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Abstract
The present study has attempted to address the issue of sensitivity of different clusters of factors towards gully erosion in 
the Mayurakshi river basin. Firstly, the gully erosion susceptibility of the basin area has been mapped by integrating using 
18 parameters divided into four factor-cluster, viz. erodibility, erosivity, resistance, and topographical cluster, with the help 
of four machine learning (ML) models such as random forest (RF), gradient boost (GBM), extreme gradient boost (XGB), 
and support vector machine (SVM). Results show that almost 20% and 25% of the upper catchment of the basin belongs to 
extreme and high gully erosion susceptibility. Among the applied algorithms, RF is appeared as the best performing model. 
The spatial association of factor cluster-based models with the final susceptibility model is found the highest for the erosiv-
ity cluster, followed by the erodibility cluster. From the sensitivity analysis, it becomes clear that geology and soil texture 
are dominant contributing factors to gully erosion susceptibility. The geological formation of unclassified granite gneiss 
and geomorphological formation of denudational origin pediment-pediplain complex is dominant over the entire upper 
catchment of the basin, and therefore, can be considered regional factors of importance. Since the study has figured out the 
different grades of susceptible areas with dominant factors and factor cluster, it would be useful for devising planning for 
gully erosion check measures. From economic particularly food security purpose, it is very essential since it is concerned 
with precious soil loss and negative effects on agriculture.
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Introduction 

Although gully erosion creates narrow and deep channels 
that occupy tiny parts of a catchment (Amare et al. 2021) but 
poses a significant impact on the regional geo-environment 
and economic prosperity (Roy and Saha 2021). It causes 
Badlands formation (Cánovas et al. 2017), removal of fer-
tile topsoil (Han et al. 2018), reservoir sedimentation (Dutta 
2016), and lowering of the groundwater table (Tilahun et al. 

2016), etc. Therefore, gully erosion should be checked along 
with sustainable management practices in order to ensure 
future development (Arabameri et al. 2020a). Due to its 
severe impact, gully erosion has attracted plenty of research 
interest (Arabameri et al. 2020a; Saha et al. 2020; Busch 
et al. 2021; Yang et al. 2021a, b; Sidorchuk 2021). Gully ero-
sion susceptibility mapping is considered to be the first step 
of implementing sustainable management practices (Deban-
shi and Pal 2020). Such mapping is possible by detecting the 
relationship between gully erosion and gully conditioning 
factors (Rahmati et al. 2017). The conditioning factors of 
gully erosion belong to different groups or clusters like topo-
graphical, erodibility, erosivity, etc. (Conforti et al. 2011). 
Sometimes, different resistance like vegetation cover and 
installation of check dams may play crucial positive role in 
controlling soil erosion, and those can be grouped as resist-
ance cluster (Debanshi and Pal 2020). Though gully erosion 
susceptibility mapping has been paid enough attention, fac-
tor cluster-specific mapping and assessing their contribution 
to overall erosion susceptibility are not adequately explored. 
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Moreover, most of the existing studies have focused on the 
contribution of individual factors to susceptibility based on 
some statistical analysis. However, how inclusion or exclu-
sion of one single factor can bring changes in the spatial pat-
tern of susceptibility is almost absent. However, this analysis 
can exhibit regional priority factors of importance towards 
susceptibility.

The application of Geographical Information System 
(GIS) with the modern day’s advanced modelling tech-
niques has made spatial research on environmental events 
or natural hazards easier and more robust (Reichstein et al., 
2019). However, the drawbacks of physical models based on 
statistical techniques, as mentioned by (Mosavi et al. 2018), 
promote the adaption of advanced data-driven algorithm-
based models like machine learning (ML) in spatial research. 
The continuous advancement of the ML-based modelling 
approach over the last two decades showed its suitability for 
spatial prediction with an acceptable rate of outperforming 
the conventional models (Mosavi et al. 2017). In the case of 
spatially dense estimation, tree-based algorithms like deci-
sion tree (DT) or RF are considered efficient ML algorithms. 
Ortiz-García et al. (2014) described how ML algorithms 
efficiently model complex data structures of the input vari-
able and produce output. Many algorithms like neuro-fuzzy 
(Dineva et al. 2014), artificial neural networks (ANNs) (Kim 
et al. 2016), support vector regression (SVR) (Taherei Ghaz-
vinei et al. 2018), support vector machine (SVM) (Mosavi 
et al. 2017), etc. are reportedly capable of making both short 
and long-term prediction. Apart from that, there are several 
forms of principal monotonicity inference (PMI) like dis-
crete principal monotonicity inference (DPMI), multivariate 
principal monotonicity inference (MPMI) which are used 
to handle irregular, nonlinear, uncertain, and multi-variate 
dependent data in the field of hydro-system (Cheng et al., 
2016), climate classification (Cheng et al. 2017). In the pre-
sent context, various ML algorithms have been explored 
and effectively used to predict and compare gully erosion. 
Along with predicting environmental events like gully ero-
sion, Pourghasemi et al. (2020) presented the role of ML in 
the selection of its controlling factors.

Sometimes, the spatial models developed with the help of 
ML or DL algorithms provide a generalized result (Maxwell 
et al., 2016; Neyshabur et al. 2017; Kawaguchi et al. 2017; 
Maxwell et al., 2020a, b; 2020a). The root of generalization 
is geographical diversity, error in machine learning through 
training datasets (Maxwell et al., 2020a, b), or the disparate 
dataset and limited training sites (Hoeser and Kuenzer 2020; 
Hoeser et al., 2020). Limited training sites based on spatial 
model building and interpolation are often done by scholars. 
This process is faster but makes output coarser in resolution 
since it creates a map based on the interpolation method. 
For the sake of precision in output, instead of this approach, 
the pixel inclusive approach is essential for such modelling. 

Python libraries have the potential to include all the pixels 
over a larger geographical region. It is open-source software, 
and algorithms can be programmed as per need (Brown-
lee 2019). Moreover, the optimization of hyperparameters 
is an integral part of ML-based modelling to enhance the 
accuracy of the prediction (Kotthoff et al. 2019). This pixel 
inclusive work is highly time-consuming. However, it can 
yield a more precise result which is of utmost necessity in 
the planning process.

Hyper-parameters are those parameters that need to be set 
before training the machine, and those can be achieved either 
by manual searches or by the auto-optimization programme 
(Pradhan et al. 2021). Manual searches require previous 
knowledge, expertise, and professional skill; therefore, it 
becomes difficult to set effective hyper-parameters (Bergstra 
and Bengio 2012). On the other hand, the auto-optimization 
process allows for overcoming these difficulties (Pradhan 
et al. 2021). Python libraries have a broader scope of hyper-
parameter optimization (Brownlee 2019) with robust auto-
optimization functions (Mitrpanont et al. 2017). Therefore, 
using the python libraries, the present study has attempted 
to fill the aforementioned gap and aimed to produce pixel 
inclusive spatial model of gully erosion susceptibility based 
on the factor cluster model and assessed to explain the role 
of individual factor clusters in overall susceptibility. In addi-
tion, this study also has attempted to explore the role of the 
individual factors at pixel scale to determine the spatial pat-
tern of the susceptible areas. This may be a novel approach 
to investigating gully erosion which is capable of identifying 
the sensitivity of each factor cluster towards the occurrence 
of gully erosion and, in turn, may also help determining the 
local factor of gully erosion.

Study area

The present study area is the Mayurakshi river basin which is 
located over the Chottanagpur plateau fringe region of east-
ern India. The basin area spreads over more than 5400 km2 
between 23°15′N to 24°34′15″N to 86°58′E to 88°20′30″E 
over two states of India, namely Jharkhand and West Bengal 
(Fig. 1a). The entire basin area is characterized by the Rarh 
tract, and the Granitic gneiss is the dominant rock type that 
covers most of the upper and middle catchment of the basin 
(Fig. 1b). In the north-eastern part of the basin, over a con-
siderable area, granet-biotite gneiss is also found. Geomor-
phologically (Fig. 1c), these parts of the basin belong to the 
denudational origin pediment-pedeplain complex and dis-
sected hills and valleys. On the other hand, the lower part of 
the basin consists of older and newer alluvium flood plain of 
fluvial origin. The confluence part of the basin on the eastern 
side is merged with the Ganges delta. The lower catchment 
of the basin is not subjected to considerable gully erosion. 
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Fig. 1   Location of the study area with geographical setup. a India, b geological division, c geomorphological divisions, d area of interest
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On the contrary, almost all the gully formation is witnessed 
in the upper and middle catchment of the basin. Field inves-
tigation and topographical maps show, in this basin area, 
the geological formations of granitic gneiss formation and 
granet-biotite gneiss coupled with the geomorphological 
formation of denudational origin pediment-pediplain com-
plex and denudational origin moderately dissected hill and 
valleys are mostly subjected to gully formation and erosion. 
Therefore, for minutely focusing on the most gully erosion 
effected area, the lower catchment of the basin has been 
excluded from the investigation, and most affected geologi-
cal and geomorphological divisions have been taken as an 
area of interest in this study (Fig. 1d).

This region comes under tropical monsoon climate type 
with hot-humid summer and cold-dry winter. The average 
annual temperature of the region is 24–28 °C, with a mini-
mum of 15–17 °C and a maximum of 35–38 °C. Average 
yearly rainfall is about 1650–1700 mm, and more than 80% 
is experienced in the monsoon season, covering the months 
of June to September. Such a climatic profile corresponding 
to the aluminium and ferrous mineral of the soil promotes 
lateralization (Ghosh et al. 2015). These lateritic tracts are 
highly prone to gully formation. Especially the high summer 
temperature and mild cold in the winter highly favour laterite 
formation. This lateralization leads to greater solubility of 
the silica and increases the chance of desertification. Moreo-
ver, < 20 °C average temperature intensifies the mechanical 
weathering and a considerably high amount of rainfall in 
the monsoon season results in leaching, where fluctuation of 

groundwater in response to the wet and dry season conducts 
groundwater laterite formation (Sarkar et al. 2020).

Materials and methods

Materials

Eighteen data layers have been used for creating a gully ero-
sion susceptibility map in the present study region. All the 
selected parameters and the data sources used for preparing 
the spatial data layers are mentioned in Table 1. All Landsat 
images and SRTM DEMs have been pre-processed before 
final layer preparation.

Selection of contributing factors, factor clustering, 
and data layer preparation

The parameter for gully erosion susceptibility mapping has 
been divided into four clusters, namely erodibility, erosivity, 
resistance, and topographical factors (Fig. 2). These clusters 
are formed based on their role in determining the gully ero-
sion. Studies like Conforti et al. (2011) Debanshi and Pal 
(2020), and Saha et al. (2020) reported similar factor cluster-
ing in their studies. The factors under different clusters are 
mentioned in Table 1. Factors have been selected consider-
ing their influence on gully initiation and expansion. Few 
topographical configurations like slope, curvature, stream 
power index (SPI), distance from existing gullies, etc. play a 

Table 1   Factors under different clusters, their data sources, and VIF scores

Clusters Factors Data source VIF

Topographic Slope SRTM DEMs (spatial resolution — 30 m) 1.55
Curvature 1.41
SPI 1.47
Distance from stream 1st and 2nd order stream extracted from SOI toposheets 1.49

Erodibility Geology Geological map provided by GSI 1.88
Geomorphology Geomorphological map downloaded from BHUVAN (an Indian web 

absed utility)
1.48

Soil texture Field data and NIC provided village level texture data 1.82
BSI Landsat satellite images (spatial resolution 30 m, path/row- 139/43) 3.29
Ferrous content 3.46
LULC 1.17

Erosivity Average monsoon rainfall DST provided annual rainfall map 3.51
Soil erosivity District resource map of rain fall distribution 3.10
Monthly temperature fluctuation Landsat satellite images (spatial resolution 30 m, path/row- 139/43) 2.54
WSVI 2.42

Resistance NDVI 3.46
Distance from GHB Location of GHBs extracted from SOI toposheets 1.76
Distance from check dams Location of check dams extracted from Google earth imagery 1.42
Surface water coverage Coverage of reservoir extracted from SOI toposheets 2.47
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significant role behind gully erosion. Several previous stud-
ies (Meliho et al., 2018; Shit et al. 2020; Azedou et al. 2021) 
have used these factors for assessing gully erosion in a sim-
ilar environment. These factors have been selected as the 
topographical factor cluster in this study.

Slope, SPI directly influence the erosion rate and also, to 
some extent, determine the distribution of gullies (Kertész 
and Gergely 2011). Gullies expand rapidly over the steep 
slope compared to flat land (Marden et al. 2012). The SPI 
indicates the erosive power of water, considering the dis-
charge proportional to the catchment area (Debanshi and Pal. 
2020). 1st and 2nd-order streams often behave like gullies 
and tend to expand and pose a risk of gully erosion in the 
nearby areas (Araujo and Pejon 2015; Joshi et al. 2016). The 
straight-line distance from these streams has been computed 
by extracting the 1st and 2nd order streams from the SOI 
toposheets. SRTM DEM has been employed to derive the 
data layers of the slope, curvature, and SPI. The surface 
analysis tool of ArcGIS software (v-10.2) has been used 
to facilitate slope and curvature derivation (Fig. 2r and o), 
while the raster calculator tool has been used to calculate 
SPI (Eq. 1) (Fig. 2p).

Apart from the topographical configuration, there are a 
few characteristics of soil and land surface which influence 
the propensity of gully erosion. These characteristics are 
geological division, geomorphological division, the texture 
of the surface soil, ferrous content in the surface soil, the 
bareness of the land surface, LULC features of the region, 
etc. All these have been included in this study as factors 
under the erodibility cluster. Geological characteristics, 
including rock types and lithological alignments, are very 
closely related to gully erosion and determine the gully 
development process according to composition character-
istics and mechanical properties (Conforti et al., 2011). The 
frequency of existing gullies per unit area of each geologi-
cal division has been calculated, and a raster layer has been 
produced (Fig. 2c) to facilitate the input of spatial model 
development. Similarly, the geomorphological environment 
determines the nature and intensity of erosion (Evelpidou 
et al. 2018), and the same procedure has been followed for 
geomorphological divisions as well (Fig. 2f). Soil texture is 
strongly correlated to soil erosion, where a greater propor-
tion of coarser sand in the top layer of soil makes favourable 
conditions for gully initiation (Pal 2016; Pal and Debanshi, 
2018). For producing the spatial data layer of soil texture 
(Fig. 2a), the proportion of coarser sand in the topsoil layer 
of the upper catchment was measured by extracting soil 
samples from 43 sites and testing them with the help of a 
digital sieve shaker. The village-level soil texture maps of 
the National Informatics Centre (NIC) have also been taken 
to get the data regarding the soil texture. The percentage of 
coarser sand in the soil surface has been identified based on 
USDA (1999) soil classification system. The inbuilt function 

of the ERDAS Imagine software (v-9.2) has been used to 
produce the data layer of ferrous content (Fig. 2e). It has 
been recognized as a predictor of gully erosion because 
of the capability of ferrous minerals to initiate chemical 
weathering in the soil. Studies like (Jha and Kapat, 2003, 
2009) identified this factor important for gully development 
in this region. Since the bare ground positively contributes 
to gully development due to its lower resistance (Jahantigh 
and Pessarakli, 2011), Eq. 2 has been implemented in the 
raster calculator for deriving Bare Soil Index (BSI) (Elfadaly 
et al. 2017) and incorporating bareness of the ground as 
an input factor (Fig. 2d). LULC of a region can influence 
the gully development in many ways (Gelagay, and Minale, 
2016). Supervised classification based on maximum likeli-
hood classifier has been performed in ERDAS Imagine soft-
ware (v-9.2) for LULC identification and mapping (Fig. 2b).

Besides inherent characteristics of the soil surface, cli-
matic factors like rainfall intensity, rainfall erosivity, fluctua-
tion of surface temperature, dryness, etc. are also capable of 
significantly contributing to the soil and gully erosion. These 
factors have been considered under erosivity cluster. The 
DST-provided rainfall map has been used for preparing the 
data layer of average yearly rainfall (Fig. 2h). Soil erosivity 
has also been incorporated in this study to take the impact 
of rainfall intensity on soil into consideration. The concen-
trated rainfall in fewer months causes higher erosion than the 
uniform rainfall for the entire year (Pal and Debanshi, 2018). 
For producing the data layer (Fig. 2g), soil erosivity has 
been calculated using the modified Fournier index (Eq. 3) 
(1960). The temperature fluctuation is the key factor for the 
mechanical disintegration of rock (Bandfield et al. 2011), 
and it could be an important predictor of gully development. 
Monthly land surface temperature (LST) has been calculated 
(Eq. 4) following the guideline provided by Landsat Project 
Science Office (2002), and its coefficient of variation (CV) 
has been calculated for the spatial measurement and prepa-
ration of monthly fluctuation of surface temperature data 
layer (Fig. 2i). Sometimes, dryness of the surface soil may 
promote the severity of erosion; therefore Water Supply-
ing Vegetation Index (WSVI) has been calculated (Eq. 5) 
(Fig. 2j) as an indicator of soil moisture.

The resistance to the gully erosion in the form of vegeta-
tion coverage, water coverage, and implementation of gully 
checking measures is also important for assessing gully ero-
sion susceptibility. Considering the ability of the denser for-
est to protect the soil surface from being eroded, the NDVI 
has been frequently incorporated (Arabameri et al. 2018; 
Roy et al. 2020; Zhou et al. 2021) in gully erosion studies. 
In the present area, multiple patches of semi-denser forest 
areas are noticed. Therefore, calculation of NDVI (Eq. 6) 
(Townshend and Justice 1986) and spatial mapping (Fig. 2k) 
have been performed. Some gully controlling measures like 
the construction of Gully Head Bundhs (GHBs) and check 
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dams were constructed in this region. The straight-line dis-
tance from the GHB and check dams has been measured, and 
maps have been prepared (Fig. 2l and o). The parameter of 
water coverage has been considered in this study because of 
the presence of large reservoir river projects like Massanjore 
or Tilpara in the area. The data layer (Fig. 2m) has been 
prepared by categorizing the basin area into the waterlogged 
and non-water logged areas and demarcating the reservoir 
area from SOI toposheet. All these gully erosion resisting 
factors have been considered under the resistance cluster.

where, As is the specific catchment area in metres, σ is 
the slope gradient in degrees.

where, bSWIR is the short wave infra-red band brightness 
value, bR is the red band brightness value, bNIR is the near 
infra-red band brightness value, bB is the blue band bright-
ness value.

where,
Where, Pi is the precipitation of month I, and P is the 

mean annual precipitation.

where, TB is the at satellite temperature, λ is the wave-
length of emitted radiance in metres, � = h ∗ c∕r , h is the 
Planck’s constant, r is the Boltzmann constant, and c is the 
velocity of light, ɛ is the land surface emissivity.

where, bIR is the infra-red band brightness value, bR is the 
red band brightness value.

Assessing multi‑colinearity of the datalayers

While proceeding with multiple factors, the existence of 
inter-correlated factors, which is termed multi-colinearity, 

(1)SPI = As∗tan�

(2)BSI =

(

bSWIR + bR
)

−
(

bNIR + bB
)

(

bSWIR + bR
)

+
(

bNIR + bB
)

(3)FI =

12
∑

I = 1

Pi

P

2

(4)LST = TB∕
[

1 + {
(

� ∗ TB ∕ �
)

∗ ln �}
]

(5)NDVI =

(

bIR− bR
)

(

bIR + bR
)

may reduce the accuracy of the model output consider-
ably (Kalantar et al., 2020). It arises when in multi-variate 
modelling, multiple factors considered an independent var-
iable have equal prediction capability (Jaafari et al. 2017). 
In this study, the conditioning factors of gully erosion are 
subjected to multi-collinearity, and therefore, a multi co-
linearity test using the variance inflation factor (VIF) test 
(Eq. 7) has been done on employed factors under differ-
ent factor cluster (Arora et al., 2019). The VIF generally 
measures the disagreement within a model with multiple 
relations using the variance of a model with the target 
variable alone (Hong et al. 2019). The entire procedure 
involves Eqs. 7 and 8, where n different VIFs have been 
calculated. Parse, in the case of a linear model with n vari-
able, an ordinary least square regression is conducted first 
with Y and all the explanatory variables (Eq. 7).

where, α is the constant, β is the slope, and e is the 
error. The VIF of ith factor is calculated using the follow-
ing formula (Eq. 8).

where, Ri
2 is the coefficient of determination of ith fac-

tor in the above equation.
The entire calculation has been carried out in the SPPS 

(v-22) environment in the present study. The value of the 
co-linearity test in this study ranges from 1.169 to 3.512, 
which is less than the maximum threshold value for co-
linearity tolerance (VIF ≥ 5) (Lin and Billa 2021; Maiti 
et al. 2021) (Table 1). Therefore, the selected factor is 
non-collinear to each other and quite suitable for the pre-
sent study.

Modelling gully erosion susceptibility

Selection of gully and non‑gully effected regions

To identify the gully affected and non-gully affected 
points, high-resolution Google earth imagery with 2.62 m 
spatial resolution, field investigation, and SOI toposheet 
with a 1:50,000 scale have been used. A total of 3658 
points from both the gully and non-gully erosion points 
have been taken, from which 80% (2926 points) data has 
been used for modelling and 20% (732 points) kept for 
validation purposes. For gully erosion cluster modelling, 
the entire dataset of the gully and non-gully affected zones 
have been convert into binary classes, where ‘1’ is consid-
ered gully affected sites and ‘0’ is considered non-affected 
sites.

(6)Y = � + �1X1 + �2X2 + .... + �nXn + e

(7)VIFi =
1

1 − R2
i

Fig. 2   Raster data layers for the respective factors, a soli texture, b 
LULC, c geological aspect, d BSI, e ferrous mineral, f geomorphol-
ogy, g soil erosivity, h monthly average rainfall, i monthly fluctua-
tion of surface temperature, j WSVI, k NDVI, l distance from gully 
headed bundh, m water coverage, n distance from check dams, o cur-
vature, p SPI, q distance from first- and second- order stream, r slope

◂
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Modelling the factor clusters

Four machine learning (ML) classification algorithms, 
namely random forest (RF), gradient boosting (GDB), 
XGBoosting (XGB), and support vector machine (SVM), 
have been used for four factor cluster binary classification 
in the python environment. The classified maps are com-
bined in the ArcGIS environment in order to prepare the 
final gully susceptibility map (Fig. 3). Details of methodo-
logical analysis of the factor clusters mapping are discussed 
in subsequent section.

Random forest (RF) 

The random forest (RF) is a robust ensemble ML algorithm 
used for both classification and regression for unsupervised 
learning (Schonlau and Zou 2020). The RF algorithm is 
widely used in spatial modelling (Meshram et al. 2021). 

RF uses DT’s as the core element to reduce the estimate 
of classes. Boots trap aggregation is an integral part of 
RF-based estimation and training the dataset (Syam and 
Kaul 2021; Meshram et al. 2021). The Python-based Scikit-
learn ML library has been used for cluster modelling in this 
present study. To optimize the RF algorithm, the selected 
eighteen parameters have been considered input variable for 
the number of trees. To reach the best possible output, 5- 
and tenfold cross-validation has been applied in this study. 
Since the factor cluster are varying to each other, the ‘vote’ 
technique of RF has been used to reduce the noise or outlier 
in the gully erosion controlling factors as input variables. 
The four gully erosion factor clusters are pretty distinctive 
from each other such as erodibility cluster differes from 
topographical, erodibility, and resistant clusters, yet they 
influence the overall condition of the gully. Such dimension-
ality and distinctiveness of the precator variable can affect 
the model’s overall performance. Apart from clustering the 
variable according to their nature of influence on gully, the 

Fig. 3   Methodological proceedings of the study
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feature section system of RF has been used, which can also 
improve the accuracy of the model. Tella et al. (2021) used 
similar feature section of RF in their study. A proximity 
algorithm is used to locate the outliers in terminal nodes 
(Norouzi and Moghaddam 2020).

Gradient boosting model (GBM)

Gradient boosting (GBM) is another tree-based ensemble 
machine learning technique used for supervised learn-
ing (Zhang et al. 2021). Although the RF technique is a 
step ahead of its predecessor technique (DTree’s model) 
by using ‘voting’, feature section technique, and proximity 
algorithm, it lacks in determining weaklings in the database 
(Yang et al. 2021a, b). The GBM uses the classification and 
regression tree (CART) technique to determine the weak 
learners among predictor variables (Handoko et al. 2020). 
Studies by Jun (2021) and Yang et al. (2021a, b) showed 
that GBM has strong predictive power. This technique is 
beneficial for the present study, where four-factor clusters 
incorporating the gully controlling factors are distinctive and 
influence each other in many ways in the occurrence of gully 
erosion. Such weak predictors can disrupt the model’s per-
formance; therefore, GBM-based ‘best-fit’ optimization has 
been used to improve the performance of and accuracy of the 
employed model. Although the GBM has a higher predictive 
capability than RF, in the case of noisy data, it sometimes 
leads to overfitting (Yang et al. 2021a, b). Therefore, the 5 
and tenfold cross-validation technique has been applied to 
optimize the model’s performance in this study to avoid this 
overfitting problem of GBM. From the Scikit-learn ensem-
ble package of Python, GradientBoosting classifier has been 
used for this study to run the algorithm.

XGBoost (XGB)

Among the different boosting techniques, the XGBoosto-
reXtreme gradient boosting technique is quite an efficient 
and popular method and it is widely used for its excellent 
predictability and efficiency. It is quite recent algorithm, pro-
posed by Chen and Guestrin (2016). XGBoost is an extreme 
variation of the gradient boosting model (GBM) (Osman 
et al. 2021; Ke et al. 2017). XGB uses regularization boost-
ing and parallel processing techniques to overcome the over-
fitting problem (Gui et al. 2020; Fauzan and Murfi 2018). 
Unlike other GBM, XGB is powerful and effective in noisy 
datasets (Naghibi et al. 2020; Liu et al. 2020). Therefore, 
the predictor selection method in a backward manner has 
been applied to structure the model for better performance 
(Sahin 2020; Li et al. 2020). With such optimization, the 
model takes more time but gives better accuracy by using 

appropriate predictors for our dataset. This ensemble boost-
ing approach can fit non-linear relationships; therefore, this 
technique can fit the non-linear relationship between the 
predictors of the four factor clusters. Where factor clusters 
are the independent variable and the 3658 sample points 
from both the gully and non-gully erosion sites are the tar-
get variables. The 80% of the dataset has been used to train 
the dataset and find out the set of predictors with maximum 
predictive capability using 5- and tenfold cross validation 
technique and grid search method. After that, the set of pre-
dictors has been run on the entire dataset to prepare the final 
cluster-wise susceptibility maps. The XGBClassifier from 
the SK-learnxgboost ensemble package has been used to 
predict the clusters in this present study.

Support vector machine (SVM)

Along with ensemble machine learning and generic pro-
gramming algorithms, SVM represents a newer and 
advanced generation of ML algorithms (Du et al. 2020). In 
simple terms, SVM generates an optimum hyperplane clus-
ters in a hyper-surface using a binary classifier (Acortes, and 
Vapnik 1995). In generic machine learning, training of the 
algorithm is done to minimize the empirical training error, 
which leads to an overfitting problem (Deiss et al., 2020). 
SVM maximizes the boundary between hyperplane and data 
to minimize the generalization error in the predicted data 
(Talukdar et al., 2021).

During model training, SVM searches hyper-plane that 
best separates the dataset into 1 and -1 binary classes, which 
can be identified as h1 and h-1 or support vectors (Deiss 
et al., 2020). In this study, the gully suspectable and non-sus-
pectable areas can be distinguished by using the hyperplane 
separation function of SVM where gully suspectable pixels 
are considered 1 and non-suspectable as 0. The separating 
margin or hyperplane between h1 and h-1 is referred as 0 
or non-liner convex programming problem. The non-linear 
relationship among the factor cluster parameters can be 
determined using such a function. The pairs of parameters of 
the separating hyperplane determination can be determined 
by solving the following optimization problem (Eq. 9):

where, penalty parameter (C) and margin of tolerance 
( � ) needed to be tuned in order to accuracy and efficiency 
of the model.

(8)min
w,b,�

1

2
∥
(

wT .w
)

+ C

(

l
∑

i=l

�i

)

(9)
In respect to1 − �i − yi(w ⋅ x + b) ≤ 0,−�i ≤ 0, i = 1, .., n
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To find out the susceptible and non-susceptible zone over 
the study area among the four factor clusters, the gamma 
function along with radial basis function (RBF) has been 
used where gamma value ranges from 1 to 0.0001 for dif-
ferent clusters and ‘rbf’ kernel used to distinguish the 
hyperplane among the different clusters. The grid search 
CV technique with 5- and tenfold CV have used to obtain 
maximum performance of the employed models. Parameter 
combination with maximum score has been used generate 
final spatial layers. Python-based SVC algorithm has been 
used to built the model.

Hyperparameter optimisation

At any machine learning, a selected or default set of param-
eters cannot perform equally on different sets of databases; 
therefore, for optimum performance of the given input data, 
we have employed the Grid-Search hyperparameters optimi-
zation technique for this present study. A tenfold K cross-
validation technique is also used along with Grid-Search for 
better data optimization (Gulzat et al. 2020). Studies like 
Daviran et al. (2021), Abdi (2020), and Kaur et al. (2020) 
reported that K-fold cross-validation along with Grid-Search 
has a better capability for parameter selection and also opti-
mization. Table 2 shows that values for different hyperpa-
rameters of each model have been given. After the selection 
of parameter values, the model has tested on the sample 

dataset as well as the entire dataset, and final predicted val-
ues were obtained.

Accuracy assessment

The present work has employed two different types of vali-
dation techniques, namely accuracy matrices and sensitivity 
analysis to assess the accuracy of the different models.

Performance assessment of the models

Performance of the employed ML techniques has been 
evaluated through six calculated matrices considering 
ground truth data extracted from 20% of the gully and non-
gully samples sites, based on high-resolution Google Earth 
imagery. The six employed matrices are the percentage of 
correctly classified data, the area under receiver operating 
characteristics (AUROC) or AUC(ROC), precision, sensitiv-
ity, F1-score, and Matthew’s correlation coefficient (MCC) 
(Eqs. 9–12). The validation metrics have been calculated 
based on four metrics such as true positive, false negative, 
true negative, and false positive. Percentage of correctly clas-
sified data calculated against true positive, true negative, and 
total size of the sample, whereas sensitivity and precision 
are based on true positive, false negative, and false positive 
values of the predicted data (Harimoorthy and Thangavelu 
2021). In Matthew’s correlation coefficient (MCC), all four 
metrics have been used for better reliability and performance 

Table 2   Hyperparameter optimization outputs using GridSearch

Models RF GBM XGB SVM

Erodibility Bootstrap: true,
max depth: 10,
max features: 3,
min samplesleaf: 3,
min samplessplit: 10, no. of 

estimators: 100

Learning rate: 0.001, max 
depth: 80, no. of estimators: 
200, subsample: 0.5

Colsample by tree: 0.7, 
gamma: 0.3, learning rate: 
0.1, max depth: 50, min 
child weight: 1

C: 100, gamma:0.1, kernel: rbf

Erosivity Bootstrap: true,
max depth: 10,
max features: 2,
min samplesleaf: 3,
min samplessplit: 8, no. of 

estimators: 300

Learning rate: 0.01, max 
depth: 100, no. of estima-
tors: 1000, subsample: 0.7

Colsample by tree: 0.5, 
gamma: 0.4, learning rate: 
0.3, max depth: 50, minchild 
weight: 1

C: 10, gamma:0.1, kernel: rbf

Resistance Bootstrap: true,
max depth: 80,
max features: 3,
min samplesleaf: 3,
min samplessplit: 8,no. of 

estimators: 300

Learning rate: 0.01, max 
depth: 100, no. of estima-
tors: 300, subsample: 0.5

Colsample by tree: 0.5, 
gamma: 0.2, learning rate: 
0.05, max depth: 15, min-
child weight: 7

C: 1000, gamma: 1, kernel: rbf

Topographic Bootstrap: true,
max depth: 10,
max features: 2,
min samplesleaf: 3,
min samplessplit: 8,no. of 

estimators: 200

Learning rate: 0.1, max depth: 
100, no. of estimators: 100, 
subsample: 0.5

Colsample by tree: 0.5, 
gamma: 0.0, learning rate: 
0.01, maxdepth: 15, mini-
child weight: 3

C: 10, gamma:0.001, kernel: rbf
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(Chicco et al. 2021). The MCC value ranges from − 1 to 1, 
where − 1 indicates the least accuracy in the prediction and 
vice-versa. AUROC is calculated against the true and false 
positive value, of the calculated against the predicted data, 
and finally, F1-score is calculated based on the precision and 
sensitiveness of the dataset. AUROC, F1-score, and preci-
sion range between 0 and 1, where a value near 1 indicates 
more reliability and accuracy of models. Equations for the 
stated metrics are expressed in Eqs. 11–14.

Sensitivity analysis

To measure the input parameter’s, cluster’s-impact on sus-
ceptibility at spatial scale, sensitivity analysis has been done. 
In this process, six parameters, namely NDVI, slope, stream 
distance, BSI, soil erosivity, soil texture, and geology, have 
been selected according to their importance and contribution 
in the cluster (importance value derived from cluster wise 
ML algorithms). The parameters have been subtracted one 
by one to generate the sensitivity model and see their indi-
vidual impact at local, regional levels. AUROC, precision, 
sensitivity, F1-score, and MCC matrics have been calculated 
to measure the degree of sensitivity of the parameters. In 
order to detect the role of each cluster towards gully erosion 
susceptibility, correlation coefficients for each factor-based 
model and final model of gully erosion susceptibility have 
been calculated. For doing so, including all the pixels of 
the study area, PCA tool from ArcGIS software has been 
employed.

Results

Gully erosion susceptible models and their 
accuracies

Figure 4 shows the gully erosion susceptible models developed 
using ensemble models like (a) random forest, (b) gradient 
boost model, (c) XGBoost, and (d) SVM. Each model has 

(10)recall = sensitivity =
Tp

Tp + Fn

(11)precision =
Tp

(Tp + Fp)

(12)MCC =
Tp × Tn − Fp × Fn

√

(Tp + Fp)(Tp + Fn)(Tn + Fp)(Tn + Fn)

(13)F1 − score =
precision × recall

precision + recall

been classified into five susceptibility classes, from extremely 
susceptible to relatively safe. All the models show that 15–20% 
of the study region, particularly in the upper parts of the study 
region dominated by Granite gneiss geological formation, 
is extremely susceptible to gully erosion (Table 3). All the 
models have pointed out almost the same geographical area 
belonging to unclassified granite gneiss as gully erosion sus-
ceptible. This tract is overlaid with thick laterite soil of granite 
and gneissic origin. Oxidation is a dominant process of the 
weathering process, which encourages the consequent laterali-
zation process in this area (Ghosh and Guchhait 2015). High 
silica and ferrous mineral content increase the erodibility of 
soil. Erosivity triggered by highly skewed rainfall during mon-
soon time enhances the mechanism of gullying and extension 
of the gully (Ghosh et al. 2015). Headward erosion of gully, 
gully widening, and deepening are the chief mechanism of 
gully induce soil erosion (Pal 2016; Arabameri et al., 2020b). 
Toe cutting and failure of gully banks are also found in some 
deep gullies. In the plateau fringe area, where a relatively 
steeper slope exists, this rate of gullying is more prominent. 
A wide part of the hilly region and lateritic tract of the study 
region is composed of sal (Shorea robusta) forest, but lack of 
undergrowth insists gully erosion even in the forested region. 
Deforestation is also a major issue in this region, and it also 
stimulates gully erosion activities (Pal and Debanshi, 2018). 
In all the susceptible classes, the areal extent differs margin-
ally, and therefore, all the models could provide quite a similar 
kind of accuracy. However, to assess the most suitable one, an 
accuracy assessment is highly essential.

Table 4 depicts the accuracy level of the applied model 
and their performances. AUC value ranges from 0.78 to 
0.91, MCC value ranges from 0.76 to 0.91, precision, sen-
sitivity, and F1 score range from 0.75 to 0.94, 0.81 to 0.92, 
and 0.78 to 0.93 respectively. All these values have clearly 
certified that the applied models are in good to extremely 
good agreement with training and testing data. Among the 
applied models, RF appears as the best representative since 
the accuracy and performance levels are the highest, fol-
lowed by GBM, XGBoost, and SVM (Table 4).

Field evidence-based study also validated the same. 
For instance, the area between Amgachhipahar and Jhar-
napahar in the Masalia community development block (at 
the north-eastern side of Masanjore dam) is a highly gully 
occurrence and susceptible site, which was recognized by 
the RF model as an extremely susceptible area, whereas 
other models identified the same area mostly as moderate 
to highly susceptible.

Factor cluster‑based gully erosion susceptible 
models

Figure 5 portrays four factor cluster-based gully erosion sus-
ceptibility models depicting the areas of susceptibility and 
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non-susceptibility. Erodibility and erosivity factor cluster-
based models depict a wider part of the upper catchment in 
the continuous stretch is susceptible to gully erosion. Since 
the geological and geomorphological divisions and soil 

texture are primary factors of erodibility cluster, the con-
centration of gully erosion-prone divisions of geology and 
geomorphology in the upper catchment provided such result. 
Soil texture is another important erodibility factor, and a 

Fig. 4   Gully erosion susceptible zones a random forest, b gradient boost model, c XGBoost, and d SVM
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higher proportion of coarser sand in the lateritic tract of the 
upper catchment makes the upper catchment susceptible in 
terms of erodibility. On the other hand, resistance and topo-
graphical factor cluster-based models have identified some 
similar areas to previous two factor cluster models. How-
ever, some new areas, even in the lower parts of the study 
unit, have been figured out. In the case of topographical fac-
tor cluster, the distribution of the susceptible areas is less 
continuous but covers a wider part of the study region. In 
the case of the resistance cluster, most of the forest patches 
are situated in the upper catchment, which protects to some 
extent. The lack of such considerable forest patches in the 
lower increases the exposure to gully erosion compared to 
the upper catchment. When testing data is overlapped with 
each factor cluster model to obtain the model’s accuracy, 
matching accuracy is found between fairly good and good. 
All the statistical measures applied envisage the same truth. 
Among the used models, in the case of RF models, the accu-
racy level is found high, followed by XGBoost, GBM, and 
SVM. The accuracy value is found to be higher in the case 
of the erodibility factor cluster, followed by the erosivity 
factor cluster (Table 5).

The correlation coefficient between the factor cluster and 
the final model output of the respective applied models also 
reveals the same trend (Table 6). Correlation coefficients 
between erodibility and erosivity factor cluster model of final 
RF model of gully erosion susceptibility are respectively 

0.759 and 0.776. Correlation values are quite less in the case 
of topographical and resistance factor clusters in reference 
to all the models. RF model-based correlation has revealed 
the stronger correlation followed by GBM, XGB, and SVM. 
All the values of the correlation coefficient are statistically 
significant at < 0.01 level of significance. This again justices 
that RF model output is more acceptable.

Sensitivity analysis

Sensitivity analysis at a spatial scale has been done, exclud-
ing the selected factors. Figure 6 shows the RF model output 
after excluding the chosen factors one by one. Change of 
accuracy level due to the exclusion of one factor reflects the 
importance of one factor. Similarly, spatial scale sensitivity 
modelling also helps to recognize exclusion of one factor 
brings significant changes in which parts of the study area, 
and it thus helps to identify the factors of regional impor-
tance. From Table 7, it is very evident that the departure 
value of all the accuracy statistics is high after the exclu-
sion of geology factor followed by soil texture, erosivity, 
etc. (Table 7). These determinants are very decisive in 
bringing a significant change in gully erosion susceptibility 
in the unclassified granite and gneissic part and, therefore, 
could be considered regional factors of importance. BSI is 
an important determinant of the patches around the Mas-
sanjore dam.

Table 3   Percentage of area 
under different gully erosion 
susceptible zones

Models RF GBM XGB SVM
Gully erosion susceptibility zones Percentage to 

total area
Percentage 
tototal area

Percentage 
tototal area

Percentage 
tototal area

Relatively safe 16.62 17.66 16.96 16.06
Less susceptible 18.04 19.30 19.61 19.13
Moderate susceptible 19.55 21.82 21.42 23.37
High susceptible 25.64 25.58 25.13 26.84
Very high susceptible 20.14 15.64 16.89 14.60

Table 4   Statistical accuracy 
assessment of different ML 
models

Classifiers K-fold Correctly 
classified 
(%)

ROC (AUC) Precision Sensitivity F1-score MCC Support

RF 5 97.25 0.91 0.941 0.921 0.931 0.912 1098
10 95.29 0.88 0.931 0.933 0.932 0.929 1098

GBM 5 94.23 0.87 0.892 0.910 0.901 0.917 1098
10 93.45 0.84 0.874 0.903 0.888 0.890 1098

XGBoost 5 94.81 0.85 0.895 0.901 0.898 0.894 1098
10 93.31 0.83 0.834 0.912 0.871 0.886 1098

SVM 5 91.01 0.81 0.781 0.792 0.786 0.779 1098
10 89.21 0.78 0.750 0.814 0.781 0.765 1098

1 3

90976



Environmental Science and Pollution Research  (2022) 29:90964–90983

Discussion

ML model output has demonstrated that 14–20% of 
the study area mainly in the upper catchment is highly 

susceptible to gully erosion. All the applied models have 
good acceptability in reference to their accuracy level. 
However, the RF model is found to be the best representa-
tive. The erodibility factor cluster is the most determining 

Fig. 5   Cluster specific gully erosion susceptible zones based on different ML models
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factor cluster for measuring gully erosion susceptibility. 
Geological factor, soil texture, association of ferrous min-
eral, etc. are the major factors under this factor cluster 
with high importance towards gully erosion. Sensitivity 
analysis also has reported that geology, soil texture, and 
erosivity are the major contributing factors enhancing 
gully erosion susceptibility.

Multi-model ML approach has been taken for model-
ling gully erosion susceptibility with the aim to validate 
the models by themselves. This is the advantage of the 
multi-model approach. ML models based on training sites 
provide credible output in the case of prediction work 
(Benedetto et al. 2020; Xenochristou and Kapelan 2020). 
Benedetto et al. (2020), Xenochristou and Kapelan (2020), 
and Fayaz et  al. (2020) have successfully applied RF, 
SVM, GBM, and XGB models and reported excellent 
credibility in predictive modelling (Pal and Paul 2021). 
In their works, always RF was not found as the best rep-
resentative model. However, in many cases, it has been 
seen as the best representative. For example, Gianinetto 

et al. (2020) and Chakrabortty et al. (2020) for modelling 
soil erosion susceptibility, Al-Najjar and Pradhan (2021) 
for modelling landslide susceptibility, Islam et al. (2021) 
for modelling flood susceptibility, etc., the RF algorithm 
provides a built-in feature selection system that reduces 
dimensionality without removing any data. Such a func-
tion makes the chances of data loss very little, and the 
algorithm becomes relatively more reliable and error-free 
(Zhou et al. 2020). In addition, since the RF uses bag-
ging, it is more sensitive to the noise and capable of con-
trolling it than the boosting technique-based algorithms 
and resulting in greater prediction accuracy (Chan and 
Paelinckx 2008; Pal and Mather 2003).

This work can be compared to the previous similar stud-
ies (Avand et al. 2019; Saha et al. 2020; Pham et al. 2020; 
Amare et al. 2021) regarding model accuracy. The accuracy 
(ROC-AUC) of the previous studies was observed to range 
between 0.87 and 0.99. Among the applied algorithms, all 
these previous studies reported well accuracy of the RF algo-
rithm. In the present study, the same algorithm has achieved 
quite an identical accuracy level. Since this work is entirely 
based on all pixels inclusive, generalization effect as found 
in case of point-based work has been minimized. Often, it 
is found that model building parameters are ranked based 
on their importance using statistical measures like informa-
tion gain ratio (Costache et al. 2020; Bui et al. 2020). But, 
in reality, some less important model building parameters 
may play crucial role in determining gully erosion suscep-
tibility. So, pixel scale sensitivity analysis can resolve such 
problems. Since the present study has taken this approach, 
factors of regional and local importance along with their 

Table 5   Statistical accuracy of the factor cluster models

Models Clusters Correctly clas-
sified (%)

ROC (AUC) Precision Sensitivity F1-score MCC Support

RF Erodibility cluster 79.22 0.788 0.783 0.781 0.782 0.765 1098
Erosivity cluster 79.10 0.709 0.701 0.700 0.700 0.698 1098
Resistance cluster 78.96 0.784 0.771 0.771 0.771 0.765 1098
Topographical cluster 76.89 0.756 0.751 0.748 0.749 0.734 1098

GBM Erodibility cluster 72.63 0.716 0.711 0.706 0.708 0.691 1098
Erosivity cluster 71.28 0.703 0.700 0.693 0.696 0.691 1098
Resistance cluster 69.72 0.685 0.681 0.681 0.681 0.678 1098
Topographical cluster 68.98 0.681 0.678 0.670 0.674 0.667 1098

XGB Erodibility cluster 75.33 0.742 0.736 0.709 0.722 0.697 1098
Erosivity cluster 75.11 0.738 0.725 0.692 0.708 0.680 1098
Resistance cluster 73.83 0.721 0.703 0.680 0.691 0.665 1098
Topographical cluster 72.31 0.709 0.697 0.678 0.687 0.659 1098

SVM Erodibility cluster 75.18 0.745 0.731 0.727 0.729 0.721 1098
Erosivity cluster 74.89 0.748 0.736 0.731 0.733 0.729 1098
Resistance cluster 73.11 0.721 0.723 0.718 0.720 0.712 1098
Topographical cluster 71.98 0.719 0.711 0.700 0.705 0.684 1098

Table 6   Correlation coefficient between factor cluster ML and final 
ML models

Gully 
erosion 
models

Erod-
ibility 
cluster

Erosivity 
cluster

Resistance 
cluster

Topo-
graphical 
cluster

RF 0.759 0.776 0.603 0.620
GBM 0.749 0.762 0.529 0.544
XGB 0.741 0.746 0.587 0.610
SVM 0.691 0.724 0.411 0.381
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average rank have been explored. Sensitivity analysis has 
the capability to do this. The present study has used this 
approach for spatial prediction of change which may occur if 
one factor is excluded from the analysis. Gully erosion sus-
ceptibility mapping using bivariate, multi-variate statistics, 
and ML models is very common, but sensitivity analysis at 
spatial scale is rarely found, but this has profound impor-
tance. Moreover, factor cluster-based modelling and its role 

in the prediction process is also very important but paid 
less attention to. This approach can help recognize a set of 
factors as a factor cluster and its role in gully erosion sus-
ceptibility mapping.

Spatially figuring out the gully erosion susceptible areas 
with varying intensity and set of responsible factors based on 
sensitivity at spatial level can help to develop region specific 
plan of gully erosion check in order to arrest the valuable 

Fig. 6   Sensitivity models excluding the following factors one by one 
a excluding NDVI; b NDVI and slope; c NDVI, slope, and stream 
distance; d NDVI, slope, stream distance, and BSI; e NDVI, slope, 
stream distance, BSI, and soil erosivity; f NDVI, slope, stream dis-

tance, BSI, soil erosivity, and soil texture; g NDVI, slope, stream 
distance, BSI, soil erosivity, soil texture, and geology based on RF 
model

Table 7   Statistical test of the sensitivity models done in reference to RF model (departure values after excluding individual parameter)

Classifiers Parameters K-fold Correctly clas-
sified (%)

ROC (AUC) Precision Sensitivity F1-score MCC Support

RF NDVI 10 4.08 0.006 0.049 0.054 0.052 0.058 1098
Slope 13.20 0.077 0.120 0.133 0.127 0.128 1098
Stream distance 14.95 0.092 0.140 0.132 0.136 0.146 1098
BSI 20.16 0.149 0.209 0.198 0.204 0.218 1098
Soil erosivity 27.06 0.211 0.260 0.247 0.254 0.275 1098
Soil texture 31.86 0.267 0.331 0.321 0.326 0.339 1098
Geology 33.11 0.286 0.345 0.342 0.344 0.361 1098
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soil resources. When sensitivity is computed only at numeri-
cal scale including entire study unit as a whole, it may not 
reflect the regionally sensitive factors. Without this, appli-
cation of suitable planning will be in vain. Since the study 
clearly mapped the degree of susceptibility and concerned 
factors of it, this work has enough planning implication. 
Moreover, to cater the agriculturally dependent growing 
population in this region, rilling, gullying, and consequent 
soil loss have become a major barrier. The upper catchment 
of the study region majorly dominated with Chottanagpur 
plateau fringe secondary laterite soil with poor cohesion, 
fertility, and high erosivity. The ambience of gullying is very 
suitable in this region. Resilience of the problem is the major 
alternative to cohabit with the situation. Without proper 
planning, food security of the region would be in front of a 
big question. In this standpoint, findings of this work have its 
societal implication apart from its needs in natural resource 
conservation. The issue which is addressed is widely found 
across the world, but its background, causative factors may 
not be similar. Therefore, the regional findings are regionally 
more important, but the approach of study and sensitivity 
analysis for finding out factors of regional importance could 
be applied universally.

Conclusion

The study has explored 14–20% study area mainly in the 
upper catchment as the gully erosion susceptible using 
ensemble ML models. Unclassified granitic and the gneissic 
composed area are found to be highly susceptible to gully 
erosion. Factor cluster-based modelling has reported that the 
erodibility factor cluster is the best representative, followed 
by the erosivity factor cluster. Geology and soil texture have 
been found as the dominant contributing factors to gully 
erosion, predicted through sensitivity analysis. Among the 
applied models, the RF model is found as the best repre-
sentative for predicting gully erosion susceptibility. Factor 
cluster-based modelling and spatial scale sensitivity analysis 
for identifying factors of regional and local importance are 
two innovative parts of this present work. Credible model 
output with a highly acceptable accuracy level encourages 
use of ensemble ML models. Sensitivity analysis has clearly 
imaged the factor of regional importance, and therefore, it is 
also recommended to use this approach while dealing with 
such or similar work.

However, this study does not focus on providing any 
quantification of gully erosion in this region which is a 
major limitation of this study. To overcome this limitation, 
few case studies can be conducted on different gully erosion 
susceptible areas. Since the present work has figured out 
the gully erosion susceptible area and identified dominant 
factors of regional and local importance, this study would 

be instrumental to planners for devising local to regional 
level planning for gully erosion check and conserving soil 
erosion. Soil resource is a major stay of agriculture and this 
economic activity is the basis of economic fate of the major-
ity of the people of this region. So, the loss of soil is almost 
synonymous with the loss of agricultural production as well 
as food security. From soil preservation and food security 
standpoints, the findings of the work would be very effective.
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