al. 2018; Xia et al. 2018; Masciandaro 
et al. 2019). The incapability to provide enough reactants to 
the catalyst layers of the electrodes to meet demand is the 
primary source of mass transport losses. Developments of 

the right materials for fuel cells can reduce all three types 
of losses. For example, enhancements in oxygen ion con-
ductivity might minimize ohmic losses, whereas improve-
ments in catalytic activity could reduce activation polariza-
tion losses (Khan et al. 2018; Nielsen et al. 2018; Riegraf 
et al. 2021). The electrolyte in SOFCs is critical in deter-
mining the operating temperature and overall conversion 
efficiency. Various ion conductors have been used as elec-
trolytes in SOFCs, including gadolinium-doped ceria (GDC) 
and yttrium stabilized zirconia (YSZ). Despite the fact that 
SOFCs are the most efficient method of converting chemical 
energy into usable electrical energy, their commercializa-
tion has been restricted by their high operating temperatures 
(800–1000 °C) (Chen et al. 2016a; Shin et al. 2021). Despite 
the excellent ionic conductivity of doped ceria, ceria-based 
electrolytes have several drawbacks when working at inter-
mediate temperatures. However, SOFCs’ electrochemical 
performance degrades rapidly in the lower temperatures. As 
a result, developing high-performance IT-SOFCs is essen-
tial to expanding their commercial application potential (Fu 
et al. 2021; Istomin et al. 2021). A new form of bismuth 

Fig. 6   SEM images of a ESB/YSZ bilayer SOFC unit, b YSZ single 
layer SOFC unit. EDS analysis with c line-scan, and d areal elemen-
tal mapping of the YSZ|ESB|LSM- ESB, e fuel cell performance test 
using YSZ and YSZ/ESB electrolytes at 700 °C, where YSZ and ESB 

represent Y0.16Zr0.8O1.92, and Bi1.6Er0.4O3, respectively (Joh et  al. 
2017), f Nyquist plots at 0.5 V OCV.  Reproduced from the ref. (Joh 
et al. 2017). Copyright 2017 ACS
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oxide/zirconia bilayer (ESB/YSZ) electrolyte for SOFCs 
was developed by Joh and colleagues (Joh et al. 2017). 
Figure 6a and b show the cross-sectional SEM images of 
SOFCs made of ESB/YSZ bilayer and YSZ single layer elec-
trolytes, respectively. These SEM micrographs have revealed 
that both cells have the similar structure, with the excep-
tion of the extra ESB layer. The findings have proved that 
using a simple screen-printing technique, the ESB layer can 
be uniformly coated on the YSZ surface without generat-
ing any pores. Energy dispersive X-ray spectroscopy (EDS) 
was used to analyze the composition (Fig. 6c) and the areal 
mapping in order to evaluate any potential interdiffusion of 
constituent elements between layers (Fig. 6d). The resulting 
spectra show that there is no interdiffusion of any compo-
nents between layers. The electrochemical impedance spec-
tra of the two cells are shown in Fig. 6f. The high frequency 
intercepts at the real axis were used to measure ohmic losses 
using Nyquist plots. Due to the substantially enhanced oxy-
gen incorporation process at the cathode/electrolyte inter-
face, the new bilayer (ESB/YSZ)-based SOFC delivers an 
exceptionally high-power density of 2.1 W/cm2 at 700 °C, 
which is 2.4 times greater than the YSZ single electrolyte 
SOFC, as shown in Fig. 6e. The output voltage remained 
constant for 150 h, demonstrating that the ESB/YSZ bilayer 
SOFC is very stable in the intermediate temperature range. 
This study revealed that the bilayer electrolyte is a potential 
alternative electrolyte for achieving greater power density 
SOFCs at lower temperatures.

Yttria-stabilized zirconia (YSZ)-based materials are 
commonly employed as electrolytes in SOFCs due to their 
outstanding chemical stability and mechanical strength in 
reducing and oxidizing atmospheres and good oxide ion 
conductivity at operating temperatures (Hao et al. 2017)
(Abdalla et al. 2018). Compared to other solid oxide elec-
trolyte materials such as doped ceria and bismuth oxides, 
YSZ has low oxide ion conductivity at low temperatures. In 
order to resolve this issue, YSZ electrolytes are often manu-
factured as thin films to reduce the ohmic loss caused by the 
poor ionic conductivity of electrolytes. In a research study, 
Cho and his colleagues (2019) developed YSZ-based thin-
film electrolytes with variable Y2O3 doping concentrations 
for SOFC applications. TEM analysis has been performed in 
order to observe into the specific microstructures of thin-film 
SOFCs. According to the well-known inherent characteris-
tics of ALD films, it is clearly visible that all of the deposited 
YSZ thin-film electrolytes exhibit a partially polycrystalline 
structure (Fig. 7b–f) and similar porosity regardless of Y2O3 
concentration. The use of direct plasma in this study can 
further increase the degree of crystallization because of the 
close proximity of the substrate. The researchers disclosed 
that the amount of Y2O3 doping in the thin-film electrolytes 
has significantly impacted fuel cell performance (as shown 
in Fig. 7g). The findings of this study suggest that the Y2O3 

doping level of the YSZ thin-film electrolyte has a signifi-
cant impact on electrochemical polarization processes to 
influence the fuel cell performance.

Recent research has shown that combining an ion conduc-
tor with electrode material is an efficient way to get high ion 
conductivity and has significant promise in electrolyte appli-
cations for intermediate temperature solid oxide fuel cell 
(LT-SOFCs) applications. According to Lee and colleagues 
(2005), YSZ-SrTiO3 electrolyte improved ionic conductivity 
by up to two orders of magnitude over YSZ electrolyte. In 
a research study, Nie and his colleagues (2021) developed 
a new LaNiO3-YSZ composite electrolyte, which demon-
strated an excellent peak power density of 399 mW cm−2 
at 450 °C and 1045 mW cm−2 at 600 °C in H2/air atmos-
phere, as shown in Fig. 8b. The cells have high open-circuit 
voltages ranging from 0.946 to 1.134 V, which are near to 
theoretical values, as shown in Fig. 8a. Furthermore, the 
amount of LaNiO3 in the YSZ-SrTiO3 composite electrolyte 
affects the power density of these cells significantly. Select-
ing an appropriate cathode could be a viable way to increase 
the performance of the fuel cell. This study shows how to 
achieve high ionic conductivity using unique cathode-ion 
conductor composite materials.

Reducing ion-conducting resistance of the electrolyte 
material is essential for the development of low-temperature 
solid oxide fuel cells. This can be accomplished by using bet-
ter ionic conductivity electrolyte materials or lowering the 
electrolyte thickness. Several researchers have used atomic 
layer deposition (ALD), pulsed laser deposition (PLD), and 
solution coating techniques to construct thin-film electro-
lytes (Huang et al. 2007; Shim et al. 2007; Oh et al. 2012). In 
a research study, plasma-enhanced atomic layer deposition 
(PEALD) was used to produce a thin film (nanoscale) yttria-
stabilized zirconia (YSZ) electrolyte coating over a porous 
anodic aluminum oxide supporting substrate for solid oxide 
fuel cells (Ji et al. 2015). This research found that plasma-
enhanced atomic layer deposition (PEALD) is an excel-
lent method for depositing thin-film electrolytes on porous 
anodic aluminum oxide substrates because it allows for a 
significant reduction in film thickness and ohmic loss dur-
ing electronic insulation and maintaining gas tightness. The 
SOFC-based thin film YSZ electrolyte (thickness of ~ 70 nm) 
produced a high open-circuit voltage (OCV) of ~ 1.17 V. 
Atomic force microscopy (AFM) was used to examine the 
grain size of PEALD-YSZ thin films formed on a silicon 
substrate (Fig. 9a). Figure 9b shows high-resolution trans-
mission electron microscopy (TEM) images of the anodic 
aluminum oxide (AAO)-supported SOFC with 70-nm-
thick PEALD-YSZ electrolyte, 320-nm-thick Pt anode, and 
150-nm-thick porous Pt cathode. Polarization curves for 
micro-SOFCs with PEALD-YSZ electrolyte thicknesses 
of 70 and 210 nm were measured at 500 °C. In terms of 
peak power density, the cell with a 70-nm-thick electrolyte 
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Fig. 7   TEM images of microstructure of Y1Z1 and Y1Z4 thin film 
SOFC units, a microstructure of Y1Z1 fuel cell, b Y1Z1 cell thin 
film electrolyte, c TEM image of Y1Z1 electrolyte, d TEM picture 
of the microstructure of Y1Z4 fuel cell unit, e TEM image of Y1Z4 
electrolyte, f TEM image of Y1Z4 electrolyte, g polarization curves 

of SOFCs with YSZ electrolytes of various doping ratios measured 
at 450 °C, where the concentrations of Y2O3 in Y1Z1, Y1Z4, Y1Z7, 
and Y1Z10 are 32.1  mol%, 10.7  mol%, 7.2  mol%, and 4.9  mol%, 
respectively (Cho et al. 2019).  Reproduced with permission from the 
ref. (Cho et al. 2019). Copyright 2019 Elsevier
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outperformed the one with a 210-nm-thick electrolyte, as 
shown in Fig. 9c. The ohmic loss of the cell with PEALD-
YSZ electrolyte is shown in Fig. 9d. The results indicated 
that reducing electrolyte thickness can reduce ohmic loss, 
which has significantly increased fuel cell performance.

Ceria‑based electrolyte used in fuel cells

Pure CeO2 has a cubic fluorite structure at room temperature 
and is a poor oxygen ion conductor. An appreciable con-
ductivity level can be achieved by doping of ceria, enabling 
doped ceria to be utilized as electrolyte material in SOFC 
(Qiao et al. 2018; Shin et al. 2019). However, at low par-
tial pressure (< 10–15 atm.) and high temperature (around 
700 °C), Ce4+ present in ceria tends to reduce to Ce3+ and 
form more oxygen vacancy and electrons, which are local-
ized as polarons on Ce3+ sites. Thus, the electronic hopping 
mechanism between Ce3+ and Ce4+ ions gives rise to n-type 
electronic conductivity, which leads to a drop in the open 
circuit voltage of SOFC. This larger ionic size of Ce3+ than 
Ce4+ hinders the migration of O2− ions and lowers the ionic 
conductivity. These reasons limit the use of CeO2 as an elec-
trolyte in the intermediate temperature range (500–700 °C) 
in SOFC (Shah et al. 2020; Hwang et al. 2021). Ceria-based 
electrolytes are considered good SOFC electrolytes. It has 
high electrode compatibility. Doped ceria shows high oxy-
gen ion conductivity, particularly at a lower temperature as 
compared to stabilized zirconia. At intermediate tempera-
tures, gadolinium and samarium–doped ceria were found to 
be good oxygen ion conductors. Arai and co-workers (Yahiro 
et al. 1988) investigated the consequence of doping of MgO, 
BaO, CaO, and MgO in ceria. The addition of strontium 
oxide and calcium oxide to ceria improves its ionic con-
ductivity. When compared to strontium oxide and calcium 
oxide, adding magnesium oxide and barium oxide does not 

significantly improve ionic conductivity due to the high size 
mismatch of Mg2+ and Ba2+ with Ce4+ (Ng et al. 2016; Azim 
Jais et al. 2017).

Ceria-based electrolytes are widely explored as SOFC 
electrolytes because of their high electrode compatibility 
with oxygen ion conductivity, particularly at a lower tem-
perature as compared to stabilized zirconia. However, pure 
CeO2 possesses a cubic fluorite structure from room tem-
perature to its melting point. Stoichiometric ceria is not a 
good ionic conductor. On doping ceria with acceptor metal 
oxides such as Gd2O3, Sm2O3, CaO, and SrO, an appreci-
able conductivity level can be achieved, enabling doped 
ceria to be utilized as electrolyte material in SOFC (Qiao 
et al. 2018; Shin et al. 2019). The effect of MgO, BaO, 
CaO, SrO, and MgO doping in ceria was fully explored 
in a research study. It has been observed that oxygen ion 
conductivity of ceria was improved significantly by the 
addition of SrO and CaO (Yahiro et al. 1988). Adding 
magnesium oxide and barium oxide does not considerably 
improve oxygen ion conductivity. The finding could be 
explained by the fact of large-size mismatch of Mg2+and 
Ba2+ ions with Ce4+ ion. Lowering the operating tempera-
ture can lower operation and manufacturing costs while 
also improving efficiency and long-term stability. Develop-
ing high oxygen ion conductive electrolytes is essential for 
attaining high power density at low temperatures. Despite 
the excellent ionic conductivity of doped ceria, ceria-
based electrolytes have several drawbacks when used at 
intermediate temperatures. At high temperatures (around 
700 °C), Ce4+ in ceria tends to reduce to Ce3+ and form 
more oxygen vacancy and electrons. Thus, the electronic 
hopping mechanism between Ce3+ and Ce4+ ions gives 
rise to n-type electronic conductivity, leading to a drop in 
the open-circuit voltage of SOFC. This larger ionic size 
of Ce3+ than Ce4+ hinders the migration of O2− ions and 
lowers the ionic conductivity. Meanwhile, the chemical 

Fig. 8   a Performance of fuel 
cell based on LaNiO3-YSZ 
electrolyte at 550 °C with 
various compositions, b per-
formance of fuel cell based on 
40LaNiO3-60YSZ electrolyte 
at different temperatures in H2/
air atmosphere (Nie et al. 2021).  
Reproduced with permission 
from the ref. (Nie et al. 2021). 
Copyright 2021 Elsevier
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instability of Ce4+ under reduced atmospheres would result 
in mechanical failure. Lowering the operating temperature 
can lower operation and manufacturing costs while also 
improving efficiency and long-term stability. Developing 
high oxygen ion conductive electrolytes is essential for 
attaining high power density at low temperatures. Doped 
ceria (e.g., Ce0.9Gd0.1O2, Ce0.8Sm0.2O2) have a very high 

ionic conductivity and are commonly utilized as electro-
lyte materials for low-temperature solid oxide fuel cells 
(SOFCs) (Xia and Liu 2001; Zhang et al. 2006; Lee et al. 
2014). However, internal short circuit behavior in doped 
ceria–based electrolytes makes it impractical to employ 
in operating conditions. The internal short circuit would 
result in a large drop in open-circuit voltage (OCV) and, 

Fig. 9   a TEM image of an AAO substrate-supported cell comprising 
70-nm YSZ electrolyte, 150-nm Pt cathode, and 320-nm Pt anode, 
b AFM images of YSZ films with thicknesses of 35, 70, 140, and 
210 nm deposited on flat silicon substrates (Ji et al. 2015). c Polari-

zation curves of the fuel cell made of REALD-YSZ electrolyte and 
d impedance data for cells with 70- and 210-nm-thick PEALD-YSZ 
electrolyte at 500 °C (Ji et al. 2015).  Reproduced from the reference 
(Ji et al. 2015). Copyright 2015ACS
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as a result, reduced SOFC operational efficiency (Zhang 
et al. 2007; Sun and Liu 2012).

Various techniques were developed to take advantage of 
doped ceria’s high oxygen ion conductivity while avoiding 
the abovementioned limitations. A typical approach is to 
use the yttria-stabilized zirconia (YSZ) electron-blocking 
layer between the electrolyte membrane and anode support 
(Virkar 1991; Matsuda et al. 2007). The fuel cell perfor-
mance reduces significantly due to the low oxygen ion con-
ductivity of YSZ and the interaction between doped ceria 
and YSZ during sintering, despite the fact that the OCV is 
increased substantially (Price et al. 2005; Lim and Virkar 
2009; Qian et al. 2013). Although the doped ceria electro-
lyte has a better conductivity at low temperatures than YSZ, 
with a conductivity of 0.019 to 0.011 S/cm at 600–500 °C 
(Fuentes and Baker 2009), electrolyte conductivity of about 
0.01 S/cm is insufficient for building highly efficient low-
temperature SOFCs (LTSOFCs). However, the ionic con-
ductivity of these electrolytes at intermediate temperatures 
is insufficient for most technical applications, necessitating 
the search for ways to increase it. As a result, novel ways 
either to increase the conductivity of existing materials or 
develop new electrolyte materials are required for their real-
istic application in intermediate temperature. These reasons 
limit the use of CeO2 as an electrolyte in the intermediate 
temperature range (500–700 °C) in SOFCs (Shah et al. 2020; 
Hwang et al. 2021). Various techniques were developed to 
take advantage of doped ceria’s high oxygen ion conduc-
tivity while avoiding limitations. A typical approach is to 
use the YSZ electron-blocking layer between the electrolyte 
membrane and anode support (Virkar 1991; Matsuda et al. 
2007). However, the fuel cell performance reduces signifi-
cantly due to the low oxygen ion conductivity of YSZ and 
the interaction between doped ceria and YSZ during sinter-
ing, even though the OCV is increased substantially (Price 
et al. 2005; Lim and Virkar 2009; Qian et al. 2013).

Few recent studies have reported that replacing ceria-Ni-
based composite anode with BaCeO3-Ni based composite 
anode in doped ceria electrolyte-based SOFCs is a more 
effective and realistic option to achieve high OCV (Liu et al. 
2012; Sun and Liu 2012; Sun et al. 2014; Cao et al. 2015). 
This method uses Ba ion diffusion to react with doped ceria 
electrolyte in situ during the sintering process, forming an 
electron-blocking interlayer. For example, SOFC was created 
and evaluated in a research study employing a barium-con-
taining anode and Ce0.8Sm0.2O2−δ-based electrolyte (Sun and 
Liu 2012). A thin BaO-CeO2-Sm2O3 composite interlayer 
is formed at high temperatures (Fig. 10a–b). The electron-
blocking interlayer entirely eliminates the well-known inter-
nal short circuit in the dopped ceria–based electrolyte (SDC) 
membrane. Except for the electron-blocking interlayer, the 
doped ceria electrolyte co-fired at 1150 °C was consider-
ably porous. The dense electron-blocking interlayer created a 

sufficient barrier for gas leakage, which facilitated the gener-
ation of high OCV. The diffusion of Ba from the anode to the 
SDC electrolyte membrane was confirmed by the SEM–EDS 
picture (Fig. 10b). However, the electrochemical perfor-
mance of the cell was not improved considerably, espe-
cially at low temperatures. For doped ceria–based SOFCs, 
the cause of poor electrochemical performance could be that 
the catalytic performance of BaCeO3-Ni-based anode is infe-
rior than CeO2-Ni-based anode. The catalytic ability and 
the microstructure of the electrodes have been shown to be 
highly associated with power performance. Additionally, the 
electrodes formed a strong bond with the electrolyte, indicat-
ing good compatibility. The cell (cell-improved, i.e., the cell 
containing dense electron-blocking interlayer) showed good 
power densities at intermediate temperature (600–700 °C) 
as shown in Fig. 10c. In contrast, a typical SDC-based cell 
(cell-unimproved) showed comparatively lower power densi-
ties at similar experimental conditions as shown in Fig. 10d. 
The significantly improved OCV values of cell-improved 
are responsible for the better improvement in cell function. 
Furthermore, the relationship between the thickness of the 
Ba-containing layer and cell performance, including OCV 
and power, is still unknown.

For doped ceria–based SOFCs, one effective and feasi-
ble choice to achieve high OCVs is using BaCeO3Ni com-
posite as the anode. Ba ions diffuse from the anode during 
the sintering process and react with doped ceria electrolyte 
in situ, generating an electron-blocking interlayer. How-
ever, the electrochemical performance is inferior to doped 
ceria–based cells. The finding can be explained by the fact 
that the catalytic performance of doped BaCeO3Ni com-
posite may be inferior to that of doped CeO2Ni anode. The 
microstructure of the electrodes and the catalytic char-
acteristics is closely correlated with power performance. 
There is a need to investigate the relationship between 
cell performance and the thickness of the Ba-containing 
layer, particularly power output and OCV. For fuel cell 
applications, Ce0.8Sm0.2O2 (SDC) electrolyte and Ni-
BaZr0.1Ce0.7Y0.2O3 (Ni-BZCY)-based bilayer anode was 
developed (Gong et al. 2016). During sintering, the anode 
layer aids in the formation of an electron blocking layer. 
The thickness of Ni-BZCY showed a big impact on the 
cell’s electrochemical performance. The excellent power 
density was observed with a 50 µm thickness of the Ni-
BZCY layer (as shown in Fig. 11a). NiO-BZCY layer 
thickness showed a strong influence on the power density 
of the cells and OCVs. The single-cell showed good fuel 
cell performance in terms of power density and current 
density, as shown in Fig. 11b. Figure 11c and d shows 
that the single-cell has good performance stability with 
no performance decline in both open circuit and working 
conditions, demonstrating that the cell has a robust struc-
ture for long-term practical use.
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Fig. 10   a The SEM picture of the cross section of the single-cell, b 
SEM–EDS analysis image of the anode/electrolyte interface, c fuel 
cell performance test of the cell-improved, d power density and I–V 

curves of fuel cell with SDC (cell-unimproved) (Sun and Liu 2012). 
Adopted with permission from the ref. (Sun and Liu 2012).  Copy-
right 2012 Elsevier

Fig. 11   a Single-cell perfor-
mance of NiO-BZCY at 650 °C, 
b single-cell performance of 
NiO-BZCY with a 50 μm thick-
ness, c power density as a func-
tion of time, d stability of OCV 
tested under open conditions 
(Gong et al. 2016).  Reproduced 
with permission from the ref. 
(Gong et al. 2016). Copyright 
2016 ACS
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Despite the fact that building highly efficient ceria-based 
SOFCs is a major challenge for commercial applications, 
various significant attempts are being made to develop via-
ble SOFCs. For example, in one work, a bilayered anode 
consisting of Ni-BaZr0.1Ce0.7Y0.2O3−δ (Ni-BZCY) and 
Ni-Ce0.8Sm0.2O2−δ (Ni-SDC) and a doped ceria–based elec-
trolyte (Ce0.8Sm0.2O2−δ) (SDC) was used to construct a novel 
form of SOFC (Gong et al. 2016). The Ni-BZCY functional 
layer provided a Ba source for creating an electron-blocking 
layer at the interface of electrolyte and anode during sinter-
ing and catalysis activity. The diffusion of components at the 
electrolyte-anode interface to form an electron-blocking layer 
was confirmed in Fig. 12a. The thickness of the Ni-BZCY 
layer showed a big impact on the electron-blocking layer’s 
characteristics and the cell’s electrochemical performance. 
The OCVs of the cells have been found to be directly con-
nected to the thickness of the electron-blocking layer, and 
a thick electron-blocking layer is required to completely 
remove the internal short circuit. Figure 12b shows the 
OCVs of the different cells. The cell showed excellent fuel 

cell performance in terms of OCV and peak power density 
(1068 mW cm−2) with 50-μm-thick Ni-BZCY layer at 650 °C 
as illustrated in Fig. 12c. The results of this study showed 
that the cell has a noticeable advantage in terms of producing 
high-power low temperatures. Figure 12d shows that the cell 
has good stability and nearly no performance decline in both 
working and open circuit conditions, showing that the cell 
has a robust structure for long-term practical use.

A potential strategy for developing electrolytes for low-
temperature solid oxide fuel cells (LT-SOFCs) is to build 
nanocomposite electrolyte materials utilizing both ceria 
and bismuth oxide. In a recent study, ceria-embedded 
gadolinium-stabilized bismuth oxide was used to make 
a nanocomposite solid electrolyte for LT-SOFC appli-
cations (Parbin and Rafiuddin 2022). A solid-state tech-
nique was used to synthesize several compositions with 
the formula (1 − x)Bi2O3–Gd2O3:xCeO2 (GDBC). SEM 
and TEM techniques were used to examine the morphol-
ogy of the solid electrolyte samples. Typical SEM images 
of Bi2O3, CeO2, Gd2O3, Bi2O3–Gd2O3–CeO2 (GDBC), 

Fig. 12   a SEM–EDS analysis of the interface between anode func-
tional layer and SDC electrolyte sintered at 1350 °C, b OCV values 
of various doped ceria (DCO)-based SOFCs, c polarization curves of 

the single-cell, d power density and short-term stability of OCV as a 
function of time.  Reproduced from the reference (Gong et al. 2016). 
Copyright ACS 2020
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and Bi2O3–Gd2O3 (GDB) are shown in Fig. 13a–e. The 
doped materials (Gd2O3 and CeO2) are clearly embedded 
in the Bi2O3 matrix, as shown by the surface morphol-
ogy of 60Bi2O3–Gd2O3:40CeO2. TEM was used to explore 
the structural properties of GDBC nanocomposite solid 
electrolytes. Figure  13f–h shows the embedded CeO2 
nanoparticles on the surface of Bi2O3–Gd2O3, which are 
in contact with one another, as seen in TEM images of a 
40 wt% CeO2 nanocomposite solid electrolyte. In addi-
tion, the polycrystalline structure of the nanocomposite 
electrolyte is indicated in Fig. 13i. By providing addi-
tional oxygen-ion conduction channels inside the parent 
network, CeO2 nanofillers increased ionic conductivity. 
GDBC showed good conductivity at low temperatures. 
Material conductivity and production costs are the issues 
for the commercialization of LT-SOFCs. Hence, this 
nanocomposite solid electrolyte with 40% CeO2 could 
be a good choice for fabricating electrolytes for fuel cell 

applications due to its high ionic conductivity at low tem-
peratures and low cost. SEM and TEM techniques were 
used to examine the morphology of the solid electrolyte 
samples. Typical SEM images of Bi2O3, CeO2, Gd2O3, 
Bi2O3–Gd2O3–CeO2 (GDBC), and Bi2O3–Gd2O3 (GDB) 
are shown in Fig. 13a–e. The doped materials (Gd2O3 and 
CeO2) are clearly embedded in the Bi2O3 matrix, as shown 
by the surface morphology of 60Bi2O3–Gd2O3:40CeO2. 
The structural features of GDBC nanocomposite solid 
electrolyte with 40% CeO2 were investigated using TEM 
to confirm the production of nanocomposite material. Fig-
ure 13f–h shows the embedded CeO2 nanoparticles on the 
surface of Bi2O3–Gd2O3, which are in contact with one 
another, as seen in TEM images of a 40 wt% CeO2 nano-
composite solid electrolyte.

Fig. 13   SEM images of a Bi2O3, b Gd2O3, c CeO2, d Bi2O3–
Gd2O3, e 60Bi2O3– Gd2O3:40CeO2. f–h TEM images of 60Bi2O3–
Gd2O3:40CeO2 nanocomposite electrolyte, i SAED pattern of 

60Bi2O3–Gd2O3:40CeO2 nanocomposite electrolyte (Parbin and Rafi-
uddin 2022). Adopted with permission from the ref. (Parbin and Rafi-
uddin 2022).  Copyright RSC under common creative license
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Other solid oxide electrolytes for SOFCs

Bismuth oxide exhibits two crystallographic polymor-
phisms, i.e., α-Bi2O3 and δ- Bi2O3. Below 730 °C, α-Bi2O3 
is a stable form which possesses a monoclinic structure 
and δ-Bi2O3, which is stable above 730 °C up to its melt-
ing temperature of 825 °C, possesses a cubic structure 
(Arı et al. 2018; Masina et al. 2021). δ-Bi2O3 has a defect 
fluorite structure in which 25% of sites in the oxygen sub-
lattice are vacant. This high concentration of intrinsic 
defect renders high ionic conductivity to this (Ermiş 2019; 
Liang and Chou 2020). Thus, in the pure form of Bi2O3, 
its useful temperature range is very narrow, which is 730 
to 825 °C. The high-temperature δ-phase can be stabilized 
to lower temperature by the addition of various rare earth 
oxides like Nb2O5, Ta2O5, WO3, and Y2O3 (Lunca Popa 
et al. 2017; Orozco-Hernández et al. 2020). However, in 
phase-stabilized bismuth oxide, an order–disorder transi-
tion of oxygen sublattice occurs around 600 °C with aging, 
which leads to decay in conductivity (Jiang et al. 2002; Joh 
et al. 2017). Besides, the main problem associated with 
stabilized Bi2O3-based materials is their ease of reduction 
at low oxygen partial pressure (PO2 < 10–13 atmosphere at 
600 °C) conditions. In addition to this, the volatile nature 
of Bi2O3 at moderate temperature (~ 700 °C) and poor 
mechanical strength (bending strength 80 MPa) restrict 
their practical use as SOFC electrolyte material (Takahashi 
et al. 1977; Jiang et al. 2002; He et al. 2018).

Sr and Mg–doped LaGaO3 (LSGM)-based electrolytes 
have recently been widely investigated for SOFC applica-
tions because of their strong ionic conductivity at low tem-
peratures and low electronic conductivity (He et al. 2018). 
It appears to be the leading new generation material for use 
as a solid electrolyte in SOFCs operating at ~ 800 °C due 
to its outstanding chemical and electrical properties (ionic 
conductivity ~ 0.10 S/cm at 800 °C). However, the syn-
thesis of LSGM without a second phase was found to be 
difficult; secondary phases such as LaSrGa3O7, LaSrGaO4, 
La4Ga2O9, and LaGa2O4 were formed easily (Jiang et al. 
2002). If the LSGM is made of cubic perovskite, it shows 
a higher ionic conductivity; however, if secondary phases 
occur, the ionic conductivity of the LSGM drops substan-
tially. However, thorough research into the microstructures 
of this material, particularly the effect of chemical compo-
sitions on the microstructure, may be able to resolve these 
issues and give a better foundation for using LSGM in 
SOFCs. However, LSGM is significantly more expensive 
than ceria-based electrolytes, and electrode materials made 
of LSGM have been reported to have durability issues (Arı 
et al. 2018).

Because of the high activation energy of oxygen ion 
conduction, the conductivity of oxygen ions in ceramic 

electrolytes often reduces rapidly as the operating tem-
perature declines. As a result, proton-conducting solid 
oxide materials are more appropriate as intermediate and 
low temperature electrolytes than oxygen ion-conduct-
ing solid oxide electrolytes. The vehicle mechanism and 
the Grotthuss method are the two basic proton transport 
mechanisms for proton-conducting electrolytes (Cao et al. 
2021). A proton joins an oxygen ion to produce hydroxide 
ion (OH−), which moves through oxygen vacancies in the 
vehicle mechanism. The Grotthuss mechanism is a two-
step process that involves the formation of a hydroxide 
ion and proton transfer between nearby oxygen ions where 
the proton is the only movable species in the Grotthuss 
process, with oxygen confined to the area of its crystal-
lographic location. In the 1980s, it was observed for the 
first time that SrZrO3-based materials can conduct protons. 
In another study, Iwahara and co-workers (1981) observed 
that doped SrCeO3 could exhibit proton conductivity when 
exposed to a hydrogen-based environment. However, 
SrCeO3-based materials often have limited proton con-
ductivity and poor chemical stability, resulting in the for-
mation of SrCO3 and CeO2 at high temperatures in a CO2 
atmosphere. Then, different research groups investigated 
the characteristics of high-temperature proton-conducting 
materials based on doped BaCeO3 (Hibino et al. 1992; Ma 
et al. 1999; Danilov et al. 2018). Since then, researchers 
from academics and industries have focused their atten-
tion on this type of proton-conducting electrolyte mate-
rial. Many protonic ceramics, including ABO3 simple 
perovskite and A2B2O5 brownmillerite, have been created 
to date. Among proton-conducting electrolyte materials, 
the ABO3 simple perovskite is the most popular proton-
conducting electrolyte material because its crystal struc-
ture promotes proton mobility. Doped BaZrO3 and BaCeO3 
are two forms of proton-conducting electrolytes that are 
promising. Oxygen vacancies are generated by replacing 
the B-site ions of BaZrO3 and BaCeO3 with dopants such 
as the Y ion, which helps produce protonic defects by dis-
sociative adsorption of water. A good metal oxide electro-
lyte material should have three characteristics: high ionic 
conductivity, sinterability, chemical stability, and thermal 
stability. BaCeO3-based electrolytes have higher proton 
conductivity (greater than 0.01 S/cm) (Rajendran et al. 
2021). As a result, doped BaCeO3 materials are among 
the most investigated proton conductors in recent times. 
Different rare earth elements have been partially doped 
in BaCeO3’s B-site to improve proton conductivity and 
chemical and thermal stability (Wang et al. 2022). Because 
of their intrinsic basicity, BaCeO3-based materials react 
fast with acidic gases to form BaSO4 and BaCO3, which 
hinder proton migration and cause significant thermal 
expansion. Matsumoto and co-workers (Medvedev et al. 
2014) studied the effects of various dopants such as Tm3+, 
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Lu3+, Y3+, Yb3+, Sc3+, and In3+ on the conductivity and 
stability of BaCeO3. It was observed as the ionic radius of 
dopants increased, the ionic conductivity increased, but 
the chemical stability dropped. Among these doped oxides, 
the Y3+-doped BaCeO3 (BCY) exhibited the best proton 
conductivity, whereas the Sc3+-doped BaCeO3 showed 
the best chemical stability. Doped BaZrO3 is substantially 
more chemically stable than BaCeO3-based compounds 
in acidic environments. On the other hand, BaZrO3-based 
electrolytes confront a significant hurdle due to their ina-
bility to build a compact structure. Due to BaZrO3’s poor 
sinterability, the samples usually have low density and 
high grain boundary resistance, resulting in low proton 
conductivity. However, the disadvantages of BaZrO3 can 
be mitigated by applying sintering aids and advanced thin-
film fabrication processes. Proton conductivity is higher in 
BaCeO3-based electrolytes, but chemical stability is poor 
(Sun and Liu 2012; Sun et al. 2014). On the other hand, 
BaZrO3-based electrolytes have a low proton conductivity 
but high chemical stability. Among these doped oxides, 
the Y3+-doped BaCeO3 (BCY) exhibited the best proton 
conductivity, whereas the Sc3+-doped BaCeO3 showed 
the best chemical stability. Doped BaZrO3 is substantially 
more chemically stable than BaCeO3-based compounds 
in acidic environments. On the other hand, BaZrO3-based 
electrolytes confront a significant hurdle due to their ina-
bility to build a compact structure. Due to BaZrO3’s poor 
sinterability, the samples usually have low density and 
high grain boundary resistance, resulting in low proton 
conductivity (Ma et al. 1999). However, the disadvan-
tages of BaZrO3 can be mitigated by applying sintering 
aids and advanced thin-film fabrication processes. For 
proton conductor development, combining BaZrO3-based 
oxide and BaCeO3 to generate novel BaCexZr1−xO3-based 
electrolytes is a viable choice and BaCexZr1−xO3-based 
electrolytes are widely studied. Under certain conditions, 
BaCeO3-based electrolytes demonstrate oxygen ion con-
ductivity as well as proton conductivity. The perovskite 
BaZr0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb), composites based 
on CeO2 and carbonate are the most well-known dual ion 
electrolyte (Anwar et al. 2016; Danilov et al. 2018). Fuel 
cells with dual ion electrolytes have produced appealing 
power output at low temperatures and can combine the 
benefits of oxygen ion and proton conduction.

Concluding remarks

Fuel cell technology is urgently needed as the next-gen-
eration energy conversion technology in order to produce 
clean and sustainable energy. Due to their superior ability to 
minimize air pollution, high fuel flexibility, and high energy 
conversion efficiency, SOFCs are considered the most ideal 

fuel cell for generating electricity among all other fuel cells. 
For SOFC technology to be commercialized on large scale, a 
suitable electrolyte for SOFCs must be developed. In accord-
ance with the former statement, the CeO2 and ZrO2–based 
oxides are the electrolyte materials that have received the 
greatest attention for use in fuel cell technology as signifi-
cant developments in the creation of sustainable and clean 
energy. Among various electrolyte materials, zirconia-
based electrolytes have the great potential to be used as the 
electrolyte in SOFC due to their higher thermal stability, 
non-reducing nature, and higher mechanical strength, along 
with acceptable oxygen ion conductivity. However, zirco-
nia-based electrolytes have poor ionic conductivity below 
850 °C, making them unsuitable for intermediate tempera-
ture working environments. On the other hand, ceria-based 
materials are being studied as electrolytes for intermediate 
SOFCs because of their good electrode compatibility and 
higher oxygen ion conductivity, particularly at lower tem-
peratures. The development of electrolytes for solid oxide 
fuel cells that operate at low (400–650 °C) and intermediate 
(650–850 °C) temperatures has recently attracted the atten-
tion of numerous research teams. As far as the limitations are 
concerned, due to higher working temperatures of SOFCs 
which could be mitigated by substituting conventional elec-
trolytes by some recently developed advanced electrolytes, 
which has proved to possess better ionic conductivity along 
with good chemical, thermal, and mechanical stability from 
low to intermediate temperatures. The most recent devel-
opments in zirconia- and ceria-based electrolyte materials 
have illustrated that there is considerable promise for using 
intermediate temperature SOFCs as an efficient approach for 
the next generation energy conversion technology.
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