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Abstract
Mercury (Hg) contamination of aquatic ecological units and subsequent bioaccumulation are major environmental problems 
of international scope. Moreover, the biogeochemistry of Hg in the remote alpine lakes aquatic ecosystem in the Himalayas 
remains largely unexplored. The current study investigated Hg concentrations in different environmental compartments 
such as water, fish, and sediments in the remote alpine lakes (RALs) including Glacial-fed Lake, Ice melting-fed Lake, and 
Rain-fed Lake in northern areas of Pakistan. The mean concentration of Hg in Rain-fed Lake water was (1.07 µg  L−1), Ice 
melting-fed Lake (1.16 µg  L−1), and Glacial-fed Lake (1.95 µg  L−1). For fish muscle tissues, mean concentration of Hg was 
1.02 mg  kg−1 in the Rain-fed Lake, and 1.2 mg  kg−1 for the Ice melting-fed Lake, and 1.51 mg  kg−1 in the Glacial-fed Lake. 
Meanwhile, 0.27 mg  kg−1 was observed for sediments in the Rain-fed Lake, 0.33 mg  kg−1 for the Ice melting-fed Lake, and 
0.38 mg  kg−1 for the Glacial-fed Lake, respectively. Chronic daily intake (CDI) and potential health quotient (PHQ) for water 
showed high health risk in Glacial-fed Lake and low in Rain-fed Lake (PHQ < 1). The target hazard quotient (THQ) values 
for both the Brown and Rainbow trout in all the studied lakes water were less than 1, indicating no health risk. Furthermore, 
the Hg level showed high level of contamination in the sediments of all the studied lakes (190 ≤ RI < 380). Overall, Glacial-
fed Lake water was more polluted with Hg, as compared to Rain-fed Lake and Ice melting-fed Lake. In the light of the 
abovementioned results, further research work is urgently needed to shed light on the biological and geochemical monitoring 
of Hg in arid high-altitude ecosystems along with source identification, mercury speciation, and other potential pollutants.
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Introduction

Mercury (Hg) is considered to be a major environmental con-
taminant worldwide, because of its complex biogeochemistry 
in nature, high atmospheric deposition, strong tendency of 
bio-magnification, and high potential toxicity (Santos et al. 
2021; Melnyk et al. 2021; Xu et al. 2019; Zupo et al. 2019; 
Gruszecka-Kosowska et al. 2018; Alves et al. 2017). The 
heavy metal Hg exists in three chemical forms such as inor-
ganic form (IHg), elemental form  (Hgo), and organic form 
(Me-Hg and Et-Hg). The metallic Hg mostly occurs in white 
silver liquid form on the earth crust, and odorless at room 
temperature (Li et al. 2019; Beckers and Rinklebe 2017; Ull-
rich et al. 2001). These forms are capable of inter-convertible 
and create potential toxicity in the ecosystem (Wang et al. 
2019). Hg is usually originating from natural sources such 
as weathering of rocks, volcanic eruptions, lixiviation, as 

Responsible editor: Severine Le Faucheur

 * Javed Nawab 
 javednawab11@yahoo.com

1 Department of Environmental Sciences, Kohat University 
of Science and Technology, Kohat, Pakistan

2 Department of Environmental Sciences, Abdul Wali Khan 
University Mardan, Mardan, Pakistan

3 Department of Biological, Geological and Environmental 
Sciences, Alma Mater Studiorum University of Bologna, 
40126 Bologna, Italy

4 Department of Environmental Sciences, University 
of Veterinary and Animal Sciences, Lahore 54000, Punjab, 
Pakistan

5 Department of Environmental Sciences, University 
of Peshawar, Peshawar 25120, Pakistan

6 Department of Microbiology, Abdul Wali Khan University 
Mardan, Mardan, Pakistan

/ Published online: 21 June 2022

Environmental Science and Pollution Research (2022) 29:81021–81036

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-21340-5&domain=pdf


1 3

well as erosion of soil particles, while anthropogenic sources 
include the use of fossil fuel, incineration, fungicides, cata-
lyst processes, and industrial activities such as electric stuffs 
and asbestos fibers (Ponton et al. 2022; Tayemeh et al. 2020; 
UNEP 2018; Gerson et al. 2018; Jagtap and Maher 2015; 
Chiarelli and Roccheri 2014). Hg also originates from the 
mining activities on regional basis (Torres et al. 2018), and 
also release to the atmosphere by coal combustion process in 
the form of fly ash to the environment, and can adversely con-
taminate both the terrestrial and aquatic environments (Streets 
et al. 2018; Horowitz et al. 2017). As a result, it evaporates 
to the atmosphere and releases through precipitation to the 
earth surface, resulting from poor solubility of Hg compounds 
(Chiarelli and Roccheri 2014). Maximum proportion of water 
soluble  (Hg+2) releases to terrestrial environment and returns 
back to the atmosphere in elemental Hg form (Amos et al. 
2015), and could be remained for 6 months (Horowitz et al. 
2017). Hg can be deposited in the aquatic and terrestrial eco-
system by precipitation process in the atmosphere (UNEP 
2008), and it can be transferred from one region to another 
region, depending on its chemical behavior and wind flow in 
the atmosphere (Pacyna et al. 2016; Cohen et al. 2004). More-
over, Hg can be transfer to remote areas due to less degrada-
tion and its volatile ability in nature (Lindberg et al. 2007). In 
Asia, Hg has been highly contributed about (67%) emissions 
through anthropogenic activities, followed by North America 
and Europe (EFSA 2012). In 1990s, the Asia including India 
and China were dominantly responsible for Hg emissions 
(Pacyna et al. 2010), and the coal-fired plants were primary 
source of Hg emissions in Asia (Driscoll et al. 2013).

Fish consumption was estimated about 154 million t in 
2011 worldwide, produced (50%) by aqua-farming, which 
has significant impacts on countries economy (FAO 2012). 
Fish is enriched of essential nutrients such as proteins, vita-
mins, omega-3, fatty acids, and other minerals (Storelli 
2008). Since, the exposure of Hg to humans and animals 
has been increased, due to consumption of fish through bio-
magnification process (Melnyk et al. 2021; Ki-Hyun et al. 
2016). Hg has been listed as a high priority contaminant 
worldwide, recommended by the US EPA (2010). Due to 
the fact that Hg can be accumulated by fish in aquatic eco-
systems through bio-magnification and thereby affects the 
human health via the food chain (Gruszecka-Kosowska et al., 
2018). Previously, elevated Hg levels have been reported in 
fish species, and have posed adverse health issues in ripar-
ian people, due to the main source of fish diet (Lino et al. 
2018; Salazar-Camacho et al. 2017). For instance, the first 
infected case was reported in 1965, caused by Me-Hg form 
in Minamata city, Japan (Ekino et al. 2007). Ingestion of Hg 
poses adverse effects to human health risk, resulting to impair 
and suffer the spoken and hearing ability, contributes to cause 
cancer, ataxia, and tremors in the body, disorders the sensory 
and vision features, and was briefly highlighted by Minamata 

Convention Treaty in 2013, and the main objectives were to 
protect and mitigate the Hg contamination in the environ-
ment (Bhattacharya 2020; Yang et al. 2020; Selin 2014). The 
majority of the studies have been conducted regarding Hg 
concentrations in field reservoirs and lakes water, sediments, 
and fish species. In recent studies, Ni et al. (2021) investi-
gated elevated Hg concentrations in lakes water, sediments, 
and fish in microcosm experiments under the controlled con-
ditions of water level fluctuations. Despite the significant pro-
gress in understanding of Hg contamination in different eco-
systems, there are still considerable scientific research gaps 
of Hg contamination in alpine lakes of Himalayas region. 
Therefore, it is important to comprehensively investigate the 
abundance and composition of Hg in alpine lakes water, sedi-
ments, and in fish species in the Himalayas region.

Data on Hg enrichment in natural aquatic lakes ecosys-
tems are available, but it will be the first study to investigate 
Hg composition and its bioaccumulation in fish species in 
alpine lakes of Pakistan. The objectives of this study were to 
investigate Hg concentrations in water, sediments, and fish 
species in remote alpine lakes including Glacial-fed Lake, 
Ice melting-fed Lake, and Rain-fed Lake in northern areas of 
Pakistan. This study further evaluated the health risk associ-
ated with consumption of Hg through water and fish in lakes 
while the concerned study is the baseline for future studies 
in remote alpine lakes of Pakistan.

Materials and methods

Study area description

The study area of remote alpine lakes is located in North-
ern region of Himalayas in Pakistan, as shown in Fig. 1. 
Three natural lakes were selected for water, sediments, and 
fish sampling in remote Alpine region including Mahodand 
(Glacial-fed Lake), Satpara (Ice melting-fed Lake), and 
Kachura (Rain-fed Lake). The Mahodand Lake is located at 
35.7139° N latitude and 72.6510° E longitude in Matiltan 
valley of upper Usho on a distance of 40 km away from 
Kalam district Swat, Khyber Pakhtunkhwa, Pakistan. The 
lake receives water from melting of glaciers and mainsprings 
of Hindu Kush mountain ranges, and exists with elevation 
of total 2865 m above (2 km in length). The Satpara Lake 
is situated at 35° 26′ 40′′ N latitude and 75° 38′ 15′′ E lon-
gitude in Northern area of Skardu, with total distance of 
9 km in Gilgit Baltistan region. The Satpara Lake mainly 
receives water from the ice melting in the Deosai plains and 
water runoff flowing into the Skardu town from the lake. 
The lake receives 5.4-, and 7.4-in. annual precipitation on 
average in winter and summer seasons, respectively. The 
Kachura Lake is located at 35° 25′ 36′′ N latitude and 75° 
27′ 18′′ E longitude with elevation of 2499 m at Kachura 
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region. The source of this lake is mostly the rainfall, and lake 
receives monthly precipitation of about 4.4 in. with tempera-
ture ranges from − 6 to 20 °C. The temperature reaches to 
15 °C in Kachura Lake during the summer season and gets 
frozen in the cold winter season. The lake environments are 
severely cold in winter season due to high elevation above 
the sea level with annual average of temperature of 0 °C. The 
alpine lakes are mostly covered with ice during December to 
April months, and the lakes contain high abundance of trout 
fishes in fishing grounds for tourist worldwide.

Samples collection and preparation

The water, sediments and fish samples were collected in 
April 2019, in aforementioned Northern remote alpine areas 
of Pakistan (Fig. 1). Total of 100 samples were randomly 
collected including water samples (n = 40), sediment sam-
ples (n = 40), and fish samples (n = 20) from selected lakes, 
respectively. For Hg sampling, one offshore surface water 
sample (10–15 cm) was collected at each lake site. Water 
samples were collected in 50-mL new polypropylene falcon 
tubes, and were acidified to 0.4% with ultrapure nitric acid 

(Sigma Aldrich) on site. Field blank samples were obtained 
by filling ultrapure water in situ for each sampling lake and 
were handled as samples. All samples were tightly sealed, 
double-packed in Ziploc bags and then stored in a cooler 
before transported back to the laboratory.

The surface sediment samples were collected by gravity 
corer at the bottom of the lakes, and sediments were pulled 
out by corer under vacuum pressure and were kept in poly-
thene bags. All the water and sediment samples were trans-
ferred to laboratory for further analysis. The sediment sam-
ples were air dried on ground and sieved through a 74-μm 
stainless steel wire sieve, according to procedure adopted 
by Lino et al. (2019). Total of 20 fish samples were col-
lected from selected lakes with the help of local fisherman. 
Fish species samples include Brown trout (Salmo trutta), 
belongs to Salmonidae family, collected from Glacial-fed 
Lake. While, Rainbow trout (Oncorhynchus mykiss) also 
belongs to Salmonidae family, collected from Ice melting-
fed Lake and Rain-fed Lake. The fish samples were kept 
in plastic bags and stored at − 18 °C on site before transfer 
to laboratory. The fish species’ heads, skin, their internal 
organs, and tails were removed because these parts cannot be 

Fig. 1  Location map of the 
study area showing the remote 
alpine lakes of Pakistan
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generally consumed, and only the edible portions of muscles 
were considered for Hg analysis in the present study. The 
edible parts of all selected fish were cut into small pieces 
by stainless steel knife, and were three times washed with 
deionized water for further analysis. All the reagents and 
chemicals were used for analytical grade.

Sample digestion and Hg analysis

For the analysis of Hg concentrations, 0.5 g of sediments was 
digested with 15 ml of sulfuric acid  (H2SO4) and nitric acid 
 (HNO3) on ratio of (2:1 v:v) in water bath at 60 °C tempera-
ture. The clear suspension was made in the extraction pro-
cess, and 6% potassium permanganate  (KMnO4) was added 
until the color changed to purple, and all the extracted sam-
ples were then kept in the ice bath. Hg concentrations were 
determined in all water samples by adding bromine mono-
chloride (100 μl) to oxidized Hg forms, followed by reduc-
tion with stannous chloride (20% w/v) and hydroxylamine 
hydrochloride  (HONH2·HCl) (30% w/v) (USEPA 2002). The 
pH of all the samples was recorded on-site using digital pH 
meter (W2015, Sinowell Company, Shanghai, China). Elec-
trical conductivity (EC) and total dissolved solid (TDS) were 
measured using conductivity meter (Model HI 98,303) and 
TDS meter (Model S 518,877), respectively. Turbidity was 
determined on the field by electrochemical analyzer instru-
ment (CONSORT C-931) which was calibrated before use. 
Fish muscle samples were extracted with 8 ml of  HNO3 and 
 H2SO4 on the ratio of (2:1 v:v) for 3 h at 25 °C, and further 
digested for 5 h at 60 °C. In addition, (30%) of hydrogen per-
oxide  (H2O2) was added to increase the sample to (0.5 mL) 
with time in extraction, following the protocol described by 
Azevedo et al. (2020). Temperature was further increased to 
65 °C until the samples became colorless. After digestion, the 
digested mixture was filtered using a membrane filter paper 
(0.45 μm). The samples were then analyzed for Hg concen-
trations in water, sediments, and fish muscle samples through 
cold vapor atomic fluorescence spectrometry, by following 
USEPA Method 1631 (USEPA 2002).

Exposure risk assessments

In this study, the general exposure equations were followed to 
assess the potential risk assessments of water, sediments, and 
fish. These exposure equations were based on recommenda-
tions presented by various Canadian and American publica-
tions (Health Canada 2010; USEPA 1989, 1992, 2003).

Water exposure risk assessments

Hg was detected in each lake for the identification of risk 
assessments, while daily intake of Hg and health quotient 

were calculated for health risks assessment in water by the 
following Eqs. (1) and (2), respectively.

Chronic daily intake (CDI)

Health quotient (HQ)

where “C” represents Hg concentrations (µg  L−1), DI shows 
the daily intake of consumption of water whereas 2 L for 
adults and 1 L for children per day, respectively (USEPA 
2011). The BW represents average body weight for children 
(32.7 kg) and adults (70 kg), respectively. The RfD shows 
the reference dose value for Hg (0.03 µg−1   kg−1   day−1) 
described by (USEPA 1995). The observed values of HQ 
(< 1) are considered as safe permissible level (Gul et al. 
2016).

Exposure risk assessments of fish

Estimated daily intake (EDI)

EDI of Hg (mg  kg−1) via consumption of fish can be cal-
culated by the following Eq. (3):

where DC represents daily fish consumption rate in gm 
 day−1  person−1 (10 gm  day−1  person−1 for local people 
and 100 gm  day−1  person−1 for fishermen), C is the con-
centrations of Hg in fish samples, and ABW indicated 
average body weight for adult human 60 kg (Nawab et al. 
2018). If the EDI values were observed in the range of 
1 ×  10−6 to 1 ×  10−4 considered tolerable level (Chen et al. 
2015).

Target hazard quotient (THQ)

THQ helps to evaluate human health risks through con-
sumption of fish caused by Hg concentrations USEPA 
(2000). Thus, THQ was followed widely in some recent 
studies (Ahmad et al. 2015), expressed as follows:

(1)CDI =
C × DI

BW

(2)HQ =
CDI

RfD

(3)EDI =
DC × C

ABW

(4)THQ =
EF × ED × FIR × C

RfD ×WAB × AT
× 10

−3

81024 Environmental Science and Pollution Research (2022) 29:81021–81036



1 3

where EF represents exposure frequency of 365 days  year−1, 
ED is the exposure duration of 70 years for Hg concentra-
tions of fish in mg  kg−1, RfD is the oral reference dose for 
Hg (0.004 µg  gm−1  day−1 (USEPA 2010, 2000, 1997), and 
FIR shows the food ingestion rate 10 gm  day−1  person−1 
for local people and 100 gm  day−1  person−1 for fishermen. 
WAB is the adult body weight approximately 60 kg and AT 
showed average time per year (Nawab et al. 2018). Although, 
some international agencies set limits for Hg concentration 
to protect against Hg toxicity to human health through con-
sumption of fish and fish-related products. Moreover, the 
maximum allowable limit for Hg for fish consumption was 
1 µg  gm−1 wet wt suggested by US food and Drug Admin-
istration (FDA). Similarly, fish containing Hg (0.4 µg  gm−1 
wet wt) concentration has been considered toxicant for 
human health in Japan. Furthermore, MAL for Hg concer-
tation was 0.5 µg  gm−1 set by WHO/FAO (2003) and in 
Europe as well. Moreover, the concentrations of Hg were 
greater than MAL in some tropical countries (Burger et al. 
2013; Nakagawa et al. 1997).

Ecological risk assessments of sediments

The pollution indices are useful tools to evaluate sedi-
ments contaminations. Therefore, several equations have 
been used in the study to assess pollution degree and eco-
logical risks in the study area (Bourliva et al. 2018; Jafar-
abadi et al. 2017; Christophoridis et al. 2009).

Contamination factor (CF)

CF is used to calculate the Hg contamination level in the 
water of each lake, by the given Eq. (5):

Here  CMc shows the Hg concentrations in contaminated 
sites, and  CMb is Hg (0.25 mg  kg−1) concentrations in the 
standard pre-industrial reference level (Hakanson 1980). 
However, CF categorized the values based on contamina-
tion levels as (i) CF < 1 is considered as low contamina-
tion, (ii) 1 ≤ CF ≤ 3 represents the moderate contamina-
tion, and (iii) 3 ≤ CF ≤ 6 shows the high contamination, 
while (iv) CF > 6 exhibits the significant contamination 
level (Mmolawa et al. 2010; Chen et al. 2005).

Geo‑accumulation index  (Igeo)

Igeo can be used to identify the extent of heavy metal con-
centrations in water sediments, developed by Muller and 

(5)CF =
CMc

CMb

Geyer (1969), and Igeo classifies the quality of sediments 
(Nowrouzi and Pourhabbaz 2014).

Here  CMc represents the Hg concentration in contam-
inated lakes site, and  CMb shows Hg concentrations in 
reference sediments level, and 1.5 used as constant value 
due to variation in metal concentration of background 
sediments (Nowrouzi and Pourhabbaz 2014). Although, 
Igeo categorized the contamination levels in sediments as 
(i) Igeo < 0 shows the low contamination, (ii) 0 ≤ Igeo < 1 
exhibits moderate contamination, (iii) 2 ≤ Igeo < 3 presents 
moderate-high contamination, (iv) 3 ≤ Igeo < 4 shows high 
contamination, and (v) 4 ≤ Igeo < 5 indicates high-signifi-
cant contamination, while (vi) Igeo > 5 represents the sig-
nificant contamination level (Hu et al. 2019).

Enrichment factor (EF)

EF is used to evaluate the variation in metals concentration 
in contaminated sediments and in the background sites, 
described by Simex and Helz (1981). The EF can be esti-
mated by the following Eq. (7):

where  CMc represents the Hg concentrations in each con-
taminated lake site, and “CMb” is the Hg concentrations in 
the background site. EF classified the observed values as (i) 
EF < 2 shows low enrichment level, (ii) 2 ≤ EF < 5 is normal 
enrichments level, and (iii) 5 ≤ EF < 20 is high enrichments 
level, whereas (iv) 20 ≤ EF < 40 is significant enrichments 
level (Sutherland 2000). Although, iron (Fe) oxidizes to 
iron hydroxide [Fe (OH)3] in aquatic environment, thereby 
tends to major sink for heavy metals. Even low level of [Fe 
(OH)3] has effects on the distribution of metal in aquatic 
ecosystem (Forstner and Wittmann 1983). The EF values 
range (from 0.5 to 1.5) might be considered in the natural 
geogenic sources whereas above from (EF < 1.5) considered 
anthropogenic sources (Elias and Gbadegesin 2011). Some 
studies evaluated the HMs pollution, to their average shale 
for quantification of the concentrations and degree of Hg 
contaminations (Muller and Geyer 1969; Forester and Mul-
ler 1973).

Nemerow’s pollution index (NPI)

NPI was used to determine the overall degree of metals 
contamination in contaminated sites, used by (Nemerow 
1991). NPI can be identified by the given Eq. (8) as follows:

(6)Igeo = log
2

CMc

1.5CMb

(7)EF =
CMc∕Fesample

CMb∕Febackground
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CFAve represents the average contamination factor and 
 CFMax shows the maximum contamination factor. The 
NPI classified degree of contamination as (i) NPI < 1 is 
low contamination, (ii) 1 ≤ NPI < 2.5 is low contamina-
tion, (iii) 2.5 ≤ NPI < 7 is normal contamination, and (iv) 
NPI ≥ 7 is high contamination level (Yan et al. 2016).

Ecological risk index assessment

Ecological risk index (ERI) used to calculate the ecologi-
cal risk degree related with metal concentrations (Hakan-
son 1980). ERI can be calculated by Eq. (9) below:

where n shows the number of analyzed Hg in the ecological 
risk factor, which can be calculated by Eq. (10):

Tri represents the toxic response factor of T-Hg is 40, 
while CF is the contamination factor for analyzed Hg con-
centrations in sediments of each lake. Whereas, the ERI 
categorized ecological risk degrees as (i) ERI < 95 shows 
low ecological risk, (ii) 95 ≤ RI < 190 is moderate ecologi-
cal risk, (iii) 190 ≤ RI < 380 is high ecological risk, and 
(iv) RI > 380 is significant ecological risk; and for Eri, (i) 
Eri < 40 is low ecological risk, (ii) 40 ≤ Eri < 80 is moderate 
ecological risk, (iii) 160 < Eri ≤ 320 is high ecological risk, 
and (iv) Eri > 320 is significant ecological risk (Hu et al. 
2019; Hakanson 1980).

Quality control and assurance

Quality control and assurance of the analysis were made 
through a combined measurement and assessment of rep-
licate, field blanks, method blanks, and ongoing precision 
and certified reference materials. In this study, the method 
detection limit (MDL), defined as three times the standard 
deviation of ten replicate measurements of a blank solu-
tion, was less than 0.25 ng  L−1. During Hg determination, 
a method blank and standard of 5 ng  L−1 for water and 
100 ng Hg  kg−1 for (fish muscles and sediments) were 
loaded with a batch of 10–15 samples to check instrument 
operation. Results showed that method and field blanks 
were below the MDL with only few of field blank samples 
show lower than 0.2 ng  L−1 and 5 ng Hg  kg−1, representing 
insignificant pollution for the period of sampling, its trans-
port, and analysis. The percentage recovery of OPR was 

(8)NPI =

√

CF2
Ave

+ CF2
Max

2

(9)RI =

n
∑

i=1

Eri

(10)Eri = Tri × CF

90–107% of the certified value for water, and 85–105% for 
fish muscles and sediments. The certified reference materi-
als such as (SRM 1641e) for water, (ERM-CE464) for fish, 
and (CRM 580) for sediments were used for the recovery 
rate of Hg and verify the analytical procedure. The per-
centage recovery of reference materials was 90–107% of 
the certified value for water, and 85–105% for fish mus-
cles, and 84–92% for lake sediments.

Data analysis

All the data were prepared in Microsoft Excel, and statisti-
cal software (SPSS 21) version was used for calculation of 
the data. The graphs and figures were prepared in Origin 
9 (Origin Lab Corporation, USA). Arc-GIS was used for 
geographical map for the study area.

Results and discussion

Characteristics of physiochemical parameters

The description of pH, electric conductivity (EC µs/cm), 
total dissolved solid (TDS mg  L−1), and turbidity of water in 
each selected lake is summarized in Table 1. In the present 
study, the pH ranged from 7.4 to 7.6, 7.5 to 7.6, and 7.2 to 
7.4, with mean values of 7.54, 7.56, and 7.32 observed for 
Rain-fed Lake, Ice melting-fed Lake, and Glacial-fed Lake, 
respectively. Similar pH values were recorded for the previ-
ous study of surface water of alpine streams in Khunjerab 
National Park of Gilgit, Pakistan (Ali et al. 2017). The pH 

Table 1  Characteristics of physiochemical parameters of the studied 
lakes

SD standard deviation, NDL normal detection limit

Lakes and parameters Units Range Mean SD NDL

Kachura (Rain-fed)
  pH 7.4–7.6 7.54 0.08
  EC 0.13–0.17 0.14 0.01
  TDS 0.06–0.8 0.07 0.007
  Turbidity  < 5

Satpara (Ice melting-fed)
  pH 7.5–7.6 7.56 0.05
  EC 0.01–0.11 0.08 0.04
  TDS 0.4–0.5 0.04 0.004
  Turbidity  < 5

Mahodand (Glacial-fed)
  pH - 7.2–7.4 7.32 0.10 6.5–8.5
  EC µs  cm−1 0.1–0.3 0.02 0.01
  TDS mg  L−1 0.01–0.02 0.01 0.004
  Turbidity (NTU)  < 5
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values in lakes were slightly neutral, while the maximum pH 
value was detected for Ice melting-fed Lake, which is asso-
ciated with the increasing rate of algal productivity in lakes 
ecosystem, as demonstrated by high accumulation of algal 
bloom in lake sediments (Michelutti et al. 2005). Although, 
the surface runoff is attributed to slightly increase level in pH 
because runoff brings organic matter which can be decom-
posed in water, releasing carbon dioxide with the addition 
of carbonate and bicarbonate, which may lead to increase of 
alkalinity (Castrillon-Munoz et al. 2022). The turbidity for 
each Lake was (> 5), i.e., the turbidity of Glacial-fed Lake, 
Ice melting-fed Lake, and Rain-fed Lake was within maxi-
mum allowable limit (MAL) levels. The electric conductiv-
ity (EC) ranged from 0.13 to 0.17, 0.01 to 0.11, and 0.1 to 
0.3 µs/cm, while mean values were 0.14, 0.08, and 0.02 µs/
cm for Rain-fed Lake, Ice melting-fed Lake, and Glacial-fed 
Lake, respectively. The concentrations of Hg in lakes water 
were found in the decreasing order of Glacial-fed Lake < Ice 
melting-fed Lake < Rain-fed Lake. Moreover, the high EC in 
Rain-fed Lake is attributed to the precipitation and surface 
runoff from the mountains and high level of organic matters 
lead to increase in EC. The low TDS concentrations were 
detected in surface water ranged from 0.06 to 0.8, 0.4 to 0.5, 
and 0.01 to 0.02 mg  L−1, with mean values of 0.07, 0.04, 
and 0.01 mg  L−1 for Rain-fed Lake, Ice melting-fed Lake, 
and Glacial-fed Lake, respectively. These TDS values were 
found in very low concentration in comparison with the pre-
vious study of drinking water sources and surface water in 
Malakand Agency, Pakistan (Nawab et al. 2016). However, 
TDS concentrations rely on ions in surface water (Baig et al. 
2009), and the presence of TDS in surface water reflects 
the ions dissolution and the gradual deposition of minerals 
(Chabukdhara et al. 2017). Results showed that the physio-
chemical parameters of Rain-fed Lake, Ice melting-fed Lake, 
and Glacial-fed Lake were found within MAL of WHO. High 
turbidity indicated that lakes prone to surface runoff from the 
surrounding environment were due to population and other 
human activities which increased suspended solid leading to 
increase in turbidity (Sharma and Singh 2019).

Hg concentration level in surface water 
and sediments

The substantial variation has been observed in Hg concentra-
tions detected in lakes surface water ranged from 0.5 to 1.8, 
0.3 to 2.6, and 1.1 to 3.1 µg  L−1, with mean values of 1.07, 
1.16, and 1.95 µg  L−1 for the Rain-fed Lake, Ice melting-fed 
Lake, and the Glacial-fed Lake, respectively. The total Hg con-
centrations were found in the decreasing order of Glacial-fed 
Lake > Ice melting-fed Lake > Rain-fed Lake surface water, as 
shown in Table 2. However, the above results exceeded the 
MAL of (≤ 1 µg  L−1) set by Pak EPA (2008), WHO guide-
line (1 µg  L−1), and pre-industrial acceptable limit of EU 
and American Lakes (0.25 ppm) (Hakanson 1980). All the 
Hg values were exceeded than the previous study of 30 ng/L, 
conducted by (Babiarz et al. 2003), and apparently lower than 
the surface water study of Tapajós River basin in the Brazilian 
Amazon (Lino et al. 2019). However, surface water contami-
nated by Hg is attributed to the direct atmospheric depositions 
or originated from the sediments (Biber et al. 2015). Hence, 
the exposure of these Hg concentrations results in affecting 
the surface water quality and aquatic ecosystem and may pose 
harmful effects to human health (Zhong et al. 2018) and could 
ultimately cause disorders and death after exposure to elevated 
level of Hg. For instance, experimental study of Soni et al. 
(2012) demonstrated that high Hg concentration (27 mg  m−3) 
in gaseous state, led to the instant death of rats and rabbits after 
exposure to Hg for 2 h and 20 h, respectively. Other influencing 
factors of high Hg in lakes water might be related to geogenic 
sources of Hg, vegetation cover, local climate, and alteration 
in topography (Nasr et al. 2011). In addition, flooding of snow-
melt in elevated alpine lake areas could be another reason of 
Hg important source, releasing to the lakes water. For instance, 
Chetelat et al. (2015) stated that snowmelt was an important 
source of Hg to lakes water in the Canadian Arctic Archipelago 
region. It has also been reported that concentrations of Hg 
and Me-Hg were highest in lakes water during spring season 
due to snowmelt inputs in Cornwallis Island, Canada (Loseto 
et al. 2004).

Table 2  Mercury concentrations such as range, mean, and standard deviation in the study area Lakes

Lakes Statistics Water (µg  L−1) Fish (mg  kg−1) Sediments (mg  kg−1) Permissible limits

Rain-fed Lake Range 0.5–1.8 0.79–1.49 0.11–0.45 Pak-EPA (2008), ≤ 1 µg  L−1

Mean 1.07 ± 0.66 1.02 ± 0.31 0.27 ± 0.14 Hakanson (1980), 0.25 pp
WHO, 1 µg  L−1

Ice melting-fed Lake Range 0.3–2.6 0.79–1.69 0.13–0.5 EU, 0.5 µg  g−1

Mean 1.16 ± 1.25 1.2 ± 0.4 0.33 ± 0.15 FDA (2001) 0.5 µg  g−1

Glacial-fed Lake Range 1.1–3.1 1.36–1.72 0.25–0.53 WHO/FAO (2009), 0.5 µg  g−1

Mean 1.95 ± 1.04 1.51 ± 0.15 0.38 ± 0.12
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Less variation has been observed in total Hg concentrations 
in selected lakes of sediments, ranged from 0.11 to 0.45, 0.13 
to 0.5, and 0.25 to 0.53 mg  kg−1, with mean concentrations of 
0.27, 0.33, and 0.38 mg  kg−1 in Rain-fed Lake, Ice melting-fed 
Lake, and Glacial-fed Lake, respectively. The detected mean 
concentrations in lake sediments were found in the order of 
Glacial-fed Lake > Ice melting-fed Lake > Rain-fed Lake pre-
sented in Table 2. Although, the maximum concentrations 
in Glacial-fed Lake may be due to anthropogenic activities 
involved in residential area around it and runoff during high 
precipitations in Rain-fed Lake region. Hence, Hg deposits in 
the bottom of sediments, thereby act as a reservoir in water-
bodies, and additionally the carbon contents also control and 
distribute Hg level in sediments (Soto-Jimenez and Paez-Osuna 
2001). In addition, moderate pH levels have been observed in 
the present study. Therefore, Hg can also release from the sedi-
ments when pH becomes low (Duarte et al. 1991; Schindler 
et al. 1980). Elevated level of Hg in sediments accumulates to 
aquatic ecosystem, resulting to prone ecological toxicity by its 
spontaneous source of high contamination (Shen et al. 2017). 
Whereas, low level of Hg contamination in Ice melting-fed 
Lake sediments is attributed to its high elevations (2636 m) that 
is situated between the sidewise of high mountains. Moreover, 
low Hg in sediments can also be associated with resuspension 
process that transfers Hg to overlying surface water column 
from the sediments (Gosnell et al. 2016). Fujji (1976) reported 
that the worldwide background level of Hg was recorded to 
be 50, 100–300, and 50–80 µg/kg in river, lake, and sea sedi-
ments, which has been higher than the present study. The mean 
concentrations of Hg in Glacial-fed Lake, Rain-fed Lake, and 
Ice melting-fed Lake were lower than the previous studies con-
ducted by Zhang et al. (2018), Engels et al. (2018), and Tong 
et al. (2013), but were exceeded than the studies of El-Kady 
et al. (2019) and Salem et al. (2014).

Hg concentration level in fish species

In the present study, the Hg concentrations in fish spe-
cies ranged from 0.79 to 1.49, 0.79 to 1.69, and 1.36 to 
1.72 mg  kg−1, with average concentrations of 1.02, 1.2, and 
1.51 mg  kg−1 in Rain-fed Lake, Ice melting-fed Lake, and 
Glacial-fed Lake, respectively. The total concentrations of Hg 

in fish were observed in the order of Glacial-fed Lake > Ice 
melting-fed Lake > Rain-fed Lake as shown in Table 2. The 
maximum concentrations of Hg were observed in S. trutta, 
while minimum concentrations were detected in O. mykiss 
species. The maximum level of Hg in S. trutta fish could be 
associated with the high exposure level or having the effi-
ciency of strong physiological system to accumulate high 
Hg in its body organs. Besides, all the values were exceeded 
from MAL (0.5 µg/g) set by WHO/FAO (2009),  and EU 
(2001), respectively. Additionally, the present results of Hg 
concentrations in fish species were similar with the previ-
ous study of southeast Peru in Amazon rainforest (Martinez 
et al. 2018) and were also compared with the other studies 
conducted in Lakes (Table 3), respectively. In the current 
study, the Hg levels in fish may pose potential disorders in 
humans via consumption, such as the previous study of Bar-
regard et al. (1994) who reported that high level of Hg con-
centration in blood resulted to disrupt the male reproductive 
system and hampered infertility status. High Hg exposure to 
animals may defect and stimulate sperm abnormalities, as pre-
viously reported by Choy et al. (2002) and Homma-Takeda 
et al. (2001). It has also been identified in experimental stud-
ies that Hg concentrations were adversely affected the female 
reproductive system (Bloom et al. 2010).

However, similar results were found in the previous study 
of same fish species in freshwater lake ecosystems, and their 
bioaccumulation factor was associated with atmospheric Hg 
deposition in Canadian Arctic (Chetelat et al. 2015). Hence, 
the Hg was moderately enriched in the present study of S. trutta 
species at northern area of Glacial-fed Lake (Mahodand Lake) 
as compared to other fish species. This demonstrates that Hg 
ultimately releases to the lakes ecosystem by atmospheric depo-
sition (Meili et al. 2003), and transporting factor of Hg in lakes 
water is highly complex before being bio-accumulated to fish, 
indicating the weak relationships between the degree of Hg 
concentrations in lakes water and fish (Sorensen et al. 1990).

Water contamination assessment

The CDI values of Hg via surface water consumption for adults 
were 0.030, 0.033, and 0.055, while CDI values for children were 
0.032, 0.035, and 0.059 in Rain-fed Lake, Ice melting-fed Lake, 

Table 3  Mercury level in the 
studied regions around the 
world, number of lakes, number 
of fish, and average (mg  kg−.1) 
levels

Regions Lakes Fish Average (mg 
 kg−1)

References

Sweden 356 34,694 0.4 Braaten et al. (2017)
Finland 899 14,878 0.3 Fjeld and Rognerud (2009)
Norway 155 4792 0.3
Kola Peninsula 17 199 0.1
Norwegian Institute For 

Water Research
– 264 0.4
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and Glacial-fed Lake water samples, respectively as shown in 
(Fig. 2). Whereas, PHQ values were calculated for adults as (1.0, 
0.09, and 1.8) and (1.07, 1.16, and 1.96) for children via surface 
water consumption in Rain-fed Lake, Ice melting-fed Lake, and 
Glacial-fed Lake respectively (Fig. 3). The maximum PHQ val-
ues for both the adults and children were observed in Glacial-fed 
Lake, while low PHQ value was indicated for Rain-fed Lake. The 
PHQ values were recorded higher than the recommended accept-
able value of (HQ < 1), indicating the water nearly contaminated 
with Hg as presented in (Fig. 3). While in comparison, the results 
of CDI and PHQ values were consistent in the previous studies 
(Riaz et al. 2019; Shakir et al. 2016; Liu et al. 2012). Since high 
Hg concentrations have been reported in the present study, as a 
result, CDI and PHQ values were also high for the adults and 
children. Whereas, high level of Hg interferes in the body and 
disturbs the nervous system, hinders the thyroid and testosterone 
production, and disrupts the neurotransmitter production (Fatoki 
and Awofolu 2003), and also causes chronic effect, irritates res-
piratory tract, and lung inflammation (Gary 2012). Furthermore, 
high level of Hg exposure may hinder children growth and cause 
health problems such as cognitive impairments, kidney diseases, 
cough and sputum, neurasthenia, tremor disease, headache and 
tiredness, skin allergies, chest pain, hyporeflexia, poor vision 
of nyctalopia, and other sensory problems (Khan et al. 2012). 
For instance, night blindness of nyctalopia has been reported in 
biological samples due to exposure to elevated level of Hg in 
Pakistan (Afridi et al. 2015).

Sediments contamination assessment

Several international guidelines have been developed for 
the sediments quality assessment. Hg concentrations of 

sediments in selected lakes were compared with the back-
ground values of USEPA (1997). However, Hg concentra-
tions in sediments of Rain-fed Lake, Ice melting-fed Lake, 
and Glacial-fed Lake have been compared with the sedi-
ments quality guidelines in Table 5.

Numerous indices were used comprehensively to under-
stand the Hg contamination in the alpine lake sediments. The 
indices such as CF, Igeo, EF, NPI, Eri, and RI were applied 
to assess the sediments quality in Rain-fed, Ice melting-fed, 
and Glacial-fed Lakes. The CF mean values were 1.39, 1.65, 
and 1.95 in Rain-fed, Ice melting-fed, and Glacial-fed Lakes 
as shown in Table 4. The results revealed moderate level of 
Hg contamination according to CF classifications (Hakanson 
1980). The observed CF values were higher than the other 
previous studies (El-Kady et al. 2019; Mills et al. 2009; 
Wiener et al. 2006). Likewise, the Igeo values were 0.73, 
0.99, and 1.23 for the same lakes. The Igeo values were found 
below the acceptable limit of (Igeo < 1) indicating, low level 
of Hg contamination in the studied lakes except Glacial-fed 
Lake. The Glacial-fed Lake indicating nearly high contami-
nation. Comparatively, other studies also reported that Igeo 
values of Hg were below zero, i.e., Igeo < 0 and showed low 
level of contamination (El-Kady et al. 2019; Tripathee et al. 
2018, 2016; Sheng et al. 2012).

On the other hand, EF values of Hg were as 0.57, 1.03, 
and 1.66 for Rain-fed, Ice melting-fed, and Glacial-fed Lakes, 
respectively. Although, Rain-fed and Ice melting-fed Lakes 
values were between 0.5 and 1.5 indicating natural origin 
while Glacial-fed Lake showed above from 1.5 suggested 
that Hg source has more likely as anthropogenic origin. Low 
enrichments of sediments for Hg were identified and showed 
low enrichments than guideline value of (EF < 2), accord-
ing to classifications of Sutherland (2000). Moreover, the 
NPI values of Hg were 1.05, 1.19, and 1.31 for Rain-fed, Ice 

Fig. 2  Chronic daily intake (CDI) of mercury in the studied lakes 
water

Fig. 3  Potential health quotient (PHQ) of mercury in the studied 
lakes water
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melting-fed, and Glacial-fed Lakes and were found consistent 
with CF by with the order of Glacial-fed Lake > Ice melting-
fed Lake > Rain-fed Lake, respectively. The NPI values for 
Hg were found (1 ≤ NPI < 2.5), indicating that overall degree 
of Hg contamination was showed low level contaminations. 
At the same time, the EF and PI values were less than for 
Himalayas, demonstrating that low Hg concentrations are 
related to atmospheric deposition (Tripathee et al. 2018) and 
naturally originated from regional parent bed rocks materi-
als (Raut et al. 2017). The ecological risk factors (Eri) for Hg 
were 44.3, 52.8, and 62.0 at Rain-fed, Ice melting-fed, and 
Glacial-fed Lakes (Table 4). The Eri values were between 
(40 ≤ Eri < 80), showing moderate ecological risk factor. Fur-
thermore, the potential ecological risk index (RI) was 215 for 
the studied lakes (190 ≤ RI < 380) which is high ecological 
risk, hence, poses high potential risk to the lakes aquatic eco-
system in the study area. The potential ERI values for Rain-
fed, Ice melting-fed, and Glacial-fed Lake values were greater 
than the past study conducted by Tripathee et al. (2018). The 
natural low degree of Hg contamination could be associated 
with the transportation of aerosol particles to the atmosphere 
by domestic emissions, which mostly contain black carbon 
contents release over the Himalayas hills regions during 
spring season (Lau et al. 2010).

In addition, burning of high African biomass and com-
bustion of fossil fuel on Eastern sites may possibly trans-
fer the atmospheric aerosols to the high Himalayas regions 
(Kopacz et al. 2011) and surrounding regions of Indian sub-
continent also contributed to release aerosols in the atmos-
phere, as demonstrated by previous observations of Lau and 
Kim (2006). Consequently, the present study suggested that 
natural processes such as atmospheric depositions, long-
range atmospheric transport, particulate matters, and other 
less human intrusions contributed to release Hg in the study 
area of alpine lakes in the Himalayas region of Pakistan.

Fish species contamination assessment

EDI and THQ for Hg were calculated via consumption of 
fish for adults and children. EDI results were also compared 
with the tolerable daily intake (TDI) in the studied Lakes, as 
shown in (Fig. 4). The EDI’s of Hg for local people were 0.17, 
0.20, and 0.25 µg/kg  day−1, and 1.7, 2.0, and 2.5 µg/kg  day−1 
for fishermen in Rain-fed, Ice melting-fed, and Glacial-fed 

Lakes, respectively. High EDI values were found for fish in 
Glacial-fed Lake, while lowest EDI values were observed for 
Rain-fed Lake fish. EDI’s were found lower than the tolerable 
daily intake (0.71 µg/kg  day−1 and 40 µg/kg  day−1), set by 
WHO (1990) and Ostapczuk et al. (1987), while also lower 
than the previous study of Cheng et al. (2009).

THQ of Hg were found varied for studied fish species in 
Rain-fed, Ice melting-fed, and Glacial-fed Lakes (Fig. 5). 
The THQ values for local people were 0.07, 0.34, and 0.64, 
and fishermen were 0.06, 0.30, and 0.57 in Rain-fed, Ice 
melting-fed, and Glacial-fed Lakes, respectively. Compara-
tively, THQ values for ingested fish species in the present 
study were found lower than the previous study of Dongting 
Lake, China (Torres et al. 2018). Maximum THQ values 
were recorded for BT in Glacial-fed Lake, whereas the low-
est THQ values were observed for RT in Rain-fed Lake. The 
THQ values were found less than the acceptable range of 
(THQ < 1). If the EDI values were in the range of 1 ×  10−6 
to 1 ×  10−4 considered tolerable level (Chen et al. 2015). The 
low concentration of Hg in BT and RT in the studied lakes 
may be due to the low atmospheric transport to the elevated 
height of approximate 2500 to 3000 m. The other possible 
reason may be the Indian monsoon, which cannot reach to 
the northern parts of Pakistan due to height of Himalayas 
which changes the direction of Indian monsoon. So the Hg 

Table 4  Risk assessment for 
mercury in sediments of the 
remote alpine lakes in the 
Himalayas, Pakistan

CF, contamination factor; Igeo, geo-accumulation index; EF, enrichment factor; NPI, Nomerov’s pollution 
index; Eri, ecological risk factor; RI, potential ecological index

Lakes CF Igeo EF NPI Eri RI

Rain-fed Lake 1.39 0.73 0.57 1.05 44.3 215
Ice melting-fed Lake 1.65 0.99 1.03 1.19 52.8
Glacial-fed Lake 1.95 1.23 1.66 1.31 62.0

Fig. 4  Estimated daily intake (EDI) of mercury in the studied lakes 
fish species
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concentration in these remote alpine lakes may be due to the 
local sources as well as transportation of Hg through valleys 
to the colder regions.

Conclusion

The extent of Hg contamination in water, sediments, and 
fish species (S. trutta and O. mykiss) was investigated in 
remote alpine lakes of Glacial-fed Lake, Rain-fed Lake, and 
Ice melting-fed Lake along with the potential risk assess-
ment. This report is the first one in the northern areas of 
Pakistan related to Hg concentration in water, sediments, 
and their bioaccumulation in S. trutta and O mykiss species. 
Moderate levels of Hg were above the MAL of Pak-EPA, 
WHO, and EU acceptable limits in water and fish species in 
the present study. The HQ results indicated that Glacial-fed 
Lake showed higher level of contamination as compared to 
the other studied Lakes. Several indices results showed the 
moderate level of pollution in all the lake sediments as com-
pared with other previous studies. Moreover, all the indices 
observed values were also compared with the sediments 
quality guidelines (SQGs), and consequently exceeded the 
SQGs acceptable limits (Table 5). In addition, the present 
study also represents a useful dataset for Hg compositions in 
water, sediments, and fish species and their risk assessment 

Fig. 5  Target hazard quotient (THQ) of mercury in the studied lakes 
fish species

Table 5  Sediments quality 
guidelines (SQGs) for mercury 
globally

SGQ sediments quality guidelines, TEL threshold effect level, ERL effect range low, LEL lowest effect 
level, MET minimal effect threshold, CB-TEC consensus based-threshold effect concentration, EC-TEL, 
Environment Canada Threshold Effect Level, -, ANZECC-ERL Australian and New Zealand Environment 
and Conservation Council-Effects Range Low, ANZECC-ISQG-low Australian and New Zealand environ-
ment and conservation council-interim sediments quality guidelines, SQAV-TEL-HA28 sediments quality 
advisory value-threshold effect level, Hong Kong ISQV-low, SQO Netherland Target, interim sediments 
quality guidelines, Flanders RVX reference value, EQS-human health items; Lake Biwa, EQS environmen-
tal quality standard, slightly elevated stream sediments, RV reference values, BG background values, ISQG 
interim sediments quality guidelines

SQGs Hg (mg  kg−1) Reference

TEL 0.17 Macdonald et al. (2000)
Smith et al. (1996)
ANZECC (1997)
Swartz (1999)
Chapman et al. (1999)
Shiga Prefecture (2001)
Classification of Illinois Stream Sediments
Laybauer (2002)

ERL 0.15
LEL 0.2
MET 0.2
CB TEC 0.18
EC-TEL 0.13
ANZECC ERL 0.15
ANZECC ISQG-low 0.15
SQAV TEL-HA28 -
SQO Netherlands target 0.3
Hong Kong ISQG-low 0.15
Hong Kong ISQV-low 0.28
Flanders RV X 35
EQS human health items (Lake Biwa) 0.0005
Slightly elevated stream sediments 0.07
RV 0.06 (µg  g−1)
BG 0.03 (µg  g−1)
ISQG 0.17 (µg  g−1)
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as well as background level for future studies in northern 
areas of Pakistan. Nevertheless, future studies are necessary 
for shedding further light on the influence of Hg transport to 
higher altitude areas such as forest soil, trees barks, melting 
glaciers, and pastures and also the tropic transfer such as 
bio-magnification mechanisms.
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