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Abstract
Coloured wastewater is a major issue of today for human health and ecology. Among all available processes such as physi-
cal, chemical, biological and electrochemical methods, photocatalysis can be a promising solution because of its ability to 
degrade colour-causing compounds completely by converting them into simpler molecules  (H2O,  CO2) depending on dye 
structure. In this work,  NiFe2O4 was synthesized by the co-precipitation method. Furthermore, the composites of  NiFe2O4 
with  TiO2 were synthesized by varying amounts of  TiO2. The spinel and composites were characterized by XRD, ZETA 
analysis and UV–DRS. Their photocatalytic activities were investigated using the photocatalytic degradation of reactive 
turquoise blue 21 (RB 21) dye as model pollutants under sunlight. The increased absorption of the visible light and the 
enhanced separation of the electron–hole pairs due to the relative energy band positions in  NiFe2O4 and  TiO2 are considered 
as the main advantages. Our results showed that  NiFe2O4-based nanocomposites could be used as an effective and magnetic 
retrievable photocatalyst.
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Introduction

Wastewater is one of the biggest challenges to the scien-
tific community. Because of increasing industrialization has 
questioned the quality of water. A very small part of water 
available on earth is useful for human uses (nearly 0.03%). 
Chemical and typical dyes and dying industries consume 
maximum water and produce a large amount of wastewater, 
which adversely affects aquatic life because of its colour-
causing compounds, which hindered the sunlight penetration 
through the surface of water bodies (Ahmed et al. 2012; 
Osman 2014; Rajaram and Das 2008; Robinson et al. 2000; 
Seow et al. 2016; Singh 2015). The main constituents of 

these types of effluents are dyes. Dyes have mainly four parts 
namely skeleton, chromophore, auxochrome and soluble 
part. Dyes could be classified into two basic types: based on 
structure and based on application (Benkhaya et al. 2020; 
Forgacs et al. 2004; Jonstrup et al. 2011; Khehra et al. 2006; 
Kiernan 2001; Klaus 2008; Popli and Patel 2015; Sandhya 
et al. 2005).

Dyes from wastewater could be removed via different 
methods such as physical (Hethnawi et al. 2017; Kather-
esan et al. 2018; Yagub et al. 2014), biological (Chacko and 
Subramaniam 2011; Manavi et al. 2017; Mojsov et al. 2016; 
Srinivasan and Viraraghavan 2010), chemical (Forgacs 
et al. 2004; Gusain et al. 2019; Joshi et al. 2004; Nidheesh 
et al. 2018). Physical methods do not destroy the dyes but 
carry out the mass transfer from the liquid phase into the 
solid phase commonly, hence there are the chances of colour 
regain after some time, while in biological processes only 
limited dyes can be degraded and have a limited range of 
pH and temperature. Even though biological processes are 
used to a large extent for effluent treatment in ETP plants, 
too long operation time makes it unfavourable for dye deg-
radation. And chemical processes are faster than biologi-
cal processes, hence these processes can be a promising 
option for dyes removal. Typically, with AOPs complete 
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mineralization and partial oxidation to inert and less con-
cerning products such as  H2O,  CO2 and other simpler prod-
ucts (Anwer et al. 2019; Babuponnusami and Muthukumar 
2014; Hodges et al. 2018). Among all AOPs, photocatalysis 
serves as a promising method as it makes use of sunlight and 
relatively cheaper process than other methods as separation 
of catalyst is easy (Anwer et al. 2019; Babuponnusami and 
Muthukumar 2014; Joseph et al. 2009; Paździor et al. 2018; 
Krishnan et al. 2017; Verma and Samanta 2018).

Semiconductors are widely used photocatalysts, such as 
 TiO2, ZnO, ZnS,  Fe3O4, CdS,  C3N4 and many others (Chen 
et al. 2020; Cui et al. 2018; Davar et al. 2015; Hu et al. 2020; 
Mahmoodi 2014; Saravanan et al. 2016; S. Wang et al. 2014; 
Ye et al. 2012). But among widely explored are  TiO2 and 
ZnO. But problems associated with semiconductors are wide 
bandgap, nonmagnetic nature. Because of these properties, 
semiconductors can be only used with UV radiation and are 
difficult to remove after completion of degradation, while 
this problem can be resolved by using spinel catalyst which 
has a narrow bandgap, and if ferrite spinels are used it shows 
better magnetic properties than semiconductors (Eiichi et al. 
2003; Kirankumar and Sumathi 2020). While even spinels 
are not as effective as semiconductors even under UV radia-
tion, combination can be a promising solution to the hur-
dles of both types of catalysts (Mamba and Mishra 2016). 
Composites of semiconductors and spinel have advantages 
of easy separation, utilize almost whole UV and visible 
spectrum of sunlight which is nearly 50% (combine) of sun-
light, higher surface area and a large number of active sites 
(Gawande et al. 2015; Govan and Gun’ko 2014; Johnson 
2017; Parsons et al. 2009; Sun et al. 2019; Wang and Astruc 
2017; Zhang et al. 2010).

Jing et al.(Jing et al. 2016) have investigated photocatalytic 
performance of Ag/Ag3VO4 and 5%  CoFe2O4/Ag/Ag3VO4 
composite. The result has shown that 49.75% and 61.48% tet-
racycline was photo-degraded, respectively. This shows that 
incorporation of  CoFe2O4 improves the activity, and even 
composite shows magnetic separability. They have confirmed 
the better performance for several runs. Photocatalytic activ-
ity of core–shell structured  Fe3O4/SiO2/TiO2 nanocomposites 
synthesized using the sol–gel process was compared with 
 SiO2  TiO2 by Ye et al. (Ye et al. 2010). This composite shows 
additional advantages of high chemical stability, fast magnetic 
separation and maintenance of the photocatalytic activity for at 
least eighteen cycles. Similarly, Wang et al. ( Wang et al. 2012) 
synthesized  Fe3O4/SiO2/TiO2 NCs using the sol–gel method 
and investigated its photocatalytic activity on MB that was pre-
sent in an aqueous solution at room temperature and pH = 10. 
Under UV irradiation, the NCs showed higher photodegrada-
tion of MB (78%) within 5 min. Here, in Table 1 some of the 
other composites are briefed. Other works on  CoCr2O4 /  TiO2 
for methyl orange degradation under UV light by Shojaei et al. 

(Shojaei et al. 2013), while  Ni0.65Zn0.35Fe2O4 / r-GO has been 
investigated as photocatalyst by Javed et al. (Javed et al. 2019).

In this work, dye degradation performance of photocata-
lyst nickel ferrite and nickel ferrite/ titanium dioxide syn-
thesized via co-precipitation method has been investigated. 
Materials from two different generations are combined to 
obtain photocatalyst with desired properties to sequester 
ultraviolet and visible ranges from whole solar spectrum 
reaching to the earth, better dye decolouration and miner-
alization along with effective separation at the end of the 
process. Some of the characterizations have been done to 
investigate the properties of prepared catalysts.

Materials and methods

Material

All chemicals used were analytical or laboratory-grade 
reagents which were supplied by Ranbaxy, Spectrochem, 
HPLC, NICK, CDH, MERCK. The detailed purity and 
phase of precursors and other reagents are as follows: cit-
ric acid (Ranbaxy, 99.9%), ethylene glycol (Spectrochem, 
99.9%), sulfuric acid (HPLC, 98%), sodium hydroxide 
(NICK, 99.9%), potassium dichromate (HPLC),  Ag2SO4 
(NICK, 99.9%), ferroin indicator (HPLC), ferrous ammo-
nium sulphate (HPLC, 99.9%),  HgSO4 (HPLC, 99.9%), 
 Fe2O3 (MERCK, 99.5%), distilled water (MERCK), iron 
nitrate—Fe(NO3)3∙9H2O (HPLC, 99.0%), nickel nitrate—
Ni(NO3)2.6H2O (HPLC, 99.0%),  TiO2 (HPLC, 80% anatase 
and 20% rutile),  Na2CO3 (NICK, 99.9%).

Reactive turquoise blue 21 (RB21), a copper phthalocya-
nine reactive group with (molecular weight = 1282.97 g/
mol), was generously supplied by Avni Dye Chem Indus-
tries, Ahmedabad (Fig. 1).

Preparation method

Preparation of  NiFe2O4

The co-precipitation method was adopted for the synthesis 
of  NiFe2O4 and  NiFe2O4/  TiO2. A stoichiometric amount of 

Table 1  COD degradation percentage for different catalysts

Sr. No Catalyst %COD 
Degradation

1 TiO2 23.07
2 NiFe2O4 40.23
3 NiFe2O4/TiO2 (90%-10%) 38.46
4 NiFe2O4/TiO2 (50%-50%) 33.69
5 NiFe2O4/TiO2 (10%-90%) 26.07
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nickel nitrate (hexahydrate) and ferric nitrate (nonahydrate) 
are mixed. This mixture is stirred until it became a homog-
enous solution.  Na2CO3 (sodium hydroxide, 1 M) was used 
as a precipitating agent and added dropwise until pH ≥ 10. 
Once the desired pH is obtained solution is kept for ageing 
for 1 h at 80 ℃. After ageing, filtration, several times wash-
ing of precipitates has been carried out and precipitates dried 
at 110 ℃ overnight and calcined at 700 ℃ for 5 h. Refer to 
Fig. 2.

Preparation of  NiFe2O4 /  TiO2

A typical procedure for preparing nanocomposite  NiFe2O4/
TiO2catalysts was prepared by adding nickel ferrite into sus-
pension of  TiO2,  TiO2 was added in varying amounts for 
preparation of NF:  TiO2 = 90:10, 80:20, 50:50, 10:90. The 
suspension was stirred further for proper mixing. Heating 
was given to the solution then it was calcined in a muffle 
furnace under 700 °C (ramp = 10 °C/min) for 5 h to form 
 NiFe2O4/TiO2. Experimental set-up for the  NiFe2O4/TiO2 
nanocomposite is reported in Fig. 3. Samples are named 
as follows: NFT90, NFT80, NFT50, NFT10, NF, T for 
NF:TiO2 = 90:10, 80:20, 50:50, 10:90, and last two for bare 
nickel ferrite and  TiO2. Refer to Fig. 3.

Characterization

Some of the basic characterizations were carried out 
such as FTIR, zeta sizer analysis and UV–DRS analysis, 

Fig. 1  Schematic diagram for spinel catalyst preparation by co-pre-
cipitation method

Fig. 2  Experimental set-up for  NiFe2O4 spinel catalyst preparation by co-precipitation method
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respectively, for phase check, practical size and for bandgap 
measurements Fourier transform infrared spectroscopy was 
carried out to check bond stretching and whether the pre-
pared spinel is inverse type or normal. Zeta potential analy-
sis was carried out to check the particle size of the prepared 

catalyst. It must be within the nanometric size range to give 
higher surface area and better catalytic activity. To find out 
the bandgap of catalyst, which is essential to be known for 
predicting whether the catalyst activation is possible under 
sunlight or not. As discussed above, it is observed that if 

Fig. 3  Experimental set-up for  NiFe2O4/  TiO2 spinel-based nanocomposite

Fig. 4  Experimental set-up for degradation of dye under natural sunlight source
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the catalyst bandgap is within 1.98 to 3.2 eV range it can be 
activated under sunlight.

Photocatalytic activity

Photocatalytic activity of spinel and nanocomposite were 
measured by degradation ofRB21dye under natural sunlight 
irradiation at neutral, acidic and basic pH values. A 150 ml 
of 40 mg/l RB21 dye aqueous solution and its corresponding 
dose of photocatalyst were added in a quartz glass container 
and stirred for 30 min in dark. After every 30 min up to 
150 min irradiation time, 25 ml of the suspension sample 
was withdrawn and then solution and particles are separated 
by an extra magnate. The photocatalytic degradation process 
can be confirmed by UV–Vis spectrophotometer for colour 
removal analysis by checking absorbance at 645 nm and by 
COD degradation by APHA procedure—close reflux. Fig-
ure 4 shows the experimental set-up for photocatalytic dye 
degradation.

Results and discussion

Characterization

Zeta sizer results of catalyst show good agreement with 
JCPDS card no. 742081 for NF and JCPDS card #84–1286 
as  TiO2 was used as prepared and NF was used as synthe-
sized. As per analysis, particle sizes are in the range of 
 103 nm, refer to Fig. 4, while FTIR spectroscopy shows 
bond stretching of metal and oxygen for each site atoms 
(A and B both sites) for these results, refer to Figs. 5 and 
6. The bandgap of the as-prepared composite is assumed 
to be in between bandgap of spinel and metal oxide and 
from the literature it is 2.69 eV for composites which may 
provide better efficiency under sunlight and it is lower 
than that of  TiO2 (3.2 eV) (Baig et al. 2020). As-prepared 
 NiFe2O4 (NF) shows bandgap of 2.07  eV which is in 
agreement with what the other researchers have obtained, 
while composite shows bandgap of 2.927 eV, which is very 

Fig. 5  Zeta sizer results for 
 NiFe2O4

Fig. 6  FTIR of  NiFe2O4
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close to bandgap of  TiO2 (Fig. 8). But not only bandgap 
is factor that affects the catalyst performance but other 
parameters such as separation ability and surface area are 
also important, here in the main objective to obtain better 
catalyst for dye gradation. Ease of separation of NF is also 
one of add-on benefit. And partially it was observed that 
even though bandgap of composite is quite higher than 
the NF but it shows better dye degradation compared to 
NF only that might be because of that  TiO2 can absorb in 
ultraviolet region, and spinel can absorb wavelengths from 
visible range of solar spectrum which to gather shares 
nearly half of the solar spectrum reaching to the surface. 
And even good magnetic properties of NF facilitate ease 
of separation of catalyst too. That is also true that some 
active sites are not available due to composite formation 
hence shows bit lesser dye degradation than theoretically 
assumed. FTIR analysis shows that pure phases are formed 
as no other vibrational spectra other than that related 
to Ni–O, Fe–O, O–O, Ni–Fe and Ti–O bonds could be 
observed. Major peaks were observed around 590  cm−1 
and 400  cm−1 which shows stretching of metal oxygen 
bond those are present in spinel structure of NF sample, 
which is in agreement with other reported work as well (Li 
et al. 2014; Ojemaye et al. 2017) (Figs. 6 and 7).

Photocatalytic activity

Photocatalytic dye degradation was carried out under solar 
light. Refer to Table 1 for COD removal efficiency of com-
posites and parent catalysts, i.e. NFTs and  NiFe2O4 and 
 TiO2. As depicted in the table, it is clear that  NiFe2O4 shows 
better COD removal but at the cost of colour removal effi-
ciency. Referring to Fig. 9, it is clear that for colour removal 
 TiO2 performs far better than other catalysts but is accompa-
nied by less COD removal. Hence, for optimum performance 
with the removal of both COD and colour composite NFT90 
best fits the requirements.

Effect of various parameters is also investigated such 

Fig. 7  FTIR of composite 
NFT90
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Fig. 8  UV–DRS spectra for nanocomposite—NFT90 (a) and 
NiFe2O4 (b) catalyst

Fig. 9  Dye degradation efficiency of different catalysts (natural pH, 
room temperature, 40 ppm dye solution, 0.3 g catalyst dosage)
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as pH, catalyst dosage, initial dye concentration and irra-
diation time. Refer to Figs. 10, 11 and 12 for the effect of 
pH, catalyst dosage and effect of initial dye concentration, 
respectively, for selected catalyst NFT90. Results show that 
at neutral pH (= 7) better performance was observed than 
other pH values (i.e. 3, 5, 9, 12). The main reason is the  pKa 
value of dye and catalyst,  pKa value for dye is 5.5 and the 
same for the catalyst is 8.5, which restrict the range of pH 
for better performance between 5.5 and 8.5. At lower pH 
better COD removal (nearly 30%) can be observed while at 
higher pH better colour removal (nearly complete removal 
of colour) is observed, because of repulsion of anionic dye 
molecules with negatively charged catalyst surface at higher 

pH and vice versa. Another parameter is catalyst dosage, 
generally, an increase in catalyst dosage improves the dye 
degradation performance. But observations suggest that as 
catalyst dosage increases above 0.5 g, solar light penetration 
is reduced because of a large amount of suspended solids 
particles. Higher dye degradation is observed for the lowest 
concentration of 10 ppm of dye. But all other parameters 
are checked for a dye concentration of 40 ppm. Further, as 
the time of irradiation increases, the dye degradation also 
increases but at a different rate for each catalyst.

Fig. 10  Effect of pH on dye 
degradation efficiency of 
NFT90. (0.5 gm. catalyst dose, 
room temperature, 40 ppm 
initial dye concentration)

Fig. 11  Photocatalytic dye deg-
radation with different catalyst 
dosages of NFT90. (natural 
pH, room temperature, 40 ppm 
initial dye concentration)
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Conclusion

Our observation shows that composites show better results 
for COD removal and dye degradation compared to spinel 
and  TiO2 alone, as this combination of photocatalysts from 
two different generations facilitates the use of a large part of 
the solar spectrum, better separation due to magnetic prop-
erties of  NiFe2O4. From the observations, we can hypoth-
esize that there can be the insertion of a new energy level 
in between the conduction band and valance band of  TiO2 
and  NiFe2O4 because of the difference in the bandgap of 
both the materials, which may also promote the separation 
of photoinduced electrons and photons. Over this lower dye 
concentration (~ 40 ppm) and neutral pH and 0.5 g catalyst 
dosage are favourable conditions for dye degradation under 
daytime sunlight, while other characterizations show agree-
ment with other literature.
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