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Abstract
Promoting the use of agricultural wastes/byproducts in concrete production can significantly reduce environmental effects and 
contribute to sustainable development. Several experimental investigations on such concrete’s compressive strength ( fc ) and 
behavior have been done. The results of 229 concrete samples made by oil palm shell ( OPS ) as a lightweight aggregate ( LWA ) 
were used to develop models for predicting the fc of the high-strength lightweight aggregate concrete ( HS − LWAC ). To this 
end, gene expression programming ( GEP ), adaptive neuro-fuzzy inference system ( ANFIS ), artificial neural network ( ANN ), 
and multiple linear regression ( MLR ) are employed as machine learning ( ML ) and regression methods. The water-to-binder 
( W∕B ) ratio, ordinary Portland cement ( OPC ), fly ash ( FA ), silica fume ( SF ), fine aggregate ( Sand ), natural coarse aggregate 
( Gravel ), OPS , superplasticizer ( SP ) contents, and specimen age are among the nine input parameters used in the developed 
models. The results show that all ML-based models efficiently predict the HS − LWAC ’s fc , which comprised OPS agricultural 
wastes. According to the results, the ANN model outperformed the GEP and ANFIS models. Moreover, an uncertainty analysis 
through the Monte Carlo simulation (MCS) method was applied to the prediction results. The growing demand for sustainable 
development and the crucial role of eco-friendly concrete in the construction industry can pave the way for further application 
of the developed models due to their superior robustness and high accuracy in future codes of practice.
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Introduction

The demand and cost of construction materials are 
increasing due to the world’s rapidly growing population 
(Shadmani et al. 2018). The ever-growing demand for 

natural resources to meet the demand of the market and 
economic growth has resulted in a detrimental impact 
on the environment and a lack of raw materials (Sabe-
rian et al. 2021). In some countries, agricultural wastes/
byproducts can be harmful to the ecosystem if these 
wastes/byproducts are not recycled/pretreated (Sodhi 
et al. 2021). Either fully or partially use of solid agricul-
tural wastes/byproducts, particularly for concrete produc-
tion, as a suitable replacement for raw materials has been 
studied by many researchers (e.g., Aslam et al. 2016a, 
Chinnu et al. 2021, Rashad 2016, Shafigh et al. 2014b). 
The reported results showed that this replacement is a 
promising approach to achieving sustainable development 
(Islam et al. 2016). Among agricultural wastes/byprod-
ucts, oil palm shell ( OPS ) (see Fig. 1) that is abundantly 
available in large quantities in tropical countries such 
as Indonesia, Malaysia, and Thailand can be easily and 
efficiently used as a construction material for concrete 
production (Hamada et al. 2020).

Every year, around 4.56 million tons of OPS wastes are 
produced, according to the current statistics (Shafigh et al. 
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2012b). The advantages of utilizing OPS waste as a light-
weight aggregate ( LWA ) in the fabrication of lightweight 
aggregate concrete ( LWAC ) have been reported by many 
researchers (e.g., Ahmad Zawawi et al. 2020, Aslam et al. 
2016c). Moreover, numerous studies have proven that using 
OPS decreases the need for coarse material made from natu-
ral resources while improving sustainability due to lower 
pollution levels. The produced structural concrete using 
OPS as an LWA showed to have an acceptable compressive 
strength ( fc ) at 28 days , and 20–30% lower density (com-
pared with normal weight concrete ( NWC )) according to the 
existing literature (Aslam et al. 2016b; Shafigh et al. 2014c). 
Furthermore, in terms of flexure and bond strength, the OPS 
concrete displays good structural performance (Johnson 
Alengaram et al. 2011; Teo et al. 2006; Thomas et al. 2017).

The phrase “lightweight concrete ( LWC )” refers to 
concrete that has an oven-dried density of less than 
2000 kg∕m3 and can be manufactured from various natu-
ral aggregates. The phrase structural LWC , on the other 
hand, refers to concrete that has an oven-dried density 
of less than 2000 kg∕m3 and is made using coarse LWA 
s with normal fine or fine and coarse LWA s. A high-
strength lightweight aggregate concrete ( HS − LWAC ) 
has a compressive strength of 34 − 69 MPa , and a dry 
density of less than 2000 kg∕m3 (Mehta and Monteiro 
2014). Generally, to obtain the desirable high-strength 
in LWC  , a water-to-cement ( W∕C  ) ratio of less than 
0.45 is used to obtain the desirable high-strength in 
LWC (Hoff 2002). High-strength concrete ( HSC ) with 
normal weight could generally achieve the cylindri-
cal compressive strength of 40 MPa and above. It was 
used in the construction industry (in the year 1960 ) 
with a compressive strength of up to 50 MPa . HSC 
with normal density, on the other hand, has a compres-
sive strength of above 41 MPa , according to American 
Concrete Institute reports (American Concrete Institute 
1997). According to Mehta and Monteiro (Mehta and 
Monteiro 2014), a concrete with good quality LWA and 
a high cement content may reach compressive strengths 
of 40 to 50 MPa.

Previous research has demonstrated that in concrete 
production, agricultural wastes/byproducts could replace 
normal coarse aggregate to produce structural LWC (Alen-
garam et al. 2013). Shafigh et al. (2011b) proposed utiliz-
ing OPS to make HS − LWAC by crushing big OPS shells 
for performing this process. The reported physical bond 
between crushed OPS shell and hydrated cement paste was 
reported strong and the shell was quite hard. The compres-
sive strength reported in this investigation was around 53 
and 56 MPa in 28 and 56 days , respectively. Furthermore, 
it was reported that Grade 30 OPS concrete could be man-
ufactured without the use of any cementitious material. 
Another research demonstrated that OPS concretes with 
a 28 − day fc of around 43 − 48MPa and a dry density at 
around 1870 − 1990 kg∕m3 can be produced both with and 
without limestone powder (Alengaram et al. 2013; Shafigh 
et al. 2014c). To ensure the higher compressive capacity 
OPS − LWAC , generally, the compressive strength ( fc ) is 
needed to be evaluated as the determinative factor. As a 
result, accurate and reliable compressive strength prediction 
of OPS − LWAC before using it is critical for making crucial 
judgments (Zhang et al. 2020).

Nowadays, linear/nonlinear regression techniques are 
widely used for predicting concrete characteristics (Sad-
rmomtazi et al. 2019). However, there are few regression 
models for estimating OPS concrete compressive strength. 
Furthermore, utilizing empirical-based models, obtain-
ing an accurate regression equation is quite challenging 
(Chou and Pham 2013). Among newly developed machine 
learning ( ML ) approaches, gene expression programming 
( GEP ) (Ferreira 2001), adaptive neuro-fuzzy inference 
system ( ANFIS ) (Jang 1993), and artificial neural network 
( ANN ) (Hornik et al. 1989) have been widely employed to 
formulate the conventional statistical methods/models (i.e., 
regressions) (e.g., Farooq et al. 2021, Latif 2021a). In order 
to distinguish the relationship between input factors and 
HS − OPS − LWAC ’s fc , therefore, in this study, the above-
mentioned ML approaches are used.

To the best of the authors’ knowledge, no ML

-based model exists for estimating/predicting the 

Fig. 1  Shape of OPS aggregate 
(Mo et al. 2015, 2018)
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HS − OPS − LWAC  compressive strength. Therefore, 
this study uses a comprehensive database collected from 
the literature to predict the compressive strength of the 
HS − OPS − LWAC , by employing ANN, ANFIS, and GEP 
approaches. After that, the employed approaches’ effi-
ciency, performance, and predictive validity are compared 
using multiple statistical approaches. In the “Research 
methodology” section, the employed ML and regression 
methods will be explained. The “Modeling procedure” sec-
tion is about compiling the collected dataset, and in the 
“Results and discussion” section, the modeling procedure 
is further described. Evaluating and comparing the effi-
ciency and performance of the proposed models are further 
discussed in the “Conclusions” section.

Research methodology

In this section, first, the data collected on HS − LWAC mix 
designs were explained and descriptive and statistical infor-
mation about this data was given. In the following, compre-
hensive explanations were given about the used regression 
and ML methods including MLR , GEP , ANFIS , and ANN.

Data collection

To predict the compressive strength of HS − LWAC , a data-
set including 229 experimental data records was compiled 
from previous research studies (Alengaram et al. 2008a, 
b; Aslam et al. 2015, 2016b, c, 2017, 2018; Farahani et al. 
2017a, b; Maghfouri et al. 2017, 2018, 2020; Muthusamy 
et al. 2020; Shafigh et al. 2011a, b, 2012a, b, c, 2013a, b, 
2014a, c, 2016, 2018; Yahaghi et al. 2016). This dataset 
included information such as the content of fine aggregate 
( Sand ), natural coarse aggregate ( Gravel ), ordinary Portland 
cement ( OPC ), fly ash ( FA ), silica fume ( SF ), superplasti-
cizer ( SP ), and OPS , as well as the water-to-binder ( W∕B ) 
ratio. It also included the age and compressive strength ( fc ) 
values of the test specimens. Since the aim of this study was 
the prediction of the compressive strength of HS − LWAC , 
the 28 − day fc of all specimens were higher than 34MPa . 
The modeling input and output variables histograms are dis-
played in Fig. 2.

In Table 1, the descriptive statistics of the input and out-
put variables are provided. As can be seen in this table, 
for specimens with ages of 1 to 120 days , the compres-
sive strength varies from 13.71 to 84.45 MPa . Of all the 
specimens, 76 contained no gravel, which allowed the 

Fig. 2  Histograms of the database parameters
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investigation of the effect of the 100% substitution of OPS . 
The highest content of OPS (i.e., 451.5 kg∕m3 ) decreased 
the specific gravity of the concrete to 1900 kg∕m3 (see 
Table  1). However, in designs without OPS where the 

coarse aggregate was entirely gravel, the specific gravity 
values were greater than 2228 kg∕m3 . In 22 mix designs, in 
addition to OPC , FA was also used as the binder. The high-
est content of FA was 165 kg∕m3 , and the OPC content in 

Table 1  Descriptive statistics of the input and output variables

Statistical indicator OPC(kg∕m3) FA(kg∕m3) SF(kg∕m3) W∕B SP(kg∕m3) S(kg∕m3) G(kg∕m3) OPS(kg∕m3) Age(days) fc(MPa)

Mean 491.2 8.1 8.9 0.3 5.5 793.4 395.1 222.4 26.6 46.2
Median 495 0 0 0.34 5 812 348 243 7 42.8
Mode 500 0 0 0 5 812 0 0 28 74
Minimum 360 0 0 0.29 3.6 566 0 0 1 13.7
Maximum 550 165 60 0.4 9.4 1050 963 451.5 120 84.5
Std 40.2 30.5 20.5 0.0 1.2 101.1 362.0 154.6 31.4 16.0
Kurtosis 2.5 17.0 1.6 0.7 1.3 0.5  − 1.6  − 1.3 1.3  − 0.4
Skewness  − 1.14 4.18 1.89 0.57 1.46  − 0.36 0.24  − 0.25 1.41 0.40

Fig. 3  A typical GEP model, 
the algebraic equation, and its 
corresponding ET  with pheno-
type, along with the crossover 
and mutation processes
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this design was 385 kg∕m3 . In addition, the lowest content 
of FA among these 22 designs was 22.85 kg∕m3 , and the 
OPC content in the corresponding design was 388 kg∕m3 . 
The use of FA slightly increased the 28 − day fc . On the 
other hand, it had a positive effect on the drying shrink-
age of concrete and improved concrete durability (Mo et al. 
2020). Moreover, in 37 mix designs, SF was also used as 
partial replacement of cement, with the highest content 
of 60 kg∕m3 and lowest content of 45.7 kg∕m3 . The mix 
designs containing SF had higher compressive strength 

values compared with those without SF . The reason for 
this may be the fineness of SF particles and the reaction of 
silicon dioxide with calcium hydroxide.

Multiple linear regression approach

Regression approaches predict how a dependent variable 
varies by changing independent variable(s). Multiple linear 
regression ( MLR ) (Andrews 1974), often known as multiple 
regression, is an approach that statically predicts the result of 

Fig. 4  The employed ANFIS 
schematic with the defined para-
metric conjunction operations
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a response variable by combining multiple explanatory vari-
ables/parameters. Since MLR approach contains more than 
one explanatory variable (independent), multiple regression 
is essentially an ordinary least-squares ( OLS ) regression exten-
sion that can be expressed as follows:

where y is the dependent variable predicted value; �0 is the 
value of y-intercept ( y value considering all other parameters 
are set to zero); �1 and �n are the regression coefficient of the 
first and last independent variable, respectively; x1 and xn are 
the first and last independent variable, respectively; and � is 
the model error. MLR approaches calculate three factors to 
obtain the best-fit line for each independent (explanatory) 
variable including (1) the regression method coefficients that 
lead to the least overall model error, (2) the entire model’s t
-statistic, and (3) the p-value that corresponds to the entire 
model’s t-statistic. The model’s t-statistic and p-value are 
then calculated for each regression coefficient.

Gene expression programming approach

Gene expression programming ( GEP ) method (Ferreira 
2001), based on Darwin’s theory of evolution and Men-
del’s genetic theory, is one of the most logically appealing 

(1)y = �0 + �1x1 +⋯ + �nxn + �

computational intelligence formalisms. There are two 
languages in GEP algorithms including the gene and the 
expression trees ( ET  s) languages. Comprehending one of 
these languages requires knowledge of the sequence/struc-
ture of the other (Ferreira 2002). The following are the 
basic processes involved in standard/typical GEP modeling. 
GEP modeling starts with a random chromosome’s genera-
tion for specific numbers, followed by the introduction of 
the chromosomes using Karva language (i.e., representing 
symbols). A chromosome or gene usually has a head and 
a tail; the chromosome’s head composed of some terminal 
symbols or a function, whereas only terminal symbols form 
the chromosome’s tail (Shishegaran et al. 2020). In a GEP 
model, the sub-ET  s’ number is determined by the head 
size, which takes into account each parameter’s complex-
ity. The lengths of the chromosomes are fixed and may be 
easily converted/transformed into an algebraic equation, 
as seen in Fig. 3.

Each GEP gene has a collection of terms (i.e., a fixed-
length list) that are adapted from the function set, including 
arithmetic operations ( +, −, ×, ÷ ), and functions such as 
Boolean logic ( AND , OR , NOT  , etc.), mathematical ( cos , 
sin , ln ), conditional ( IF , THEN  , ELSE ), and so on. The 
chromosomes are then represented by ET  s that come in 
various sizes and shapes. The major genetic operators 

Fig. 5  The architecture of the 
used feed-forward ANN with 
nine inputs
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of crossover, transposition, mutation, and recombination 
(one-point, two-point, and gene recombination) are then 
conducted on the chromosomes, in line with their ratios 
(Londhe et al. 2021). The process of mutation and cross-
over and a typical ET  are displayed in Fig. 3. It is also 
worth noting that the ET  is represented in Karva notation/K

-expression. Reaching a suitable solution or highest/enough 
generation number (the stop condition), the whole process 
will stop. If the maximum iteration or preferred fitness 
value termination requirements are not fulfilled, the Rou-
lette wheel method, ranking/tournament selection, elite 
strategy, etc., is used. This procedure would be repeated 
until the optimal/best solution was found or for a defined 
generation number.

Adaptive neuro‑fuzzy inference system approach

Adaptive neuro-fuzzy inference system ( ANFIS ) (Jang 1993) 
is an appealing computational intelligence modeling tech-
nique that combines the ANN learning capability with the 
fuzzy logic reasoning capability. ANFIS has a better estimate 
ability and is a better alternative for processing nonlinear 
complicated problems more precisely (Gholizadeh et al. 
2022). ANFIS algorithms learn from the collected data for 
training with any complicated mathematical model, then 
maps out the obtained solutions onto a fuzzy inference sys-
tem ( FIS ) (Saradar et al. 2020).

Using ANFIS tool in MATLAB , a typical FIS consists of 
many phases, one of which is the introduction of inputs to 
aid in fuzzy sets fuzzification according to the linguistic 
rules activation. Following that, particular rules/guidelines 
are either created by specialists or can be derived from 
numerical data available in the literature. The next stage 
is inference, which involves mapping fuzzy sets according 
to set rules. Finally, the fuzzy sets are defuzzified, result-
ing in the final output values. In other words, the ANFIS 
technique is made up of five key steps: ( 1 ) dataset; ( 2 ) 
development of ANFIS ; ( 3 ) variable setup; ( 4 ) training 
and then validation; ( 5 ) obtaining results. In addition, the 
architecture of ANFIS for the nine input variables ( OPC , 
FA , SF , W∕B , SP , Sand , Gravel , OPS , and Age ) is shown 
in Fig. 4. More detail regarding the method and develop-
ment of ANFIS can be found in Mohammadi Golafshani 
et al. (2021).

Artificial neural network approach

Artificial neural networks ( ANN s) (Hornik et al. 1989) are 
computer algorithms that can accurately and effectively 
forecast and categorize data processing difficulties. They are 
mathematical models based on the properties of biological 
neuron networks that are similar to the human brain (Liu 
et al. 2021). ANN s have a layered structure with a variety 
of processing elements ( PE s) and arranged nodes, including 
(1) an input layer which composed of independent variables, 
(2) a hidden layer/s which is composed of several hidden 
variables, also known as hidden neurons, and (3) an output 
layer which contains the outputs/target values (Ahmed et al. 
2022) (see Fig. 5).

Table 2  Statistical parameters for each GEP model

Bold is the best model

Models Phase R2 RMSE MAE

GEP1 Training 0.848 6.399 4.798
Validation 0.827 8.412 6.718

GEP2 Training 0.814 6.944 5.462
Validation 0.776 9.016 6.656

GEP3 Training 0.886 5.496 4.049
Validation 0.893 6.771 5.246

GEP4 Training 0.880 5.370 3.642
Validation 0.892 6.126 4.313

GEP5 Training 0.868 5.467 4.077
Validation 0.865 4.714 5.380

GEP6 Training 0.877 5.401 4.008
Validation 0.892 6.238 4.954

GEP7 Training 0.851 5.851 4.180
Validation 0.859 7.036 5.484

GEP8 Training 0.898 5.080 3.860
Validation 0.901 6.501 5.245

GEP9 Training 0.867 6.499 4.500
Validation 0.863 8.405 6.489

GEP10 Training 0.837 6.694 4.798
Validation 0.845 8.267 6.194

GEP11 Training 0.811 6.549 4.788
Validation 0.841 7.283 5.647

GEP12 Training 0.882 5.788 4.204
Validation 0.890 7.438 5.519

GEP13 Training 0.847 5.915 4.404
Validation 0.839 7.374 5.439

GEP14 Training 0.849 6.031 4.884
Validation 0.849 7.610 6.000

GEP15 Training 0.874 5.372 4.059
Validation 0.878 6.397 5.288

GEP16 Training 0.813 6.498 4.781
Validation 0.803 8.154 6.116

GEP17 Training 0.890 4.999 4.021
Validation 0.840 7.313 5.452

GEP18 Training 0.897 4.859 3.946
Validation 0.898 6.082 4.860

GEP19 Training 0.860 5.675 4.552
Validation 0.861 7.043 5.853

GEP20 Training 0.862 5.665 4.617
Validation 0.836 7.606 6.180
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The influential factors in the research were chosen as 
inputs to produce the respective outputs compressive strength 
of concrete ( fc ), as shown in Fig. 5. Each input from the pre-
ceding layer ( OPC , FA , SF , W∕B , SP , Sand , Gravel , OPS , 
Age ) is multiplied by an appropriate weight factor (weight 
connection) in the hidden layer. A threshold value is added 
to each node’s weighted input signals summations. The com-
bined input then goes through a transfer phase that includes a 
non-linear transfer function ( TF ) (Latif 2021b).

Linear, stepped, logistic sigmoid, and hyperbolic tan-
gent sigmoid are the most widely employed activation 
functions ( AF s) in ANN  s. The output of one PE serves 
as the input for the subsequent PE . Each neuron in the 
hidden and output layers performs a logistic function as 
an AF (Parsaie et al. 2021). AF is a crucial essential prop-
erty of neural networks, and it has a substantial influence 
on the ANN  model performance and efficiency; therefore, 
choosing and employing the viable and workable AF is 
critical (Ehteram et al. 2021). In this study, to increase the 
performance and accuracy of the obtained output, AF of 

Backpropagation neural network ( BPNN  ) and PURELIN 
are employed. BPNN  ’s output is within the range of −1 to 
+1 and is related to a bipolar Sigmoid which is employed 
in the hidden layer. PURELIN  is a linear AF which is 
employed in the output layer. The number of neurons in 
each layer and each TF increases as a result of using these 
AF s. Therefore, for the training dataset, using BPNN  and 
PURELIN  improves the statistical indices; however, it 
decreases the accuracy for testing the dataset and valida-
tion (Ghadami et al. 2021).

The training/learning phase begins when the ANN 
starts propagating the collected data (information) from 
the input layer, and the weight factors (connections) are 
modified according to the specified rules for finding the 
best combination of weights to create the least amount 
of error possible (Shahmansouri et al. 2021). The trained 
model is then verified using a new testing set. More detail 
regarding the ANN  approach and its development can be 
found in Shahmansouri et al. (2022).

Modeling procedure

To model the compressive strength of HS − LWAC , nine 
input variables introduced and characterized in the previ-
ous section, together with an output variable being the 
compressive strength, were considered. The total number 
of experimental data points used in the modeling was 229 
in all the methods.

Data curation

For ANN  and ANFIS modeling approaches, considering 
the input and output domains’ differences, all input vari-
ables were normalized to increase the accuracy and speed 
of the models (Shahmansouri et al. 2022). To this end, 

Fig. 6  The OBJ values for all 
GEP models (red bar is the best)

Table 3  GEP setting parameters used for GEP18

Parameters Value/setting

Head size 12
Chromosome 40
Number of genes 4
Mutation rate 0.044
Inversion rate 0.1
Transposition rate 0.1
Linking function Addition
Operators used + , − , ∗ , ∕ , 

exp , sin , cos
,atan

Fitness function RRSE

Constant per gene 1
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Fig. 7  GEP18 ’s expression trees
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using Eq. (2), input variables were normalized in the range 
of 0.1 − 0.9.

where x is the measured value of a parameter and xi is the normalized 
value. In addition, xmin and xmax are the minimum and maximum 
values of variable x in the data. Note that since, in the GEP modeling, 
the effect of weight is considered, there is no need to normalize the 
data. It should be mentioned that in the MLR method, normalizing 
the data had a negative effect and lowered the model’s performance.

Performance parameters

The developed models’ performance was assessed using 
parameters including RMSE , MAE , and R2 through the 
following equations:

(2)xi = 0.8
x − xmin

xmax − xmin
+ 0.1

(3)RMSE =

√√√
√1

n

n∑

i=1

(
ti − oi

)2

(4)MAE =
1

n

n∑

i=1

|
|ti − oi

|
|

where t is the target value, o is the output value, n is the total 
number of data points, and t is the mean value of targets.

In addition to high correlation, a model should present 
an acceptable error to be reliable. To this end, the parameter 
OBJ was used to compare the performances of different mod-
els. This parameter is a function of R2 value, and two errors 
RMSE and MAE in all modeling phases using the following 
equation:

(5)R2 =

�
n
∑

tioi −
∑

ti
∑

oi
�2

�
n
∑

ti
2 −

�∑
ti
�2��

n
∑

oi
2 −

�∑
oi
�2�

(6)

OBJ =

(
ntr

nall

RMSEtr +MAEtr

R2
tr + 1

)

+

(
nval

nall

RMSEval +MAEval

R2

val
+ 1

)

+

(
ntst

nall

RMSEtst +MAEtst

R2
tst + 1

)

Table 4  Specifications for 
selecting reliable models

Description ANFIS models

Name of the model C2 C3 C4 C5 C6

Number of clusters 2 3 4 5 6
Number of nodes 52 72 92 112 132
Number of unknown linear parameters 20 30 40 50 60
Number of unknown nonlinear parameters 36 54 72 90 108
Total number of unknown parameters 56 84 112 140 168
Number of known parameters (training datasets) 160 160 160 160 160
Is the model reliable? Yes Yes Yes Yes No

Table 5  Statistical parameters for each ANFIS model

Bold is the best

Models Phase R2 RMSE MAE

C2 Training 0.931 3.991 2.891
Testing 0.929 4.747 3.368

C3 Training 0.948 3.594 2.803
Testing 0.928 4.647 3.570

C4 Training 0.957 3.198 2.368
Testing 0.937 4.689 3.462

C5 Training 0.978 2.260 1.669
Testing 0.942 4.301 3.439

3.76
3.58

3.25

2.59

0

1

1

2

2

3

3

4

4

C2 C3 C4 C5

O
BJ

ANFIS models

Fig. 8  The OBJ values for all ANFIS models (red bar is the best)
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where n is the number of patterns (data points) in the associ-
ated dataset, and tr , val , and tst subscripts present the train-
ing, validation, and testing datasets, respectively.

MLR model

In this study, to predict the compressive strength of 
HS − LWAC using MLR method, 70% of the data were used 
as the training data and the remaining 30% as the testing 
data. The equation used in MLR to predict the compressive 
strength is as follows.

Here, modeling using the MLR method was performed in 
CurveExpertProfessional software. RMSE , MAE , and R2 values 
for the testing dataset were obtained as 9.83MPa , 7.71 , and 0.59 . 
Furthermore, the value of OBJ per all the data was 8.89 . The results 
show that the model developed using the MLR was not a relatively 
accurate prediction of the compressive strength of HS − LWAC.

GEP model

For an acceptable performance of the GEP modeling, it 
is necessary to set its associated parameters. 70% of the 

(7)

fc = 43.18 + (0.031245 ∗ OPC) − (0.02493 ∗ FA) − (0.38695 ∗ SF)

− (11.0925 ∗
W

B
) + (0.010443 ∗ SP)

− (0.0221 ∗ Sand) + (0.025972 ∗ Gravel)

− (0.00926 ∗ OPS) + (0.190928 ∗ Age)

Table 6  Statistical parameters for each ANN model

Models Phase R2 RMSE MAE

n6 Training 0.983 2.194 1.687
Testing 0.975 2.578 2.002
Validation 0.943 2.606 1.922

n7 Training 0.983 2.034 1.485
Testing 0.972 2.971 2.204
Validation 0.965 3.090 2.371

n8 Training 0.990 1.537 1.116
Testing 0.971 2.381 1.982
Validation 0.937 4.861 3.557

n9 Training 0.984 1.906 1.375
Testing 0.973 3.249 2.590
Validation 0.971 2.903 2.342

n10 Training 0.989 1.585 1.150
Testing 0.961 3.366 2.540
Validation 0.941 4.543 3.195

n11 Training 0.990 1.578 1.069
Testing 0.965 2.854 2.216
Validation 0.955 3.574 2.610

n12 Training 0.980 2.235 1.583
Testing 0.965 3.291 2.239
Validation 0.974 2.790 2.196

n13 Training 0.991 1.460 1.043
Testing 0.957 3.175 2.369
Validation 0.960 3.776 2.613

n14 Training 0.990 1.526 1.086
Testing 0.956 3.594 2.835
Validation 0.962 3.668 2.775

n15 Training 0.980 2.262 1.584
Testing 0.952 3.439 2.846
Validation 0.960 3.290 2.734

n16 Training 0.991 1.537 1.033
Testing 0.927 4.419 3.217
Validation 0.931 4.359 3.395

n17 Training 0.994 1.299 0.774
Testing 0.964 3.543 2.682
Validation 0.943 3.390 2.526

n18 Training 0.971 2.707 1.955
Testing 0.954 3.344 2.816
Validation 0.950 3.811 2.851

n19 Training 0.988 1.711 1.154
Testing 0.968 2.856 2.363
Validation 0.937 4.725 3.513

n20 Training 0.987 1.801 1.282
Testing 0.951 3.294 2.545
Validation 0.967 3.227 2.287

n21 Training 0.987 1.859 1.305
Testing 0.943 4.318 3.273
Validation 0.958 3.594 2.768

Bold is the best

Table 6  (continued)

Models Phase R2 RMSE MAE

n22 Training 0.985 1.969 1.332

Testing 0.931 3.736 2.935

Validation 0.961 3.723 2.970
n23 Training 0.985 1.837 1.170

Testing 0.945 4.332 3.186
Validation 0.971 3.246 2.615

n24 Training 0.985 1.905 1.296
Testing 0.943 3.650 3.053
Validation 0.958 3.940 2.653

n25 Training 0.990 1.686 1.166
Testing 0.944 3.551 2.977
Validation 0.895 4.168 3.115

n26 Training 0.985 2.000 1.488
Testing 0.905 4.895 3.551
Validation 0.968 2.789 1.900

n27 Training 0.989 1.671 1.079
Testing 0.925 5.103 3.979
Validation 0.932 3.931 3.287
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collected data were used as the training data and 30% as 
the validation data. Twenty different designs with differ-
ent parameters were used to select the best GEP settings 
using the recommendations provided by Shahmansouri et al. 
(2020). Results corresponding to the performance param-
eters of the 20 developed models are displayed in Table 2. 
OBJ values obtained from the performance analyses of the 
developed models are displayed in Fig. 6, and model GEP18 
was selected as the best model with the lowest OBJ value 
of 4.98.

GEP setting parameters used for developing GEP18 are 
reported in Table 3, and the equation obtained from this 
model is as follows:

(8)
fc = f

(
OPC,FA, SF, W∕B , SP, Sand,Gravel,OPS,Age

)

= ET1 + ET2 + ET3 + ET4

(8a)ET
1
= (Gravel − (sinSP − 5.793) ∗ Gravel) ∗ e−5.793

(8b)
ET2 = tan−1

(
Gravel − etan

−1(Gravel−OPC) + OPS − OPS ∗ SF + Sand
)

This model was then used to compare the performance 
of GEP method with other modeling methods. The expres-
sion trees of the GEP18 model are shown in Fig. 7.

ANFIS model

In the ANFIS method, 70% of the data were used for train-
ing, and 30% were used for testing the model. For all 
the models, the initial FIS was generated using fuzzy 
c-means ( FCM ) clustering method and then fine-tuned 
by employing a hybrid optimization algorithm (Poures-
maeil et al. 2022). In this method, the number of clusters 
first needs to be determined. To this end, all unknown 
model parameters (i.e., membership functions’ nonlinear 
parameters and linear equations’ coefficient parameters 
in the output of the rules) have a sum lower than the 
total number of observations (number of data utilized in 
the training phase). In this study, the number of clusters 
was considered 2 to 6 , and ANFIS models were labeled 
C2 − C6 , considering the number of clusters. After that, 
for models with 2 , 3 , 4 , and 5 clusters, 56 , 84 , 112 , and 
140 unknown parameters were considered, respectively. 
In the C6 model, the sum of unknown parameters is 168 , 
which is larger than the total number of observations 
or the number of training data (i.e., 160 ), that makes it 
unreliable. The modeling of each ANFIS structure was 
repeated 20 times, given the random nature of optimi-
zation problems, and the best result was saved. Further 
information about the ANFIS models can be seen in 
Table 4.

The best-developed models’ performance parameters’ 
values in both the training and testing phases are provided 
in Table 5.

(8c)
ET

3
= −5.793 ∗

(
W∕B + (W∕B − 5.793) ∗ tan

−1Age + tan
−1(SF ∗ Sand)

)

(8d)ET
4
= tan

−1
(
Gravel − tan

−1eFA ∗ (Sand − OPS + 5.793) − OPS ∗ SF ∗ Gravel
)

Fig. 9  The OBJ values for all 
ANN models (red bar is the 
best)
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Table 7  Statistical parameters of different models

Datasets Statistical 
parameters

ANN ANFIS GEP MLR

Training 
data

RMSE 1.299051 2.259774 4.858525 8.037163
MAE 0.773868 1.668729 3.94575 6.152084
R2 0.993652 0.977932 0.896941 0.756924

Testing 
data

RMSE 3.543299 4.301228 6.082227 9.833508
MAE 2.682117 3.439364 4.860466 7.709457
R2 0.964224 0.941744 0.898283 0.592266

All data RMSE 2.180948 3.023627 5.257306 8.609786
MAE 1.317404 2.202239 4.221363 6.614535
R2 0.982087 0.964507 0.895825 0.711637
OBJ 1.653552 2.588861 4.97974 8.894597
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The OBJ  values of the best-developed trained model 
per a given cluster number are given in Fig. 8. Among the 
ANFIS models, the model with 5 clusters and an OBJ value 
of 2.59 was selected as the best model and compared with 
other methods. In addition, it is seen that with decreasing 
the number of clusters, OBJ increases, indicating a weaker 
performance of the model.

ANN model

In the ANN  method, randomly, 70% of the data were used 
to train, 15% to test, and 15% to validate the model. For 
all the models, the Levenberg–Marquardt backpropaga-
tion algorithm was used for the network training. In the 
ANN  modeling, it is necessary to specify the number of 
hidden layers and their neurons (Faraj et al. 2022). One 
hidden layer was selected for all the developed models 
based on the authors’ experience. The number of hidden 
layers’ neurons was selected from 6 (two-thirds of the 
number of input variables) to 27 (three times the number 
of input variables). Furthermore, the developed ANN 
models were named n6 − n27 , considering the number 
of neurons. Note that the number of neurons in the input 

and output layers equals the number of input and output 
variables (i.e., 9 and 1), respectively. The modeling of 
each ANN  structure was repeated 20 times, and the best 
result was saved; in total, 440 ANN  models were built. 
Transfer functions ( TF s) in the hidden and output lay-
ers were of the hyperbolic tangent sigmoid type and the 
linear type, respectively.

The best-developed models’ performance parameters’ val-
ues in terms of neurons’ numbers are provided in Table 6 for 
the training, testing, and validation phases. In addition, Fig. 9 
presents the OBJ values of the best-constructed model per a 
given number of neurons for each trained model. Among all 
the developed models, the neural network model with 17 neu-
rons (with the lowest OBJ value of 1.65 ) was selected as the 
best model and further used for comparison with other mod-
eling methods in this study.

Results and discussion

Table 7 lists the values of performance parameters for the 
best-constructed models using the four employed meth-
ods. Before assessing and comparing the models, it must 
be ensured that no overfitting occurred in the modeling. 

Fig. 10  Comparison between developed models in training, testing, and overall phases
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Overfitting is a common issue in modeling using ML-based 
methods and occurs when the performance values are 
acceptable for the training data while they are significantly 
weaker for the testing data. Overfitting can be detected by 
comparing the four aforementioned performance parameters 
in the training and testing phases. As the difference in the 
performance parameters between the training and testing 
phases declines, the probability of overfitting decreases.

Considering the values reported in Table 7, no overfitting 
occurred in modeling using the four methods of interest. A 
higher R2 value indicates a strong correlation between the 
experimental and prediction data of the models. As can be 
seen, MLR and GEP have weaker performances compared 
with ANN and ANFIS in both training and testing phases. 
In general, ANN has the best correlation with an excellent 
value of 0.982 , followed by ANFIS with a correlation value 

of 0.964 . Figure 10 shows the performance parameters sche-
matically to allow better comparison. ANN had the lowest 
OBJ values in both training and testing phases and thus 
showed the best performance in predicting the compressive 
strength. After that, ANFIS and GEP respectively showed 
the next best performances, and MLR with an OBJ value of 
8.89 had the weakest performance.

The predicted fc for the training and testing datasets 
using the best models of the four described methods against 
the experimental fc are displayed in Fig. 11. As is shown 
in this figure, the linear regression equation with bias 
zero is also provided. Lines representing the main lines’ 
10% and 20% errors are also drawn in the diagrams. In the 
ANN modeling, except for five points, all the other points 
have errors lower than 20% , which correspond to compres-
sive strength values lower than 50 MPa . For fc higher than 

Fig. 11  Predicted fc versus 
experimental results for training 
and testing dataset
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50MPa , all the points have errors lower than 20% , with only 
four points with errors higher than 10% . This observation 
indicates that the ANN model has an excellent performance 
in predicting fc of higher strength concrete. The ANFIS 
model also had a proper performance in predicting the com-
pressive strength at higher strength values and performed 
slightly weaker at lower strength values. The GEP and MLR 
methods, however, had weaker performances compared with 
ANN and ANFIS methods.

As is shown in Fig. 12, the predicted values using dif-
ferent models are compared with the experimental results. 
According to this figure, the predicted values by ANN  are 
considerably close to the experimental results. In con-
trast, MLR and GEP models cannot satisfactorily predict 

the compressive, considering the reported experimental 
results.

For further investigation of the four developed models’ 
performance, the predicted to experimental value ratio is 
illustrated in Fig. 13. This ratio is another criterion for dem-
onstrating the models’ ability to lower errors and provide a 
more accurate prediction. The lower the scattering of this 
ratio, the higher accuracy of the developed models becomes. 
As can be seen, the ANN  model showed a better perfor-
mance than the other models in both the training and testing 
phases. The mean Pre∕Exp ratios of all the data for models 
ANN , ANFIS , GEP , and MLR are 0.998 , 1.012 , 1.024 , and 
1.064 , respectively. Moreover, the lowest difference between 
the mean ratio and 1 for the ANN model demonstrates the 

Fig. 12  Graphical comparison 
of ANN , ANFIS , GEP , and 
MLR models in the overall 
phase

1110 Environmental Science and Pollution Research  (2023) 30:1096–1115



better performance of this model. For this model, the mini-
mum and maximum Pre∕Exp ratios are 0.716 and 1.324 , 
respectively. The worst performance pertains to MLR , with 
the minimum and maximum Pre∕Exp values of 0.506 and 
2.083 , respectively.

Figure 14 shows the error values of the developed 
models in the testing phase. As can be seen, the mean 
error values of the GEP and ANN  models are 0.03 and 
0.28 , respectively, which are much lower than ANFIS 
and MLR models’ errors (i.e., 0.63 and 2.14 , respec-
tively). In addition, in the ANN  model, the first and 
third quartiles are −1.85 and 2.51 , respectively, indicat-
ing an interquartile range of 4.36 . The corresponding 
values for models ANFIS , GEP , and MLR are 5.16 , 8.04 , 
and 13.44 , respectively. A smaller interquartile range 
indicates greater concentration and lowers the scatter-
ing of the error data. The value of this parameter in 
ANN  is 15.57 , 45.77 , and 67.56% lower than the corre-
sponding values in ANFIS , GEP , and MLR , respectively.

The uncertainty technique inspired by Monte Carlo simu-
lation (MCS) was employed to specify the randomness of 
the developed models. The prediction of the compressive 

strength is associated with several uncertainties (e.g., 
experimental uncertainty, input predictors uncertainty, and 
model parameters uncertainty) (Ashrafian et al. 2022). The 
MCS analysis was conducted for the MLR, GEP, ANFIS, 
and ANN models. The results of this study (e.g., median of 
predicted fc , mean absolute deviation (MAD), and width 
of uncertainty band) are reported in Table 8. According 
to the table, the positive values of the average prediction 
error show that the fc predicted using all approaches above 
are higher than the experimental values. Also, the ANN 
and MLR presented the lowest (20.370%) and highest 
(38.154%) uncertainty bandwidths, respectively.

Conclusions

Replacement of natural coarse aggregate with agricul-
tural wastes/byproducts such as OPS in the LWC pro-
duction process can reduce environmental impact and 
promote sustainable development. Precise prediction of 
OPS − LWAC compressive strength is a determinative factor 

Fig. 13  Comparison of Pre∕Exp 
ratios using ANN , ANFIS , GEP , 
and MLR models in train and 
test phases
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in decision-making before the concrete field placement. The 
research aims to investigate if different ML and regression 
approaches can be used to predict HS − OPS − LWAC ’s fc . 
To this end, a relatively comprehensive dataset is used to 
develop three models, including GEP , ANFIS , and ANN  . 
After that, the developed models’ performance is compared 
to the results obtained from the regression model ( MLR ). 
The following conclusions can be drawn from the investiga-
tion’s research results:

• According to the research results, all ML approaches 
were effectively employed to develop prediction models 
for the HS − OPS − LWAC compressive strength.

• The suggested ML models outperform statistical evalu-
ation indices such as MAE , RMSE , R2 , and OBJ , indi-
cating the models’ excellent abilities and potential for 
further/future practical application.

• The calculated correlation coefficient ( R2 ) for the train-
ing, testing, and validating phases of all developed 
models (i.e., GEP , ANFIS , and ANN  ) was greater than 
0.8 , indicating a good fit between model predictions 
and experimental data.

• The ANN-based model with 17 neurons with the OBJ 
value of 1.65 outperformed all developed models. Fur-
thermore, the ANN-based models demonstrate better 

efficiency and performance than the developed ANFIS
-based and GEP-based models.

• The uncertainty analysis was performed via Monte 
Carlo simulation (MCS) to specify the randomness of 
the developed models. The results show the positive val-
ues of the average prediction error. Moreover, the ANN 
model presented the lowest (20.370%) uncertainty band-
width.

The findings of this study have opened up new avenues 
for future research using ML algorithms. To improve the 
suggested approaches’ generalizability, the authors will 
gather a continuously updated, widely accessible, and 
more comprehensive database in future work. To replace 
missing values in the database (the input and output), 
advanced data pre-processing approaches such as semi-
supervised learning and missing data imputation will be 
employed. Other ML approaches’ effectiveness in forecast-
ing HS − OPS − LWAC ’s fc will also be compared. The 
integrated hybrid ML model, which combines ML-based 
techniques with high-convergence metaheuristic optimiza-
tion algorithms (e.g., Seydanlou et al. 2022, Shaswat 2021), 
might be studied as a feasible option to increase the concrete 
properties’ estimation accuracy (e.g., modulus of elastic-
ity, compressive, tensile, and flexural strengths). Finally, the 
suggested ML-based model will be integrated into construc-
tion industry systems to make HS − OPS − LWAC easier to 
produce. However, further study in this area is necessary.

Author contribution Saeed Ghanbari: formal analysis; methodology; 
software; validation; original draft; visualization; review and editing. 
Amir Ali Shahmansouri: formal analysis; investigation; original draft; 
visualization; supervision; project admiration; review and editing. 
Habib Akbarzadeh Bengar: supervision; review and editing. Abouzar 

Fig. 14  Error box plot diagram 
of models in the testing phase

Table 8  MCS uncertainty analysis of the proposed models

Model Median MAD Uncertainty (%)

MLR 62.145 27.112 38.154
GEP 53.110 19.662 29.780
ANFIS 47.416 16.553 24.020
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