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Abstract
To investigate the effects of plastic film mulches and their residual films after use on soil bacterial communities, mulching 
experiment and the subsequent residual film experiment were conducted on winter-planting potato field in two locations. 
During mulching experiment, treatments biodegradable film mulch (BM) and PE film mulch (PM) reduced soil nutrient 
regarding available nitrogen and available potassium, as well as microbial biomass carbon (MBC), but increased urease 
activity, as compared to treatment no film mulch (NM). Soil moisture was significantly elevated by mulching practices and 
correlated with more microbial phyla than the other tested soil properties, indicating its important role in shaping soil bacte-
rial communities. In addition, mulching practices increased alpha diversity of soil bacteria, although location heterogene-
ity was observed. Network analyses showed that both treatments BM and PM promoted the interrelations within bacterial 
communities and harbored more keystone taxa than treatment NM. During residual film experiment, residual films from 
BM and PM were incorporated into soil after harvest of potato. Treatment residual biodegradable film (RBF) significantly 
increased the content of MBC and activity of β-glucosidase (BG) as compared to treatments residual PE film (RPF) and no 
residual film (NRF), and BG had the most correlations with microbial phyla among all the tested soil properties. Treatments 
RBF and RPF increased the relative abundance of some dominant bacterial phyla, including Bacteroidetes, Actinobacteria, 
and Chlorofexi, and enhanced the interrelations within bacterial community, whereas more keystone taxa were harbored by 
treatment RBF, due to the increase of keystone taxa in phyla Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobac-
teria. These results indicate that the indirect effects of biodegradable and PE film mulch as a soil surface barrier on soil are 
similar, whereas their direct effects via incorporation into soil as residual films show specificity.

Keywords Biodegradable film mulch · PE film mulch · Residual biodegradable film · Residual PE film · Bacterial 
community

Introduction

The soil microbial communities play crucial roles in soil 
ecological processes, including maintenance of soil struc-
ture (Dong et  al. 2017), mineralization of soil organic 
matter (Wang et al. 2020a), soil nutrient cycling (Bardg-
ett and van der Putten 2014), and litter decomposition 

(Delgado-Baquerizo et al. 2016). In addition, soil microbi-
omes can stimulate plant growth through modulating plant 
flowering timing (Lu et al. 2018), promote plant diversity 
and productivity (van der Heijden et al. 2008), and enhance 
plant tolerance to various stresses such as abnormal tempera-
ture variation, drought, salinity (Lau and Lennon 2012), as 
well as pathogens and herbivores (Raaijmakers and Maz-
zola 2016; Howard et al. 2020). The soil microbial diversity 
has been considered an indicator of soil health and quality 
(Zheng et al. 2018). Thus, research on the effects of soil 
management on soil microbial communities has become a 
fundamental aspect of sustainable agriculture (Dong et al. 
2017).

Soil organic carbon, moisture, temperature, vapor dif-
fusivity, and presence of plant roots have been reported as 
important factors that affect the soil microbial community 
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composition (Drenovsky et al. 2004; Buyer et al. 2010; Li 
et al. 2017; Bandopadhyay et al. 2018). Thus, agricultural 
management practices, like mulching, can alter soil micro-
bial diversity through modification of soil microenvironment 
(Bandopadhyay et al. 2018). Plastic mulch film, mostly made 
from low-density polyethylene (PE), has been extensively 
applied worldwide due to its low price, easy processibility, 
excellent chemical resistance, high durability, and flexibil-
ity (Kasirajan and Ngouajio 2012). PE film mulching (PM) 
can effectively improve crop yield through soil water con-
servation, soil temperature regulation, efficient use of soil 
nutrients, and weed control (Kader et al. 2017), thus influ-
encing soil microenvironment. Dong et al. (2017) reported 
that PM increases the richness and diversity of soil micro-
organisms, due to its effect on elevating soil temperature 
and water content, as compared to no mulch. Farmer et al. 
(2017) also confirmed that PM plays a significant role in 
shaping microbial community composition. However, con-
cerns on environmental pollution issues caused by appli-
cation of PM in agriculture keep growing, as degradation 
of PE film is extremely slow under natural condition, and 
plastic fragments will remain in soil for decades. A recent 
survey on plastic pollution showed that the residual plastic 
films accumulated in soil reach up to 317.4 kg  ha−1, with 
a mean value of 34.0 kg  ha−1 across croplands in China 
(Zhang et al. 2020). Accumulations of residual plastic films 
interfere with soil structure, soil water movement (Jiang 
et al. 2017; Bläsing and Amelung 2018), and rhizosphere 
bacterial communities (Qi et al. 2020), leading to inhibition 
of crop root distribution. Consequently, water and nutrient 
uptake of crops are disturbed, resulting in yield losses (Hu 
et al. 2020).

Biodegradable film mulch (BM) has been developed as 
an environmentally friendly alternative to PM (Yang et al. 
2020). Biodegradable films have similar effects as PE films 
on crop production regarding mulching function (Wang et al. 
2019) and can be completely catabolized into harmless prod-
ucts in a reasonable time frame, theoretically (Moreno and 
Moreno 2008). The toxicity of PBAT biodegradable films 
on Allium cepa, Lactuca sativa, and human cell line HepG2/
C3A have been evaluated in a recent study, suggesting that 
the soil does not induce damage to the tested organisms 
before and after degradation of PBAT films (Souza et al. 
2020). The knowledge about effects of BM on soil microbial 
communities is scarce. Bandopadhyay et al. (2018) divide 
these effects into two aspects: indirect effect as a soil sur-
face barrier and direct effect via incorporation into soil. For 
indirect effect as mulch, BM presents lower soil temperature 
(Kader et al. 2017) and is more vapor-permeable (Toucha-
leaume et al. 2016) than PM, resulting in release of soil  CO2 
(Zhang et al. 2015; Yu et al. 2016), which may contribute to 
the different effects between BM and PM on soil microbial 
communities. For direct effect, biodegradable film fragments 

left in field may physically modify soil before they are fully 
biodegraded (Bandopadhyay et al. 2018), resulting in altera-
tion of soil microbial communities. Microplastics, possibly 
generated from mulching films as an emerging pollutant 
in terrestrial systems (Machado et al. 2018), can also alter 
microbial community composition and enzymatic activities 
in soil (Huang et al. 2019), thus acting as a distinct microbial 
habitat (Zhang et al. 2019). Small amounts of organic and 
inorganic components released from biodegradable films 
may also impact soil microbes, given that some compounds 
used in biodegradable plastics exhibited a concentration-
dependent inhibition of plant growth (Martin-Closas et al. 
2014). In addition, the growth of soil microbes in agricul-
tural soil is usually carbon-limited, and the incorporated bio-
degradable films can be an input of carbon to soil, though 
the amount is very small (Lehmann and Kleber 2015).

In this study, polylactic acid/poly (butyleneadipate-co-
terephthalate)-based biodegradable film and PE film were 
used as materials to compare their effects on soil. In order 
to maximize potential differences in environmental and soil 
conditions in this study, the experimental design was estab-
lished at two locations. Two continuous experiments were 
conducted: (1) biodegradable and PE films were applied 
on winter-planting potato as mulch experiment; and (2) the 
residual films were then incorporated into soil after harvest 
for residual film experiment. The objective was to investigate 
the indirect effects of biodegradable and PE films as mulch 
and their subsequent direct effects as residual films, on soil 
properties, enzymatic activities, and bacterial communities. 
The associations in between bacterial communities and their 
relationship with soil environmental factors were identified 
by using network analyses.

Materials and methods

Experiment design

Experiment was performed in two locations (L1: 114°2′ E, 
23°7′ N, and L2: 113°4′ E, 24°2′ N), Guangdong Province, 
China. The two study sites both have subtropical monsoon 
climates with an average annual precipitation of 1932.7 
and 1906.2 mm, an average annual temperature of 21.8 and 
21.1 °C, respectively. The soils at both study sites are classi-
fied as sandy loam. Winter-planting potato (Solanum tubero-
sum L.) was used as test crop. During the cropping season of 
winter-planting potato from November 8th, 2019 to March 
7th, 2020, the average air temperatures were 18.5 °C and 
17.4 °C, and total precipitations were 184 mm and 152 mm 
(less than 10% of annual rainfall), respectively at the two 
study sites.

The mulching experiment was designed with three 
treatments: (1) black biodegradable film mulch (BM) 
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with a film thickness of 0.012 mm, (2) black polyeth-
ylene (PE) film mulch (PM) with a film thickness of 
0.008 mm, and (3) no mulch (NM). The biodegradable 
film was made from polylactic acid/poly (butyleneadipate-
co-terephthalate). Both biodegradable and PE films were 
produced by Guangzhou Sweet Economic Development 
Co., Ltd, Guangdong, China. Each treatment had three 
replicates with plots area 18 m in length and 2 m in width 
as described by Yang et al. (2020). All of the agronomic 
managements were same as local winter-planting potato 
fields. Fertilizers were applied evenly on the field before 
planting with nitrogen, phosphorus, and potassium fertiliz-
ers 152, 106, and 135 kg  ha−1, respectively. After sowing, 
films (0.8 m in width) were applied on the soil surface by 
machine. After harvest of potato, PE films were broken 
into pieces by machine and incorporated into soil, while 
biodegradable films were incorporated into soil directly 
for the residual film experiment. Thus, the residual film 
experiment was also classified as three treatments: (1) 
residual biodegradable film (RBF), (2) residual PE film 
(RPF), and (3) no residual film (NRF).

Soil sampling

For the mulching experiment, soil samples were collected 
at 90 days after sowing of potato when biodegradable film 
started to degrade. Soil samples for the residual film experi-
ment were taken at 300 days after sowing. Residual biode-
gradable films were dramatically degraded to a low level at 
300 days after sowing, while residual PE films were barely 
reduced (Yang et al. 2020). Five soil ring samples (5 cm in 
diameter, 10 cm in depth) were randomly collected from 
each plot and pooled as a mixed sample, yielding 18 soil 
samples for each experiment (3 treatments × 3 replicates × 2 
locations). These soil samples were homogenized and sieved 
for the following measurements.

Physicochemical analyses

Soil total organic carbon (TOC) was measured using wet oxi-
dation (Bao 2000), and total nitrogen (TN) was assessed by 
the Kjeldahl method (Purcell and King 1996). Soil organic 
matter (SOM) was measured with  K2Cr2O7 oxidation–reduc-
tion titration method (Nelson and Sommers 1996). The con-
tent of soil available nitrogen (AN), phosphorus (AP), and 
potassium (AK) as well as soil pH was determined by using 
standard soil testing procedures (Bao 2000). Soil microbial 
biomass carbon (MBC) was determined using chloroform 
fumigation-extraction method (Vance et al. 1987). Soil mois-
ture was determined by oven-drying soil samples at 105 ℃ 
for 48 h.

Assays on enzyme activities

β-glucosidase (BG) and acid phosphatase (ACP) 
were assayed using a f luorometric method with 
4-methylumbelliferyl-β-D-glucopyranoside and 4-methy-
lumbelliferyl-phosphate as substrate, respectively (Saiya-
Corka et al. 2002). Urease (UR) activity was determined 
by using indophenol blue colorimetry method (Tabatabai 
1994).

High‑throughput sequencing of soil bacterial 
communities

Total DNA was extracted from soil samples using a Power 
Soil DNA Isolation Kit (MOBIO Laboratories) according 
to the manufacturer’s protocol. The concentration and DNA 
quality were measured with an Eppendorf Biophotometer 
Plus (Eppendorf, Germany), and the extracted DNA was 
stored at − 20 °C for downstream analysis. For each sample, 
the primers 338F (5′-ACT CCT ACG GGA GGC AGC A-3′) 
and 806R (5′-GGA CTA CHVGGG TWT CTAAT-3′) were 
used to amplify the V3-V4 region of the bacterial 16S rRNA 
gene. The DNA was amplified using two rounds of PCR. 
The PCR product from the first step was purified through 
VAHTS DNA Clean Beads (Vazyme, Nanjing, China). 
The PCR product from the second step was quantified by 
Quant-iT- dsDNA HS Reagent and pooled together for 
high-throughput sequencing using an Illumina Hiseq 2500 
platform.

After removing adapters and low-quality reads, raw tags 
were obtained from the paired-end clean reads by using Fast 
Length Adjustment of Short reads (FLSAH, version 1.2.11) 
with a minimum overlap of 10 bp and mismatch error rates 
of 2% (Magočand Salzberg 2011). Trimmomatic (version 
0.33) was then used to trim the raw tags (Bolger et al. 2014) 
and UCHIME (version 8.1) was applied to detect and remove 
chimera (Edgar et al. 2011) for clean tags. Operational taxo-
nomic units (OTUs) were clustered at a threshold of 97% 
similarity using UPARSE (Edgar 2013). The tag sequence 
with the highest abundance was selected as its representa-
tive sequence.

Data visualization and statistical analysis

The bacterial representative sequences were aligned to the 
SILVA database (http:// www. arb- silva. de/, Release132) 
and annotated using RDP Classifier version 2.2 with 0.8 
confidence interval (Wang et al. 2007). The alpha diversity 
indices were analyzed using Mothur version 1.30 (Schloss 
et  al. 2009) and compared among different treatments 
using Tukey’s test. Non-metric multi-dimensional scaling 
(NMDS) was performed using R version 3.6.1. Correlation 
heatmaps based on the relevance between soil bacteria at the 
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phylum level and soil properties (Spearman with p < 0.05 
and r > 0.8) were performed with data from two locations 
pooled together (Banerjee et al. 2019). The network analy-
ses were conducted to investigate the co-occurrence patterns 
within the bacterial community members with relative abun-
dances > 0.1% at the genus level using Cytoscape version 
3.7.2 (Wang et al. 2020a). Keystone taxa could be identi-
fied using network analyses with high mean degree, high 
closeness centrality, and low betweenness centrality as cri-
teria (Banerjee et al. 2018). OTUs with degree higher than 
15, closeness centrality higher than 0.44, and betweenness 
centrality lower than 0.18 were selected as keystone taxa 
(Table S1). Analysis of variance (ANOVA) was conducted 
using R version 3.6.1, and significance was determined by 
Tukey’s test (p < 0.05).

Results

Potato yield

The tuber yields of potato under different treatments were 
recorded in Fig. S1. Both treatments biodegradable film 
mulch (BM) and PE film mulch (PM) significantly increased 
the tuber yields of potato as compared to treatment no mulch 
(NM), with no difference observed between the two mulch-
ing treatments in location 1 (L1). Similar result was also 
found in location 2 (L2) during mulching experiment.

Soil physicochemical properties

Compared to treatment NM, BM performed similarly as PM 
on the increase of soil moisture during mulching experi-
ment, while the soil moisture under the three treatments 
was significantly different during residual film experiment, 
ranking as residual PE film (RPF) > residual biodegrad-
able film (RBF) > no residual film (NRF) in both locations 
(Table 1, Fig. S2). Available nitrogen (AN) and available 
potassium (AK) contents were significantly reduced by 
treatments BM and PM during mulching experiment in 
both locations, as compared to their respective treatment 
NM (Table 1, Fig. S2A). In addition, treatments BM and 
PM both decreased the microbial biomass carbon (MBC) 
contents during mulching experiment in L1 and L2, as 
compared to treatment NM (Table 1, Fig. S2A). The MBC 
content was significantly increased under treatment RBF, 
as compared to their respective treatment NRF in both loca-
tions (Table 1, Fig. S2B).

Soil enzymatic activities

During mulching experiment, no significant differences of 
β-glucosidase (BG) activities among the three treatments 

were observed in both locations (Fig. 1A). In contrast during 
residual film experiment, the BG activity was significantly 
enhanced by treatment RBF as compared to the other two 
treatments, with the activity under treatment RPF signifi-
cantly higher than that under treatment NRF in L1, but no 
difference in L2 (Fig. 1B). The urease (UR) activities under 
treatments BM were significantly higher than that under 
treatment NM (Fig. 1C), whereas residual films significantly 
reduced the UR activities as compared to their respective 
treatment NRF in both locations (Fig. 1D). No differences of 
acid phosphatase activities were observed among the treat-
ments through two experiments (Fig. 1E–F).

Bacterial community diversity

A total of 2,505,477 clean tags were obtained from 36 soil 
samples, generating 49,845 operational taxonomic units 
(OTUs). The unique and shared OTUs in the soil samples 
under three treatments at two locations across two experi-
ments were shown in the Venn diagrams (Fig. S3). Com-
pared to treatment NM, the numbers of OTUs unique in 
treatments PM and BM were 48 and 46 in L1, and 21 and 
17 in L2. During residual experiment, the numbers of OTUs 
unique in treatments RPF and RBF were 8 and 15 in L1, 
and 18 and 23 in L2. Abundance-based coverage estimator 
(ACE) and Simpson indices were used to calculate the alpha 
diversity of soil bacteria. ACE index represents the commu-
nity richness of bacteria, and Simpson index evaluates the 
bacterial community diversity. ACE index under treatments 
BM and PM was significantly increased, whereas Simpson 
index was significantly decreased, as compared to their 
respective NM in L1 (Fig. 2A and C). No significant differ-
ences of ACE or Simpson index between any two treatments 
of NM, BM, and PM were observed in L2 (Fig. 2A and C). 
There were no significant differences of ACE index among 
the three treatments in L1 during residual film experiment, 
whereas the ACE index under treatment RBF was signifi-
cantly higher than that under treatment RPF in L2 (Fig. 2B). 
The Simpson index under treatments RBF and RPF was sig-
nificantly lower than that under treatment NRF in L1, and in 
L2 treatment, RBF significantly reduced the Simpson index 
as compared to treatment NRF (Fig. 2D). Non-MetricMulti-
Dimensional Scaling (NMDS) analyses on different treat-
ments and two locations across two experiments showed that 
the treatments and locations formed distinct groups in the 
plotted ordination space during the two experiments (PER-
MANOVA, p < 0.01, Fig. 3, Fig. S4).

Soil bacterial taxa under different treatments

Soil bacterial phyla with top 10 relative abundances were 
Proteobacteria, Actinobacteria, Chloroflexi, Acidobac-
teria, Firmicutes, Gemmatimonadetes, Bacteroidetes, 
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Planctomycetes, Verrucomicrobia, and Patescibacteria 
across all treatments (Fig. 4, Fig. S5, Tables S2 and S3). 
As compared to treatment NM, the relative abundances 
of Acidobacteria, Gemmatimonadete, Patescibacteria, 
and Verrucomicrobia were increased, whereas Actino-
bacteria was decreased under treatments BM and PM in 
L1. In contrast, mulching practices enhanced the rela-
tive abundances of Actinobacteria, Bacteroidetes, and 

Patescibacteria, but reduced the relative abundances of 
Acidobacteria, Gemmatimonadetes, and Verrucomicrobia 
in L2. The relative abundances of Bacteroidetes under 
treatments RBF and RPF were significantly higher than 
that under treatment NRF in both locations. Treatment 
RBF significantly increased the relative abundances of 
Acidobacteria as compared to treatments RPF and NRF, 
with higher abundances under treatment RPF than that 

Fig. 1  Enzymatic activities 
under different treatments at 
two locations during mulching 
experiment and residual film 
experiment. A and B Activities 
of β-glucosidase; C and D activ-
ities of urease; E and F activi-
ties of acid phosphatase. NM, 
no mulch; BM, biodegradable 
film mulch; PM, PE film mulch; 
NRF, no residual film; RBF, 
residual biodegradable film; 
RPF, residual PE film. L1, loca-
tion 1; L2, location 2. Different 
letters represent significant 
differences between treatments 
(p < 0.05). Error bars represent 
the standard deviations
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under treatment NRF in L1 and no differences between 
the two treatments in L2. There were no significant dif-
ferences of the relative abundances of Actinobacteria 
between treatments RBF and NRF in L1, but RBF and 
RPF in L2, and higher abundances under treatment RPF 
than treatment NRF were observed in both locations. 
The relative abundances of Chloroflexi under different 
treatments were ranked as RPF > RBF > NRF in both 
locations. The correlation heatmaps showed that soil 
moisture was significantly correlated with more bacterial 
phyla than the other tested soil properties during mulch-
ing experiment, whereas BG had the most correlations 
during residual film experiment (Fig. 5, Table S4). The 
redundancy analysis (RDA) showed that treatments BM 

and PM had more effects on soil moisture than treatment 
NM during mulching experiment, and treatment BM had 
more effects on BG than treatment PM during residual 
film experiment (Fig. S6).

Interactions between bacterial taxa in the network

Due to the difference of bacteria community structures 
across two experiments and three treatments, bacterial 
interaction networks based on genus level were con-
structed for each experiment and treatment (Fig. 6).The 
network under treatment NM consisted of 139 nodes 
and 763 edges, in contrast to 138 nodes and 951 edges 
under treatment BM and 144 nodes and 905 edges under 

Fig. 2  Box plots of bacterial 
alpha-diversity under differ-
ent treatments at two locations 
during mulching experiment 
and residual film experiment. 
A ACE index during mulching 
experiment; B Simpson index 
during mulching experiment; C 
ACE index during residual film 
experiment; D Simpson index 
during residual film experiment. 
NM, no mulch; BM, biodegrad-
able film mulch; PM, PE film 
mulch; NRF, no residual film; 
RBF, residual biodegradable 
film; RPF, residual PE film. 
L1, location 1; L2, location 
2. Different letters represent 
significant differences between 
treatments (p < 0.05)

Fig. 3  Non-metric multi-dimen-
sional scaling (NMDS) analyses 
under different treatments in 
two locations. A Mulching 
experiment; B residual film 
experiment. NM, no mulch; 
BM, biodegradable film mulch; 
PM, PE film mulch; NRF, no 
residual film; RBF, residual bio-
degradable film; RPF, residual 
PE film. L1, location 1; L2, 
location 2
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treatment PM (Table 2). During the residual film experi-
ment, more nodes were observed under treatment RBF 
(159) than that under treatments NRF (140) and RPF 
(142), while treatments RBF (1036) and RPF (1005) 
increased the edge numbers as compared to treatment 
NRF (797). The keystone taxa were also evaluated based 
on the degree, closeness centrality, and betweenness cen-
trality of the networks. Treatments BM and PM harbored 

37 and 40 keystone taxa, respectively as compared to 20 
under treatment NM (Table 2). In contrast, 56 keystone 
taxa were discovered under treatment RBF as compared 
to 24 under treatment NRF and 26 under treatment RPF 
(Table 2). The networks without keystone taxa under 
film mulch (BM and PM) or residual film (RBF and 
RPF) treatments were similar to or even simpler than 
that under treatments NM or NRF, respectively (Fig. S7).

Fig. 4  Relative abundances of 
top 10 bacterial phyla under 
different treatments at two 
locations during mulching 
experiment and residual film 
experiment. NM, no mulch; 
BM, biodegradable film mulch; 
PM, PE film mulch; NRF, no 
residual film; RBF, residual bio-
degradable film; RPF, residual 
PE film. L1, location 1; L2, 
location 2

A B

Fig. 5  Correlation heatmaps of soil bacteria at the phylum level with 
soil properties during mulching experiment and residual film experi-
ment. Soil properties included pH, soil moist, soil total carbon (TC), 
soil total nitrogen (TN), C:N ratio, soil organic matter (SOM), micro-
bial biomass carbon (MBC), available nitrogen (AN), available phos-
phorus (AP), available potassium (AK), β-glucosidase (BG), acid 

phosphatase (ACP), and urease (UR). Spearman’s correlation coeffi-
cients between soil bacteria and soil properties were displayed with 
color gradient. Red represents positive correlation and blue represent 
negative correlation. A Mulching experiment; B residual film experi-
ment. * represents significance at p < 0.05; ** represents significance 
at p < 0.01; *** represents significance at p < 0.001
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Discussion

Film mulches and their residues affect soil property

Both treatments biodegradable film mulch (BM) and PE film 
mulch (PM) were able to effectively increase soil moisture 
as compared to treatment no mulch (NM) (Table 1), likely 
due to reduction of evaporation under mulches (Zheng et al. 
2017). Van Horn et al. (2014) reported that the bacterial com-
munity composition is altered in response to the addition of 

water. In our study, soil moisture was significantly correlated 
with more microbial members than the other investigated 
soil properties during the mulching experiment (Fig. 5A, 
Table S4), indicating its important effect on soil microbial 
diversity. During the residual film experiment, soil moisture 
under treatment residual PE film (RPF) was significantly 
higher than that under treatment residual biodegradable film 
(RBF) (Table 1). This is probably due to the dramatic deg-
radation of RBFs to an extremely low level, while a large 
amount of RPFs were still remained in soil and had partial 
function as mulch at this time point (Yang et al. 2020). Micro-
bial biomass carbon (MBC) is considered a key indicator of 
microbial activity (Munoz et al. 2017). Mulching practices 
significantly reduced MBC as compared to treatment NM 
(Table 1), which is consistent with the observations of Pi 
et al. (2017) and Wang et al. (2020b). The negative impact 
of the plastic film on MBC was also reported by Munoz et al. 
(2017), who attribute this to the less favorable soil condition 
after mulch. During the residual film experiment, MBC was 
significantly increased under treatment RBF as compared to 
treatments RPF and no residual film (NRF) (Table 1). This 
is probably because the degradation of RBFs provided meta-
bolic substrates for microorganisms, thus facilitating their 
absorption of carbon (Wang et al. 2020b).

A B C

D E F

Fig. 6  Co-occurrence networks of bacterial communities at genus 
level under different treatments during mulching experiment and 
residual film experiment. A No mulch; B biodegradable film mulch; 
C PE film mulch; D no residual film; E residual biodegradable film; 

F residual PE film. Red and green lines represent significantly posi-
tive and negative links, respectively. Large diamond nodes indicate 
the keystone taxa in the network

Table 2  Numbers of nodes, edges, and keystone taxa under different 
treatments during two experiments

Treatment Nodes Edges Keystone taxa

Positive Negative Total

NM 139 374 389 763 20
BM 138 390 561 951 37
PM 144 445 456 901 40
NRF 140 393 404 797 24
RBF 159 489 547 1036 56
RPF 142 392 613 1005 26
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Film mulches and their residues alter soil enzyme 
activities

Soil microorganisms uptake organic monomers or mineral 
nutrients through synthesizing and excreting extracellular 
enzymes (Allison et al. 2010; Mooshammer et al. 2014). 
As extracellular enzymes are closely linked to the availabil-
ity of environmental resources, they are considered good 
indicators for nutrient cycling in different ecosystems (Luo 
et al. 2017). Enzymes involved in carbon (β-glucosidase 
and β-galactosidase), nitrogen (urease), phosphorus (phos-
phatase), and sulfur (arylsulphatase) cycles are widely used 
to assess soil quality (Adetunji et al. 2017). In our case, 
the activities of β-glucosidase (BG), urease (UR), and acid 
phosphatase (ACP) were tested. During mulching experi-
ment, there were no significant differences of BG activities 
between any two treatments of NM, BM, and PM in both 
locations (Fig. 1a). This was probably due to that plastic film 
mulch did not change SOM (Table 1), and BG is positively 
correlated with SOM on a global scale (Mariscal-Sancho 
et al. 2010). In contrast, BG activities under treatment RBF 
were significantly higher than that under treatments RPF 
and NRF in the two locations (Fig. 1b). BG activity greatly 
depends on the available substrates and the microorganisms 
that synthesize this enzyme (Wang and Liu 2006). Interest-
ingly, BG had the most correlations with microbial phyla 
than the other tested soil properties during residual film 
experiment (Fig. 5, Table S4). Li et al. (2014) reported that 
BG could be used as a soil quality indicators, due to the 
fact that it was one of the most responsive soil properties 
to mulch and production systems. These results imply that 
decomposition of biodegradable films may provide organic 
substrates for BG and thus improve its correlations with 
associated microorganisms.

UR is the key enzyme for nitrogen mineralization. UR 
activity seems to be negatively regulated by available inor-
ganic nitrogen, as reduced UR activity in agricultural sys-
tems has been shown with higher inorganic nitrogen avail-
ability (Bowles et al. 2014). Similarly in our study, mulching 
practices significantly increased the activities of UR as 
compared to treatment NM (Fig. 1c), whereas soil available 
nitrogen contents under treatments BM and PM were signifi-
cantly lower than that under treatment NM (Table 1), prob-
ably due to the enhanced uptake of soil nitrogen by mulched 
plants, which may lead to the increase of potato tuber yield 
(Fig. S1). These results indicate that mulching practices may 
promote soil nitrogen mineralization and thus increase the 
UR activity. In contrast, during residual film experiment, 
treatments RBF and RPF significantly reduced UR activities 
as compared to treatment NRF (Fig. 1d). This may because 
plastic films potentially release additives into the soil, result-
ing in inhibition of soil enzyme activity (Ramos et al. 2015).

Film mulches and their residues shift soil bacterial 
community composition

Our field experiment revealed that both film mulches and 
film residues could alter the composition of the bacterial 
community in soil. Treatments BM and PM performed 
similarly on shaping the bacterial community at the phy-
lum level, as compared to treatment NM (Fig. 4). This is 
probably due to that treatments BM and PM have similar 
effects on increasing soil temperature and conserving soil 
water (Yang et al. 2020). However, location differences 
in bacterial communities were observed during mulching 
experiment (Fig. 4). Soil conditions such as temperature, 
moisture, and pH play a pivotal role in modifying microbial 
communities (Fierer and Jackson 2006; Moore-Kucera et al. 
2014; Rousk et al. 2010). In our study, the spatial variation 
in soil microbial communities might attribute to the signifi-
cant differences of soil environment factors between the two 
locations (Table 1).

It has been reported that some members of Bacteroidetes 
can degrade cellulose (Naas et al. 2014), crude oil (Viñas 
et al. 2005), and other organic polymer compounds (Bauer 
et al. 2010). The increased abundances of Bacteroidetes 
under treatments RBF and RPF as compared to treatment 
NRF (Fig. 4) indicate that residual films possibly enrich 
degradation-related Bacteroidetes. However, some Bacteroi-
detes are pathogenic (Stewart et al. 2010) and the enrichment 
of these bacteria may threaten the health of agroecosystems 
(Zhang et al. 2019). The relative abundances of Chloroflexi 
under different treatments were ranked as RPF > RBF > NRF 
(Fig. 4, Tables S2 and S3B). Members of Chlorofexi have 
been found to tolerate extreme soil environments (Neilson 
et al. 2012) and the accumulation of Chlorofexi may indi-
cate that residual films have caused stress on soil. It is well 
accepted that many members of Actinobacteria are involved 
in the decomposition of organic materials in soil (Nielsen 
et al. 2014) and some species can biodegrade polyethylene 
(PE) through the synthesis of hydrolytic enzymes (Abra-
ham et al. 2017; Santo et al. 2013). Actinobacteria were 
enriched under treatment RPF in L1, and RPF and RBF in 
L2 (Fig. 4), suggesting their potential functions in degrad-
ing residual films. Interestingly, the relative abundance of 
Acidobacteria was significantly higher under treatment RBF 
than treatments RPF and NRF in both locations (Fig. 4). 
This might be explained by the relative lower soil pH under 
treatment RBF (Table 1). MacLean et al. (2021) proposed 
that the various steps of fragmentation and degradation of 
plastic materials, as well as assimilation and mineralization 
of plastic-derived carbon involve different microorganisms. 
Thus, researches on the degradation potential of microbial 
communities, rather than of single species, are needed.
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Film mulches and their residues affect interactions 
between bacterial taxa in the network

Different soil microorganisms do not respond to environ-
mental changes separately, but form complex association 
networks (Banerjee et al. 2019). Recent researches have 
shown that network analyses can effectively reflect microbe-
microbe associations in response to environment (de Vries 
et al. 2018; Ramirez et al. 2018; Banerjee et al. 2019). In our 
study, the bacterial co-occurrence networks were constructed 
under different treatments (Fig. 6). During the mulching 
experiment, more edges under treatments BM and PM than 
that under treatment NM were observed (Table 2), which 
is in consistent with the result of Wang et al. (2020a) that 
mulching practices increase the total number of links in the 
microbial network. Similarly, there were more edge numbers 
under treatments RBF and RPF than that under treatment 
NRF (Table 2). These results may indicate that alteration 
of soil environment by external actions such as film mulch 
and incorporation of residual film into soil increase bacterial 
interactions.

Keystone taxa are the highly interacting taxa that have 
considerable influences on microbial composition and 
function irrespective of their abundance (Berry and Widder 
2014; Banerjee et al. 2018; Herren and McMahon 2018). 
Both treatments BM and PM harbored almost double the 
number of keystone taxa as compared to treatment NM 
(Table 2), which can be attributed to the increase of key-
stone taxa in phylum Proteobacteria (Table S5). We specu-
late that soil moisture might be one of the major drivers of 
keystone taxa during mulching experiment, as soil moisture 
was significantly increased by mulching practices (Table 1) 
and was correlated with more microbial phyla, including 
Proteobacteria, than the other tested soil properties (Fig. 5, 
Table S4). The number of keystone taxa under treatment 
RBF was much higher than that under treatments RPF and 
NRF (Table 2), due to the increase of keystone taxa in phyla 
Acidobacteria, Actinobacteria, Bacteroidetes, and Proteo-
bacteria (Table S5). Compounds released from degradation 
of RBFs might be the major driver of keystone taxa, as the 
direct input of carbon, additives and adherent chemicals 
into soil affect microbial communities (Bandopadhyay et al. 
2018).

Conclusions

Mulching practices reduced soil nutrients as compared 
to treatment no mulch (NM), possibly through enhanc-
ing uptake of nutrients by mulched plants, leading to 
increase of urease activity and decrease of microbial 
biomass carbon content in soil. Mulching practices 
increased alpha diversity of soil bacteria, although 

location heterogeneity was observed. Soil moisture was 
significantly increased by mulching practices and played 
an important role in shaping soil bacterial communities, 
as it correlated with more microbial phyla than the other 
tested soil properties. In addition, mulching practices not 
only promoted the interrelations, regardless of positive or 
negative, within bacterial community, but also harbored 
more keystone taxa than treatment NM. After the films 
were incorporated into soil, β-glucosidase had the most 
correlations with microbial phyla among all the tested 
soil properties and was significantly promoted by treat-
ment residual biodegradable film (RBF), suggesting its 
potential role in degradation. The relative abundance of 
some dominant bacterial phyla, including Bacteroidetes, 
Actinobacteria, and Chlorofexi with potential functions 
related to material degradation and/or soil stress, were 
increased by residual films. The interrelations within 
bacterial community were also enhanced by treatments 
RBF and residual PE film (RPF), whereas the number of 
keystone taxa under treatment RBF was doubled as com-
pared to treatments RPF and no residual film (NRF), due 
to the increase of keystone taxa in phyla Acidobacteria, 
Actinobacteria, Bacteroidetes, and Proteobacteria. These 
results indicate that the indirect effects of biodegradable 
and PE films as mulch on soil are similar, whereas their 
subsequent direct effects as residual films show speci-
ficity, and incorporation of residual films into soil may 
cause stress, regardless degradable or non-degradable in 
a short term.
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