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Abstract
To treat high-salt urea wastewater by microbial hydrolysis, it is necessary to overcome the dual problems of incomplete 
removal of nitrogen (N) from mixed strains and inhibition of microbial activity by high salt (NaCl) concentrations. In this 
paper, the mechanism of NaCl tolerance of Halomonas sp. H36 was investigated. Using molecular biology and enzymatic 
methods, it was proven that the strain’s N-removal enzymes (urease; ammonia monooxygenase, AMO; nitrite reductase, NIR; 
nitrate reductase, NAR) played a key role in the removal of N, and the N-removal pathway was clarified. For the strain used 
to treat simulated ship domestic sewage, the urea nitrogen (CO(NH2)2-N)-removal rate was 88.52%, the ammonia nitrogen 
 (NH4

+-N)-removal rate was 91.16%, the total nitrogen (TN)-removal rate was 90.25%, and nitrite nitrogen  (NO2
−-N) and 

nitrate nitrogen  (NO3
−-N) did not accumulate. It was proven for the first time that Halomonas sp. H36 has the function of 

simultaneous urea hydrolysis-nitrification–denitrification with urea as the initial substrate and can simultaneously remove 
urea nitrogen and inorganic nitrogen from high-salt urea wastewater.

Keywords High-salt urea wastewater · Microbial hydrolysis · Halomonas · N-removal enzymes · Urea nitrogen · Inorganic 
nitrogen

Introduction

Urea  (H2N-CO-NH2) is a simple nitrogen (N)-containing 
organic compound that is widely used in agricultural fer-
tilizers, deicers, foaming agents, herbicide and pesticide 
production, automobile exhaust treatment, and other fields 
(Urbańczyk et al. 2016). Agricultural N fertilizer leach-
ing, industrial production with urea as a raw material, and 
human life produce large amounts of urea wastewater (Li 
et al. 2015). Studies have shown that 80% of N pollution 
in domestic sewage comes from urea (Jimenez et al. 2012). 
The urea content in urine is as high as 25 g/L (Lee 1971). 
Urea-N (CO(NH2)2-N) easily leads to coastal eutrophica-
tion (Tzilkowski et al. 2018). According to the 2020 China 
Marine Ecological Environment Bulletin, a total of 31 red 

tides were found in China’s waters in 2020, with a cumula-
tive area of 1,748  km2. Among them, there were two toxic 
red tides, with a cumulative area of 81  km2 (Ministry of 
Ecology and Environment, PRC 2020). Untreated urea 
wastewater poses a serious threat to biological survival, 
human health, and the ecological environment (Hu et al. 
2020a, b; Vaneeckhaute and Fazli 2020). Therefore, there is 
an urgent need for the effective treatment of urea wastewater.

At present, microbial hydrolysis is one of the most eco-
nomical and effective methods to remove urea from waste-
water (Ilgrande et al. 2019; Jia et al. 2020). Traditionally, the 
complete removal of CO(NH2)2-N into gaseous N requires 
three steps: urea hydrolysis, nitrification, and denitrification 
(Garrido et al. 2001). However, the multistage urea treat-
ment process has problems such as high cost and large space 
requirements. To overcome this drawback, researchers have 
used mixed strains for urea hydrolysis in a reactor. Hu et al. 
(2020a, b) treated urea-containing wastewater with mixed 
strains in a reactor. The results showed that urea-degrading 
bacteria, phylum Gemmatimonadetes, hydrolyzed urea to 
 NH3, and then  NH3 was oxidized to  NO2

− by ammonia-oxi-
dizing bacteria. During this process, the high concentration 
of  NH4

+ inhibited the activity of nitrite-oxidizing bacteria, 
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resulting in accumulation of  NO2
−, at a rate of 0.985 kg/

(m3·d); Chen et al. (2022) used a mixed flora dominated 
by urea-degrading bacteria (Nitrosomonas) and anaerobic 
ammonia-oxidizing bacteria (Candidatus Brocadia) to 
undergo urea hydrolysis (CO(NH2)2-N →  NH4

+-N), part of 
the nitrification (PN)  (NH4

+-N →  NO2
−-N) and anammox 

 (NH4
+-N +  NO2

−-N →  N2 +  2H2O) pathways to complete 
the removal of total nitrogen (TN). However, in the exist-
ing mixed-bacteria urea-removal process, the type, activ-
ity, and ratio of urea-hydrolyzing bacteria to N-removing 
bacteria in the biofilm are not easy to control, and the accu-
mulation of  NO2

−-N and  NO3
−-N makes it difficult to con-

vert CO(NH2)2-N to gaseous N and completely remove it 
(Rittstieg et al. 2001). It is necessary to develop a simple, 
reliable, and efficient technology for the complete removal 
of CO(NH2)2-N.

In addition, urea wastewater is often accompanied by high 
salt (NaCl > 10 g/L) problems. Urea containing azodicarbon-
amide foaming agent industrial sewage (NaCl = 56 g/L), toi-
let flushing wastewater in coastal cities (NaCl = 10–17 g/L), 
and domestic sewage from ships (NaCl = 10–20 g/L) have 
high salt contents (Jiang et al. 2019; Li 2018; Yang et al. 
2015). The resulting high-salt urea wastewater also needs 
to be treated urgently. However, high salt concentrations 
can inhibit the respiration of microorganisms and decrease 
the urea removal rate. When the NaCl concentration was 
increased from 0.37 to 30.70 g/L, the respiratory inhibition 
rate of microorganisms increased from 4 to 84% (Pernetti 
and Palma 2005). When the NaCl concentration increased 
from 0.00 to 0.04 g/L, the removal rate of CO(NH2)2-N by 
mixed bacteria decreased from 94.2 to 67.0% (Wang et al. 
2020a, b).

Salt-tolerant or halophilic N-removal strains have 
attracted much attention in the field of high-salt nitroge-
nous wastewater treatment (Wang et al. 2019; Man et al. 
2022). Most strains of Halomonas can synthesize ectoine 
without interfering with the normal life process of cells 
while balancing the osmotic pressure between the cyto-
plasm and the environment (Zhao et al. 2018). Halomonas 
meridiana SCSIO 43,005 can survive with urea as the sole 
N source (Zhou et al. 2020). Halomonas venusta TJPU05 
has an obvious treatment effect on high-salt N-containing 
wastewater. Removal rates of 50.96%, 47.28%, and 43.19% 
were observed for  NH4

+-N,  NO3
—N, and TN, respectively 

(Man et al. 2022). Therefore, Halomonas has great applica-
tion potential in the treatment of high-salt urea wastewater. 
To our knowledge, no one has carried out research on these 
issues in depth or systematically. (1) The process for removal 
of urea by Halomonas. (2) The removal effect of CO(NH2)2-
N and inorganic N simultaneously by Halomonas in high-
salinity environment.

In a previous study, Halomonas sp. H36 had the ability to 
hydrolyze urea (Li et al. 2020). In this paper, the mechanism 

of salt tolerance of Halomonas sp. H36 was investigated. We 
further evaluated the salt tolerance of N-removal enzymes 
of the strain. And the N-removal pathway of the strain with 
urea as the initial substrate was clarified. Finally, the strain 
was used for the treatment of simulating domestic sewage 
from ships. These findings provide a theoretical and meth-
odological foundation for the bioremediation of high-salt 
urea wastewater in the future.

Materials and methods

Materials

Strain: Strain H36 was isolated from a salt-drying pond in a 
salt factory in Dalian City, Liaoning Province, China. This 
specimen was determined to be Halomonas sp. H36 (16S 
rRNA sequence GenBank No. ON935442) (Li et al. 2020).

LB medium (g/L): peptone 10, yeast powder 5, NaCl 30, 
pH 7.2. The medium was autoclaved at 121 °C for 20 min.

Growth medium (g/L): glucose 15, monosodium glu-
tamate 15,  (NH4)2SO4 10, urea 5, yeast powder 0.5, 
 K2HPO4·3H2O 9,  KH2PO4 3,  MgSO4·7H2O 0.4,  MnSO4·H2O 
0.01. The NaCl concentration was determined by the experi-
mental conditions (ectoine-induced synthesis experiment: 
30, 60, 90, 120 g/L NaCl; effects of different NaCl concen-
trations in the enzymatic reaction system on the N-removal 
enzyme activities of Halomonas sp. H36: 30 g/L NaCl), pH 
7.2. The medium was autoclaved at 121 °C for 20 min. The 
urea solution was sterilized by filtration (0.22 μm pore size, 
Millipore Express, USA).

Inducing medium (g/L): glucose 30,  KNO3 0.4 (N ele-
ment 50 mg/L), yeast extract 0.5,  K2HPO4·3H2O 9,  KH2PO4 
3,  MgSO4·7H2O 0.4,  MnSO4·H2O 0.01, NaCl 60, pH 7.2. 
The medium was autoclaved at 121 °C for 20 min.

Trace mineral solution (g/L): EDTA-2Na 63.7, 
 ZnSO4 2.2,  CaCl2 5.5,  MnCl2·4H2O 5.1,  FeSO4·7H2O 5, 
 Na2MO4·2H2O 1.1,  CuSO4·5H2O 1.6,  CoCl2·6H2O 1.6 
(Vyrides and Stuckey 2009), pH 7.2. The trace mineral solu-
tion was sterilized by filtration (0.22 μm pore size, Millipore 
Express, USA).

N-removal medium (g/L): glucose 40, urea 6 (2,800 mg/L, 
CO(NH2)2-N),  K2HPO4·3H2O 9,  KH2PO4 3,  MgSO4 ·7H2O 
0.4,  MnSO4·H2O 0.01, trace mineral solution 2 mL, NaCl 
30. The N-removal medium was autoclaved at 121 °C for 
20 min. The urea solution and the trace mineral solution 
were sterilized by filtration, respectively (0.22 μm pore size, 
Millipore Express, USA).

Simulated ship domestic sewage (mg/L): starch 100, 
glucose 800, urea 100,  (NH4)2SO4 550,  KH2PO4 31, 
 K2HPO4·3H2O 9, trace mineral solution 0.1  mL, NaCl 
30 g/L. The simulated ship domestic sewage was autoclaved 
at 121 °C for 20 min. The urea solution and the trace mineral 
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solution were sterilized by filtration, respectively (0.22 μm 
pore size, Millipore Express, USA).

Induction of ectoine synthesis and estimation 
of ectoine content

Induction of ectoine synthesis: The strains were cultivated 
in 5 mL LB medium at 30 °C and 120 rpm in a rotary shaker 
for 24 h. Then, 1% aliquots of each these cultures were inoc-
ulated in shake flasks (300 mL) containing 30 mL growth 
medium, followed by the strains being grown and cultured 
in 30, 60, 90, and 120 g/L NaCl growth medium at 30 °C 
and 120 rpm for 48 h in a rotary shaker (Wang et al. 2017).

Ectoine concentration determination method. Extra-
cellular ectoine estimation: The culture solution induced 
with ectoine synthesis was centrifuged at 14,000 × g, and 
the supernatant was diluted tenfold with distilled water for 
high-performance liquid chromatography (HPLC) measure-
ment. The ectoine concentration obtained by HPLC analysis 
was defined as the concentration of extracellular ectoine. 
Intracellular ectoine estimation: Cells were collected by the 
centrifugation method described above, and the pellets were 
washed with 100 mM potassium phosphate (KPi) buffer (pH 
7.2) containing NaCl at the same concentration as that of 
the medium. After centrifugation, the pellets were extracted 
with ethanol (80%, v/v) of the same volume as the culture 
medium, resuspended, and then stored at 25 °C overnight. 
The suspension was centrifuged again, and the superna-
tant was subsequently used for HPLC analysis. The ectoine 
concentration as estimated by HPLC analysis was defined 
as the concentration of intracellular ectoine. The total con-
centration of ectoine was the sum of the concentrations of 
intracellular and extracellular ectoine. The concentration of 
ectoine was measured by an HPLC setup with a C18 column, 
Hypersil ODS2 column (Elite, Dalian, China), and a UV 
detector (Elite, Dalian, China). A wavelength of 210 nm was 
used (Zhang et al. 2009).

Method of PCR

The primer sequences of N-removal enzymes (urease; 
ammonia monooxygenase, AMO; nitrite reductase, NIR; 

nitrate reductase, NAR) were designed by a similar compari-
son method (Zhang et al. 2012). The sequence design infor-
mation of the N-removal enzymes of Halomonas sp. H36 
are shown in Table 1. Genomic DNA using TaKaRa DNAiso 
Reagent (Code: D305A). The PCR product was refined and 
recovered using the TaKaRa Agarose Gel DNA Purification 
Kit Ver. 2.0 (Code: DV805A) and was then sequenced by 
Takara Biotechnology (DALIAN) Co., Ltd.

Determination of N‑removal enzyme activities

The strains were cultivated in 5 mL LB medium at 30 °C and 
120 rpm in a rotary shaker for 24 h. Then, 1% of the cultures 
were inoculated in shake flasks (300 mL) containing 30 mL 
growth medium at 30 °C and 120 rpm in a rotary shaker for 
36 h. The cells were collected by centrifugation (at 4 °C 
and 14,000 × g for 15 min) and transferred to the inducing 
medium at 30 °C and 120 rpm for 36 h.

Urease is a cytoplasmic enzyme (Mulrooney et al. 1989), 
AMO and NAR are cell membrane-bound enzymes (Hyman 
and Arp 1992; Blasco et al. 1992), and NIR is a periplasmic 
space enzyme (Blackmore et al. 1986).

Preparation of crude extracts of N-removal enzyme activ-
ities for enzyme activity determination: A crude extract of 
each enzyme prepared for this study was used for enzyme 
activity assays. The cytoplasmic enzyme (including the peri-
plasmic enzyme) was prepared in 20 mL of the cell culture 
medium, which was also used to determine enzyme activity, 
centrifuged at 14,000 × g for 15 min at 4 °C, and the super-
natant was discarded. Then, 100 mM phosphate buffer (pH 
7.2) was added to the centrifuged pellet to resuspend it. A 
freeze–thaw cycle (at − 20 °C ≥ 2 h and at 30 °C for 30 min) 
was repeated 4 times. Ultrasound was used to disrupt cells 
in an ice bath (sonicated at 400 W for 3 s and stopped for 
3 s) continuously through 30 cycles to obtain a solution of 
disrupted cells. The disrupted-cell solution was centrifuged 
at 14,000 × g for 15 min at 4 °C, the supernatant was col-
lected, and the sample was used for cytoplasmic and peri-
plasmic enzyme assays. The cell membrane debris was in the 
centrifuged pellet. The membrane-bound enzyme was pre-
pared as follows: Dodecyl-β-D-maltoside is an alkylglyco-
side nonionic surfactant that promotes the disintegration of 

Table 1  Reference strains and 
primers designed to amplify the 
gene sequence of the N-removal 
enzymes of Halomonas sp. H36

Reference strains (GenBank) Target gene Primers

Halomonas taeanensis strain USBA-857
(NZ_QLSX00000000.1)

ureA F-GTG ATC ACC AAT GCG CTG AT
R-CCC TTC GGT GTG ATA GGT GT

Halomonas campaniensis strain LS21
(NZ_CP007757.1)

amoA F-ATG AAA GGC ATC CGT CTC AGCG 
R-TTA AGA AGA TTG GCG ACG CAAT 

Halomonas venusta strain MA-ZP17-13
(NZ_CP034367.1)

nirS F-TTA CCC CGC CAC CCA GAC CT
R-ATG ACC GCG ACC GCA CTC AA

narH F-TGA CAA GGT GCA GGC AGA TA
R-CAA TGG CCA AGT AGC GGT AC
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lipid membranes to release membrane proteins and provides 
a hydrophobic environment for membrane proteins in the 
state of membrane removal in solution. It maintains and pro-
tects the hydrophobic transmembrane structure of membrane 
proteins, thereby maintaining the structure and function of 
membrane proteins (Wang et al. 2020a). Therefore, decyl-
β-D-maltoside is often used to extract proteins from cell 
membranes. In this paper, dodecyl-β-D-maltoside was used 
to dissolve the cytoplasmic membrane and release the mem-
brane-bound proteins. The disrupted-cell centrifuge pellet, 
as described above, was resuspended in 100 mM phosphate 
buffer (pH 7.2) containing 1.0% dodecyl-β-D-maltoside, 
incubated for 1 h at 4 °C in the dark, and centrifuged at 
14,000 × g for 15 min at 4 °C. Then, the supernatant was 
collected, and the sample was used for the cell membrane-
bound enzyme assay. The total protein concentration of the 
enzyme solution to be determined was assayed as follows: 
Protein was determined using the BCA Protein Concentra-
tion Assay Kit (PC0020, Solarbio, Beijing, China). The 
amount of the enzyme solution to be determined was based 
on the total protein (mg) (Wang et al. 2020a).

Except for the enzyme reaction system (NaCl = 30 60 90 
120 g/L in 3.3), NaCl = 0 g/L in the enzyme reaction system 
in other cases.

The urease activity was assayed as follows: Urease hydro-
lyzes CO(NH2)2-N to  NH4

+-N (Wang 2009). One unit of 
urease activity (U) is the amount of urease that hydrolyzes 
1 mmol CO(NH2)2 per min at the reaction substrate of 
CO(NH2)2 (40 g/L), pH 7.2, and 37 °C under the specified 
reaction conditions.

The AMO activity was assayed as follows: AMO oxidizes 
 NH4

+-N to  NH2OH (Ensign et al. 1993). One unit of AMO 
(U) is the amount of AMO that oxidizes 1 μmol  NH4

+ per 
min at the reaction substrate of  NH4

+-N (1,000 mg/L), pH 
7.2, and 30 °C under the specified reaction conditions.

The NIR activity was assayed as follows: NIR reduces 
 NO2

− to NO (Rosa et al. 2001). One unit of NIR (U) is the 
amount of NIR that reduces that 1 μmol  NO2

− per min at 
the reaction substrate of  NO2

−-N (1,000 mg/L), pH 7.2, and 
30 °C under the specified reaction conditions.

The NAR activity was assayed as follows: NAR reduced 
 NO3

− to  NO2
− in the presence of a reduced coenzyme 

(Kushner 1985). One unit of NAR activity (U) is the amount 
of NAR that reduces 1 μmol  NO3

− per min at the reaction 
substrate  KNO3 (50.55 mg/L), pH 7.2, and 30 °C under the 
specified reaction conditions.

Determination method of N

The TN is the sum of cell total N (CN), CO(NH2)2-N, 
 NH4

+-N,  NO2
−-N,  NO3

−-N.
CO(NH2)2-N-removal rate (%) =  (TUN0 − CN −  TUNt) × 100%/

(TUN0 − CN), where  TUN0 is the initial CO(NH2)2-N, CN is the 

cell total N, and  TUNt is the CO(NH2)2-N at a certain point in the 
N-removal process.

NH4
+-N-removal rate (%) =  (TAN0 − CN −  TANt) × 100%/

(TAN0 − CN), where  TAN0 is the initial  NH4
+-N, CN is the 

total cellular N, and  TANt is the  NH4
+-N at a certain point 

in the N-removal process.
TN-removal rate (%) =  (TN0 − CN −  TNt) × 100%/

(TN0 − CN), where  TN0 is the initial TN, CN is the total cel-
lular N, and  TNt is the TN at a certain point in the N-removal 
process.

CN was determined by the Kjeldahl method (Wang et al. 
2020a). Cell growth was defined as the cell dry weight per 
liter of culture medium (CDW, g/L). The CDW of different 
qualities was taken to determine CN, and the relationship 
between CDW and CN was fitted. The urea concentration 
was determined by the p-dime-thylam inobenzaldehyde 
colorimetric method (Jiang and Bao 2005).  NH4

+-N was 
determined by Nessler’s reagent method (Wang et al. 2020a). 
 NO2

−-N was determined by the diazo-azo reaction method 
(Eaton et al. 1966).  NO3

−-N was determined by the zinc-
cadmium reduction method (Sun et al. 2013).

Results and discussion

Effect of the medium NaCl concentration 
on the urease activity of Halomonas sp. H36

A previous study obtained a strain of Halomonas sp. H36 
with high urease activity (Li et al. 2020). This experiment 
investigated the effect of NaCl concentration in the medium 
on the urease activity of Halomonas sp. H36. The results 
are shown in Fig. 1.

Under different NaCl concentrations, the cell growth 
and urease production of Halomonas sp. H36 had the same 
trend. When NaCl = 60 g/L, the strain growth amount was 
10.26 g/L, and the urease activity was 75.28 U, both of 
which reached maximum values. When NaCl > 60 g/L, the 
urease activity of the strain decreased with increasing NaCl 
concentration. This shows that the excessive NaCl concen-
tration in the medium affects the urease-producing ability of 
the strain. When NaCl = 120 g/L, the strain growth amount 
still reached 7.05 g/L, which was 68.71% of the maximum 
growth amount, the urease activity was 37.89 U, and 50.33% 
of the enzyme activity was still retained. Thus, Halomonas 
sp. H36 could still produce urease under high salinity.

The intracellular ectoine concentration increased with 
increasing NaCl concentration in the growth medium, which 
was similar to the ectoine synthesis in Halomonas sp. B01 
(Wang et al. 2020a). In this experiment, the lowest intra-
cellular ectoine concentration was 283.04 mg/L (30 g/L 
NaCl), and the highest intracellular ectoine concentration 
was 1179.89 mg/L (120 g/L NaCl). The extracellular ectoine 
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concentration decreased with increasing NaCl concentra-
tion. The highest extracellular ectoine concentration was 
1019.98 mg/L (30 g/L NaCl), and the lowest extracellular 
ectoine concentration was 123.13 mg/L (120 g/L NaCl). The 
highest secretion rate of ectoine was 78.28%, which was 1.28 
times that of Halomonas organivorans D227 (Thuoc et al. 
2019). The results indicated that Halomonas sp. H36 could 
initiate the protective mechanism of synthesizing ectoine in 
response to high-salt stress when NaCl = 30 g/L. Halomonas 
sp. H36 ectoine, which is used to regulate osmotic pressure, 
further protects the strain activity and allows the strain to 
produce urease.

In addition, it has been reported that nonsalt-tolerant 
strains in a hyperosmotic environment can maintain their 
own stability by ingesting external ectoine (Ono et  al. 
1999). In the future, the ectoine-secreting strain Halo-
monas sp. H36 may be used as a bioenhanced strain to 
hydrolyze urea and confer ectoine to other nonsalt-tolerant 
strains with additional function. This is of great signifi-
cance for the comprehensive treatment of high-salt N-con-
taining wastewater.

Halomonas sp. H36 N‑removal enzyme gene cloning

At the molecular level, it has been proven that Halomonas 
sp. H36 N-removal enzymes exist, including urease, AMO, 
NIR, and NAR. The DNA of Halomonas sp. H36 was ampli-
fied by PCR to detect N-removal enzyme genes (ureA, 
amoA, nirS, narH) or fragments of Halomonas sp. H36. 
The agarose gel electrophoresis of the obtained amplifica-
tion product is shown in Fig. 2. BLAST comparison was 
performed between the sequencing and translation results, 
and the results are shown in Table 2. Additional data are 
given in Online Resource 1.

In this study, the gene fragments (ureA, amoA, nirS, and 
narH) of urease, AMO, NIR, and NAR were successfully 
amplified from a strain of Halomonas for the first time. This 
provides a molecular theoretical basis for the simultaneous 
removal of CO(NH2)2-N and inorganic N from high-salt 
N-containing wastewater by Halomonas.

Effects of different NaCl concentrations 
in the enzymatic reaction system on the N‑removal 
enzyme activities of Halomonas sp. H36

At the enzymology level, under different NaCl concentra-
tions (0, 30, 60, 90, and 120 g/L) in the enzyme reaction 
system, without adding exogenous ectoine, the activities of 
the N-removal enzymes of Halomonas sp. H36 were inves-
tigated and the results are shown in Fig. 3.

The N-removal enzymes of Halomonas sp. H36 still had 
good activity under high NaCl concentrations in the enzy-
matic reaction system. With the increase in NaCl concen-
tration in the enzyme reaction system, the activities of the 
N-removal enzymes decreased to varying degrees. When 
NaCl = 120 g/L, the enzyme activities of urease, AMO, 
NIR, and NAR still retained 74.25%, 22.26%, 32.01%, and 
26.82%, respectively. Compared with Halomonas sp. B01 
NAR, there was no enzymatic activity under 120 g/L NaCl 
(Wang et al. 2020a, b). In this study, the N-removal enzymes 
(urease, AMO, NIR, and NAR) of Halomonas sp. H36 still 
had enzymatic activities under high-NaCl concentrations.

The effects of salinity on the activities of N-removal 
enzymes (urease, AMO, NIR, and NAR) in the enzymatic 
reaction system were investigated. N-removal enzyme activ-
ity is the key factor for the high-salt N-removal action of the 
strain (Baddam et al. 2016). Cortes-Lorenzo et al. (2012) 
found that high salinity affects the activity of denitrification-
related enzymes, which is the same phenomenon observed in 

Fig. 1  Growth, urease produc-
tion, and ectoine synthesis by 
Halomonas sp. H36 under dif-
ferent NaCl concentrations
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this study. Halomonas sp. H36 urease still had high activity 
under high-salt conditions, which was similar to Halomonas 
venusta TJPU05 AMO (Man et al. 2022). AMO, NIR, and 

NAR of Halomonas sp. H36 were still active under high-salt 
conditions. The results showed that the N-removal enzymes 
of Halomonas sp. H36 could still function in a high-salinity 
environment. These findings lay a theoretical foundation for 
Halomonas sp. H36 to treat high-salt noxious wastewater.

The N‑removal process of Halomonas sp. H36 using 
urea as a substrate

We explored the N contents of various nitrogen species 
(CO(NH2)2-N;  NH4

+-N;  NO2
−-N;  NO3

−-N) and their rela-
tionship with each other in the N-removal process of Halo-
monas sp. H36 with urea as the sole N source. The results 
are shown in Fig. 4.

Halomonas sp. H36 cells were in the logarithmic growth 
stage from 0 to 48 h, and 219 mg/L N was used for cell 
growth. At this stage, the CO(NH2)2-N-removal rate was 
73.11%, and the content of  NH4

+-N produced by the 
hydrolysis of CO(NH2)2-N gradually increased. This stage 
is dominated by the hydrolysis of urea by Halomonas sp. 
H36 (CO(NH2)2-N →  NH4

+-N).
Halomonas sp. H36 was in the quiescent growth stage 

from 48 to 192 h. At this stage, the CO(NH2)2-N-removal 
rate was 6.21%, the  NH4

+-N-removal rate was 73.44%, and 
the TN-removal rate was 53.62%. Very low levels of  NO3

−-N 
(≤ 40 mg/L) and  NO2

−-N (≤ 10 mg/L) were detected, and at 
156 h,  NO3

−-N and  NO2
−-N were basically removed indi-

cating that the removal of N by Halomonas sp. H36 was 
dominant at this stage. Cells in the resting state converted 
 NH4

+-N into gaseous N through simultaneous nitrification 
and denitrification (SND), avoiding the negative impact of 
the accumulation of  NO2

−-N and  NO3
−-N on the cells.

The results show that in the presence of only CO(NH2)2-
N, the cells in the growing state first converted CO(NH2)2-N 
into  NH4

+-N under the catalysis of urease, and the removal 
of N was not obvious at this stage. In the resting state, 
under the catalysis of AMO, NIR, and NAR, cells con-
verted  NH4

+-N into gaseous N, and the removal of N was 
mainly completed at this stage. During the whole process 
(0–192 h), the removal rate of CO(NH2)2-N was 74.77%, 
and the N-removal rate was 57.67%.

In this experiment, with 2,800 mg/L of initial CO(NH2)2-
N, the CO(NH2)2-N degradation rate of Halomonas sp. H36 
was 74.77%, and the TN-removal rate was 57.67%. This 
value was 1.62 times that of Pseudomonas mendocina sp. 
DM01, and with an initial CO(NH2)2-N concentration of 
400 mg/L, the TN-removal rate was 35.50% (Chen 2018). 
Compared with mixed strains, it had stronger salt tolerance 
(Wang et al. 2020a, b).

The activity of N-removal enzymes was determined, and 
the N-removal enzymes of Halomonas sp. H36 were local-
ized, as shown in Table 3. Most ureases are cytoplasmic 
enzymes (Mulrooney et al. 1989), and NIR is a periplasmic 

Fig. 2  Agarose gel electrophoresis of PCR products of N-removal 
enzymes. Note m: DL2000 Marker, a: ureA, b: amoA, c: nirS, and d: 
narH 

Table 2  N-removal enzyme-encoding genes of Halomonas sp. H36

Gene Halomonas sp. H36

ureA amoA nirS narH

Similarity Nucleotide 96% 99% 95% 99%
Amino acid 99% 99% 95% 98%
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space enzyme (Blackmore et al. 1986). Therefore, it can be 
inferred that Halomonas sp. H36 urease is a cytoplasmic 
enzyme, AMO and NAR are cell membrane-bound enzymes, 
and NIR is a periplasmic space enzyme. Combined with 
the above experimental results, the N-removal pathway of 
Halomonas sp. H36 with urea as the substrate was obtained, 
as shown in Fig. 5.

With urea as the only N source, cells in the logarith-
mic growth phase mainly converted CO(NH2)2-N into 
 NH4

+-N under the catalysis of urease. Under the cataly-
sis of AMO, NIR, and NAR, the cells in the resting state 
removed  NH4

+-N in the form of gaseous N and completed 
the SND. Halomonas sp. H36 completed simultaneous urea 
hydrolysis-nitrification–denitrification with urea as the ini-
tial substrate.

Application of Halomonas sp. H36 in simulating 
domestic sewage from ships

Halomonas sp. H36 was transferred to simulated ship 
domestic sewage for treatment, and the results are shown in 
Fig. 6. In the whole process, the removal rate of CO(NH2)2-N 

Fig. 3  Characterization of the 
N-removal enzyme activities of 
Halomonas sp. H36 under dif-
ferent NaCl concentrations
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Fig. 4  Removal of N by Halomonas sp. H36 using urea as a substrate

Table 3  N-removal enzyme activities of Halomonas sp. H36

Localization Urease AMO NIR NAR

Activity (U) Cytoplasm or periplasmic 
space

118.00 - 3.53 -

Cell membrane - 21.7 - 25.8
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was 88.52%, the removal rate of  NH4
+-N was 91.16%, and 

the TN-removal rate was 90.25%.
It was found that in 0–36 h, CO(NH2)2-N decreased 

from 48.52 to 18.80 mg/L, and 29.72 mg/L CO(NH2)2-N 
was converted into  NH4

+-N. The  NH4
+-N in the matrix 

only increased by 24.61 mg/L, and 5.11 mg/L  NH4
+-N 

was removed. In this process, the degradation rate of 

CO(NH2)2-N was 0.83 mg/(L·h), and the degradation rate 
of  NH4

+-N was 0.14 mg/(L·h). This process was domi-
nated by the degradation of CO(NH2)2-N. It was shown 
that urease, AMO, NIR, and NAR in cells can play roles 
in the presence of CO(NH2)2-N and  NH4

+-N. However, 
urea degrades more rapidly. At 36–192 h, the CO(NH2)2-N 
decreased from 18.8 to 5.57 mg/L, the  NH4

+-N decreased 

Fig. 5  N-removal pathway of 
Halomonas sp. H36 using urea 
as a substrate
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from 137.84 to 10.01 mg/L, the CO(NH2)2-N-removal rate 
was 0.09 mg/(L·h), and the  NH4

+-N degradation rate was 
0.82 mg/(L·h). The process was dominated by nitrifica-
tion–denitrification. This may have been due to the low 
level of CO(NH2)2-N at this time, and  NH4

+-N accounted 
for 88.00% of the TN. This caused the enzymatic hydroly-
sis of urea to gradually weaken, and nitrification–denitri-
fication became dominant.

NO2
−-N (≤ 5 mg/L) and  NO3

−-N (≤ 10 mg/L) were 
detected. At 96 h,  NO3

−-N and  NO2
−-N were completely 

removed. It was proven that the strain avoided the negative 
impact of the accumulation of  NO2

−-N and  NO3
−-N on the 

cells and ensured effluent quality.
In this section, the results proved that Halomonas sp. 

H36 has the ability to simultaneously remove CO(NH2)2-
N and inorganic N from ship domestic sewage. The 
CO(NH2)2-N-removal rate of Halomonas sp. H36 was 
88.52%, the  NH4

+-N-removal rate was 91.16%, and the 
TN-removal rate was 90.25%. These results have obvi-
ous advantages compared with Pseudoalteromonas sp. 
SCSE709-6 (TN = 70 mg/L, with an TN-removal rate of 
approximately 50%) (Jiang et al. 2019).

Conclusions

In this paper, it was found for the first time that Halomonas 
sp. H36 has the function of simultaneous urea hydrolysis-
nitrification–denitrification with urea as the initial substrate. 
It could simultaneously move CO(NH2)2-N and inorganic N 
in high-salt urea wastewater. Ectoine synthesized by Halo-
monas sp. H36, which is used to regulate osmotic pressure, 
protects the strain activity and allows urease production in 
a high-salt environment. The key roles of urease, AMO, 
NIR, and NAR in removing N were proven by molecular 
biology and enzymatic methods, and the simultaneous urea 
hydrolysis-nitrification–denitrification pathway was clarified 
by using urea as the initial substrate. The TN-removal rate 
of the strain in simulated ship sewage was 90.25%. In the 
future, Halomonas sp. H36 can be combined with an actual 
high-salt urea wastewater treatment process.
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