RESEARCH ARTICLE

Catalytic behavior of gold nanoparticles supported on a TiO₂-Al₂O₃ mixed oxide for CO oxidation at low temperature

Roberto Camposeco¹ · Rodolfo Zanella¹

Received: 25 March 2022 / Accepted: 20 May 2022 / Published online: 8 June 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The present work highlights the versatility of a TiO₂-Al₂O₃ mixed oxide bearing highly dispersed gold nanoparticles that was applied in the CO oxidation reaction at room temperature. The TiO₂, Al₂O₃, and TiO₂-Al₂O₃ supports were synthesized by the sol–gel method, while gold nanoparticles were added by the deposition–precipitation with urea method using a theoretical Au loading of 2 wt.%. A promotional effect of the TiO₂-Al₂O₃ support on the activity of gold catalysts with respect to TiO₂ and Al₂O₃ was observed; Au/TiO₂-Al₂O₃ showed outstanding CO oxidation, being active from 0 °C and stable throughout a 24-h test. As for the alumina content (5, 10, and 15 wt.%) in TiO₂, it improved the textural properties by retarding the crystal growth and anatase–rutile phase transformation of TiO₂, suppressing the deposition of carbon on the catalyst surface and stabilizing the Au nanoparticles even at high temperatures. Gold was highly dispersed with nanoparticle sizes ranging from 1 to 2 nm when H₂ was used to treat thermally the Au/TiO₂-Al₂O₃, Au/TiO₂, and Au/Al₂O₃, and TiO₂-Al₂O₃ supports by means of charge transfer, which resulted in outstanding CO oxidation activity from 0 °C. Likewise, the key factors that control the peculiar catalytic performance in the CO oxidation reaction are discussed, which represents a step forward in the versatility behavior of gold catalysts supported on mixed oxide catalysts.

Keywords Nanoparticles \cdot TiO₂-Al₂O₃ \cdot Mixed oxide \cdot Hysteresis \cdot Gold

Introduction

Gold catalysts have been extensively studied in reactions such as low temperature CO oxidation, water gas shift (WGS), and preferential oxidation (PROX) (Romero-Sarria et al. 2008; Boaro et al. 2009; Avgouropoulos et al. 2008), where the activity of gold-based catalysts is originated by the intimate contact boundary between small gold particles and oxide supports (Haruta et al. 1987; Soares et al. 2003). As for TiO₂-Al₂O₃ mixed oxide catalysts, they have been tested in many important industrial processes, for they have shown remarkable advantages with respect to the single metal oxides such as improved high-temperature stability,

Responsible Editor: George Z. Kyzas

Rodolfo Zanella rodolfo.zanella@icat.unam.mx stronger surface acidity (Lewis or Brönsted), and enhanced textural properties (Tavizón-Pozos et al. 2016; Duan et al. 2009). In this context, the TiO_2 -Al₂O₃ mixed oxides have been employed in catalysis processes such as selective oxidation reactions, NO_x catalytic reduction, hydrodesulfurization (Galindo and de Los Reyes 2007; Reddy et al. 2006; Camposeco et al. 2015); in photocatalysis; and in self-cleaning processes (Wu et al. 2008; Bakhshayesh et al. 2012). Regarding the modification of TiO_2 by Al_2O_3 addition, it was found that enhanced reducibility and dispersion of noble metals, which has resulted in more active sites for heterogeneous catalysis, benefitted the catalytic properties with respect to the single Al₂O₃ and TiO₂ supports (Huang et al. 2008). For the addition of noble metals to this mixed oxide, the sol-gel, deposition-precipitation, and hydrothermal methods have been used (Galindo and de Los Reyes 2007; Zanella and Louis 2005; Camposeco et al. 2015). From these options, the deposition-precipitation with urea method allows the synthesis of small (1-3 nm) and well-dispersed Au particles without impurities, and consequently high active catalysts for oxidation reactions, especially at low temperatures. Recently, other

¹ Instituto de Ciencias Aplicadas Y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., 04510 Mexico City, Mexico

methods such as the biosynthesis of AuNPs by using plant extracts have offered an interesting way to obtain gold NPs, especially because they are nontoxic, simple, greener, and cost-effective synthesis methods (Hassanisaadi et al. 2021). However, the gold particle sizes obtained by biosynthesis are larger than those achieved by depositio–precipitation with urea, which when deposited on oxides would affect the catalytic activity by displacing the CO oxidation to higher reaction temperatures.

It is known that supported gold nanoparticles are active in the oxidation of carbon monoxide and generally, the activity depends on the support type, gold particle size, the synthesis method, and to lower extent on the oxide surface area (Haruta et al. 1987). Among the employed oxides, the TiO_2 anatase phase has been widely used because it can stabilize the size of gold nanoparticles, providing a uniform distribution (Albonetti et al. 2008). In this way, previous reports have shown that gold catalysts supported on oxides such as TiO₂ and Co₃O₄ exhibit higher activity than those supported on oxides like Al₂O₃ and SiO₂ in the oxidation of carbon monoxide (Date et al. 2004; Okumura et al. 1998). Therefore, improvements in the textural, structural, and catalytic properties of TiO2 have been reported for mixed oxides prepared by the sol-gel method such as TiO₂-MgO, TiO₂-Al₂O₃, TiO₂-SiO₂, and TiO₂-In₂O₃, showing strong acidities, high specific surface areas, and enhanced catalytic activities (Bokhimi et al. 1999; Morán-Pineda et al. 2002; Glez et al. 2009; Lopez et al. 2000). Moreover, it has been stated in previous works that the Au/ γ -Al₂O₃ system is a poor catalyst for CO oxidation (Gavrila et al. 2006). In contrast, earlier works have reported that the deposition of gold on Al₂O₃/TiO₂ produced highly stable catalysts, which preserved high activity in the CO oxidation (Wenfu et al. 2008).

CO oxidation is one of the most extensively studied reactions, because it is considered an interesting probe reaction and it is a pivotal reaction for cleaning air and lowering automotive emissions, issues that have grown exponentially during the last years (Valange and Védrine 2018). Therefore, the high activity of gold nanoparticles, with sizes lower than 5 nm supported on reducible metal oxides (as TiO₂ or TiO₂-Al₂O₃ mixed oxide), in CO oxidation is due to their ability to dissociate molecular oxygen at low temperatures. Therefore, in this work, Au/TiO₂, Au/ γ -Al₂O₃, and Au/ TiO₂-Al₂O₃ were prepared with similar gold loadings by the deposition–precipitation with urea method. Al₂O₃ loadings of 5, 10, and 15 wt.% were chosen to improve the textural properties of TiO₂ in order to increase the specific surface and dope, at some extent, TiO₂.

The aim of this work was to compare the catalytic behavior pattern of Au/TiO₂-Al₂O₃ with those displayed by Au supported on TiO₂ and γ -Al₂O₃ single oxides in order to understand the key factors that control the peculiar catalytic performance in the CO oxidation reaction of gold catalysts supported on a mixed oxide. The characterization of the catalysts indicated that the interaction between gold nanoparticles and the support, the dispersion of gold, and the presence of Au^{1+} and Au^{0} species improved remarkably the CO oxidation performance.

Experimental

Preparation of the nanostructured catalysts

 TiO_2 , γ -Al₂O₃, and TiO_2 -Al₂O₃ support nanoparticles were synthesized by the sol-gel method. The sol-gel titania and titania-alumina oxides were prepared as follows: the required quantities of aluminum isopropoxide (Aldrich 99.99%) and 18 mL of titanium isopropoxide (Aldrich 97%) were simultaneously added to a solution containing 36 mL of distilled water and 100 mL of 2-propanol (Baker 99%). Then, the gelling solution was refluxed at 80 °C under constant stirring. The quantities of aluminum isopropoxide per titanium isopropoxide were calculated to provide 5, 10, and 15 wt.% loadings of alumina in the final TiO₂-Al₂O₃ mixedoxide. In addition, by using the same procedure, alumina samples with TiO₂ contents of 5 and 15 wt.% in the final mixed oxide, labeled as Al₂O₃-5TiO₂ and Al₂O₃-15TiO₂, were prepared by using titanium isopropoxide over aluminum isopropoxide as Ti and Al precursors for comparison purposes during the catalytic test. Additionally, bare sol-gel TiO_2 was prepared in the same way. The formation of the gel was obtained with controlled hydrolysis-condensation reactions of titanium isopropoxide at 70 °C for 24 h at pH 3 with HNO₃ and 18 mL of deionized distilled H₂O. Afterwards, the samples were evaporated in a rotary evaporator at 80 °C and then dried in an oven for 16 h at 80 °C. Finally, the excess of solvent and water was removed by annealing the materials in static air at 500 °C for 4 h with a heating program rate of 3 °C/min. As for γ -Al₂O₃, it was prepared by the sol-gel method using aluminum isopropoxide (Aldrich 99.99%) in the presence of 2-propanol (Baker 99%); the mixture was heated to 70 °C and the pH adjusted to 3 with HNO₃; then, 18 mL of deionized distilled H₂O was added dropwise to the solution to perform a hydrolysis reaction; after vigorous stirring for 1 h, the gel was formed. Then, the solvents were evaporated in a rotary evaporator at 80 °C and the sample was dried in an oven for 16 h at 80 °C. To obtain the γ -Al₂O₃ sample, the dried sample was calcined in static air at 500 °C.

Preparation of Au nanoparticles on the TiO₂, γ -Al₂O₃, and TiO₂-Al₂O₃ supports

Gold nanoparticles were obtained by the deposition-precipitation with urea (DPU) method. The gold precursor, HAuCl₄ and urea, were dissolved in distilled water. The gold loading was 2 wt.% and the samples were labeled as Au/TiO₂, Au/Al₂O₃, and Au/TiO₂–Al₂O₃. For the preparation of the Au samples, 250 mg of TiO₂, γ -Al₂O₃, or TiO₂-Al₂O₃ (dried at 80 °C) was added to the HAuCl₄ and urea solution under constant stirring; thereafter, the suspension temperature was increased up to 80 °C and stirring was kept constant for 16 h. After the DPU procedure, all the samples were centrifuged, washed four times with water at 50 °C and centrifuged and dried under vacuum for 2.5 h at 80 °C; finally, the materials were annealed at 500 °C for 4 h under either air or hydrogen flow.

Carbon monoxide catalytic oxidation test

In a flow reactor, the CO oxidation reaction was studied at atmospheric pressure with a light-off test from 20 to 300 °C, using 40 mg of sample that was first activated in situ with 40 mL•min⁻¹ of either air or hydrogen with a heating rate of 2 °C min⁻¹, between 300 and 500 °C in a tubular reactor (ID = 0.001 m; L = 0.035 cm) with a porous quartz frit disk placed in the middle of the tube to support the catalyst, using a RIG-150 micro reactor system by in situ research instruments. The feed gas mixture (1 vol. % of CO and 1 vol. % of O₂ balanced with N₂) was introduced with a total flow rate of 100 mL \bullet min⁻¹ and a heating rate of 2 °C min⁻¹. The gases were analyzed with an online gas chromatograph (7820A, Agilent Technologies) equipped with a FID detector, HP Plot Q column, and a methanizer; the GC method conditions used for the analysis were the following: in: Front inlet N₂, out: back detector FID, 35 °C, 9.5636 psi, flow of 1.4 mL•min⁻¹, average velocity of 28.96 cm•min⁻¹, holdup time of 1.726 min, and run time of 5 min.

In situ characterization techniques

CO adsorption was tracked down by FTIR spectroscopy in a Nicolet 670-FT-IR spectrophotometer equipped with a Praying Mantis for DRIFT spectroscopy and a temperature reaction chamber by Harrick. In each experiment, approximately 25 mg of sample was packed in the sample holder and pretreated in situ under H₂ flow (30 mL•min⁻¹, heating rate of 2 °C•min⁻¹) up to the chosen temperature. After the thermal treatment, the sample was cooled down to room temperature under the same gas flow and then purged with N₂ before the introduction of 5% of CO in N₂ (30 mL•min⁻¹). A spectrum registered under N₂ was used as reference; then, several spectra were recorded under CO flow until the band intensity was stable; afterwards, the temperature was increased under CO; spectra were obtained at different increasing temperatures.

Ex situ characterization techniques

X-ray diffraction patterns were acquired at room temperature with Cu K α radiation in a Bruker Advance D-8 diffractometer having a theta-theta configuration and a graphite secondary-beam monochromator. The data were collected for scattering angles (2 θ) ranging from 4 to 80° with a step size of 0.01° for 2 s per point.

Images of the samples were obtained by HR-TEM analyses, which were performed with a JEOL 2200FS microscope operating at 200 kV and equipped with a Schottky-type field emission gun and an ultrahigh resolution pole piece (Cs = 0.5 mm, point-to-point resolution, 0.190 nm). The textural properties were obtained by means of an ASAP-2000 analyzer from micromeritics. The specific surface area (SBET) was calculated from the Brunauer–Emmett–Teller (BET) equation from N₂ physisorption at 77 K.

H₂-TPR profiles were performed on a RIG-150 unit under flow of a 10% H₂/Ar gas mixture (25 mL•min⁻¹) with a heating rate of 10 °C min⁻¹ from room temperature to 800 °C.

XPS analyses were carried out with a Thermo VG Scientific Escalab 250 spectrometer equipped with a hemispherical electron analyzer and an Al K α radiation source (1486.6 eV) powered at 20 kV and 30 mA, respectively. The binding energy was determined by using carbon C (1 s) as reference line (284.6 eV). The spectrometer was operated at pass energy of 23.5 eV, and the base pressure in the analysis chamber was maintained in the order of 3×10^{-8} mbar. Deconvolution peak fitting was done by using XPSPEAK 41 with Shirley background.

Results and discussion

X-ray diffraction

In order to investigate the structure of the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts, X-ray diffraction patterns of the as-prepared catalysts are presented in Fig. 1. The diffraction peaks at 2θ = 19.44° (111), 37.59° (311), 39.47° (222), 45.84° (400), and 67.00° (440) are assigned to γ -Al₂O₃, corresponding to the standard (JCPDS 010–0425). Likewise, for the Au/TiO₂ and Au/TiO₂-15Al₂O₃ catalysts, diffraction peaks at 2θ = 25.37° (101), 37.80° (004), 48.04° (200), 53.89° (105), 62.68° (204), 68.76° (116), 70.30° (220), and 75.02° (215), corresponding to the standards (JCPDS: 21–1272) are assigned to the TiO₂ anatase phase. For the Au/TiO₂ and Au/TiO₂-15Al₂O₃

Fig. 1 X-ray diffraction patterns of the Au/TiO₂, Au/TiO₂-15Al₂O₃, and Au/Al₂O₃ catalysts treated at 500 °C in H₂

catalysts, diffraction peaks ascribed to rutile and brookite were not detected as the main phase of TiO₂, suggesting that calcination at 500 °C leads only to the existence of the TiO₂ anatase phase. Gold peaks were not observed according to (JPDCS 04-0784) due to the high dispersion and low Au loading (2 wt.%) used in the three different supports. In contrast, it is apparent that for the Au/ TiO₂-15Al₂O₃ catalyst annealed at 500 °C, amorphous structures are displayed with respect to Au/TiO₂ catalysts, which showed higher crystallinity; so, the addition of Al₂O₃ suppressed the transition of anatase to rutile in agreement with a previous work (Lakshmanan et al. 2014; Morán-Pineda et al. 2002). Also, in Fig. 1, it is observed that the addition of Al_2O_3 decreased the TiO₂ crystallite size, which was corroborated by the Scherrer equation at $2\theta = 25.37^{\circ}$ (101), obtaining for the Au/TiO₂ catalyst a crystallite size of 15 nm, while for the Au/ TiO₂-15Al₂O₃ mixed-oxide catalyst, it was 7 nm. Therefore, this result confirms that the presence of alumina on TiO₂ allows an improvement on the textural and structural properties.

H₂/TPR

The Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixedoxide catalysts were analyzed by temperature programmed reduction as shown in Fig. 2. The Au/Al₂O₃ catalyst showed one peak related to gold reduction (Au³⁺ to Au⁰) at 180 °C, suggesting that the reduction took place in the temperature interval starting at 110 and ending at 220 °C, in agreement with a previous work (Ma and Dai 2011). In this way, Au/TiO₂ presented two peaks

Fig. 2 H_2/TPR profiles for the Au/TiO_2, Au/TiO_2-15Al_2O_3, and Au/Al_2O_3, catalysts

at 145 and 400 °C; the first intense peak is related to the reduction of Au³⁺ to Au⁰ species, in agreement with an earlier work (Bouslama et al. 2012). The broad and low intensity peak at 400 °C indicates the reduction, at least at some extent, from Ti⁴⁺ to Ti³⁺ of the support. The Au/ TiO₂-15Al₂O₃ mixed-oxide catalysts displayed the lowest temperature reduction peak at 95 °C, indicating the reduction of Au^{3+} to Au^{0} species, with respect to Au/TiO_{2} and Au/Al₂O₃, highlighting that the addition of gold to the TiO₂-15Al₂O₃ mixed oxide fosters a strong interaction with regard to the Au/TiO₂ and Au/Al₂O₃ catalysts (see Fig. 2); so, in the mixed sample, the reduction of gold is carried out at lower temperatures and the interaction between Au and the TiO₂-Al₂O₃ support is improved. Earlier research works have found comparable effects after adding gold to mixed oxides, detecting reduced gold species at lower temperatures (Oliveira et al. 2013). The Au/ TiO₂-15Al₂O₃ mixed-oxide catalysts displayed an additional broad reduction peak with maximum at 540 °C, which may be associated with the interaction between TiO_2 and Al_2O_3 , which modifies the reduction temperature of Ti⁴⁺ to Ti³⁺.

TEM

According to the TEM analysis, the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts had a narrow particle size distribution with mean particle sizes of 2.0, 1.8, and 1.6 nm, respectively; see frequency histograms in Fig. 3A–C. In order to obtain larger gold particles in the Au/Al₂O₃ catalysts to study the effect of the gold particle size on the CO oxidation reaction, for the Au/Al₂O₃ catalyst, Fig. 3 HAADF-STEM images of the catalysts annealed in hydrogen at 500 °C: **A** Au/TiO₂, **B** Au/TiO₂-15Al₂O₃, **C** Au/ Al₂O₃ and **D** Au/Al₂O₃-B catalysts, and corresponding particle size frequency histograms

Deringer

an additional Au/Al₂O₃ sample was prepared following the procedure previously described in the experimental section, but the HAuCl₄ solution was first put in contact with 0.1 M of NaBH₄ then mixed with urea and Al₂O₃ to carry out the DPU method. This sample was labeled as Au/Al₂O₃-B. Subsequently, this sample was also thermally treated in H₂ at 500 °C. Under these thermal treatment conditions, the average gold particle size was 5.2 nm, Fig. 3D. Due to the different particle sizes, the gold dispersion of the catalysts thermally treated in hydrogen was 60, 63, and 68% for the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ catalysts, respectively. Likewise, the mean semi-spherical particle size, gold dispersion, and gold loading of the catalysts are summarized in Table 1. As for the calculated value of the crystalline interplanar distance, it was equal to 0.20 nm, which corresponds to gold (111) lattice planes (JCPDF 04–0784); see Fig. 3A and C. The calculated value of the crystalline interplanar distance was 0.2 nm, which corresponds to gold (111) and 0.19 nm that is associated with (200) lattice planes (JCPDF04-0784); see Fig. 3B. Moreover, the lattice image of the support confirmed that the TiO₂ anatase crystals were oriented principally into the (101) interplanar spacing of 0.35 nm; see inset in Fig. 3A.

XPS

The electronic structure and chemical composition of the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts were elicited by XPS analysis. Figure 4 shows the core-level high resolution XPS spectra of Ti 2p, Al 2p, O 1s, and Au 4f regions for all the catalysts. For the Au/Al₂O₃ and Au/TiO₂-15Al₂O₃ catalysts, the Al 2p spectrum shows well-separated oxide and metal peaks at 73.6 and 76.5 eV, respectively; in addition, a binding energy shift and an outstanding intensity increase of the Al 2p peak are observed (Fig. 4) with regard to the Au/TiO₂-15Al₂O₃ mixed-oxide

Table 1 Properties of the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts treated at 500 °C under H_2 atmosphere and kinetic data during the CO oxidation reaction

Property Au/TiO ₂	Au/Al ₂ O ₃	Au/TiO ₂ -15Al ₂ O ₃			
Nominal Au content, wt.% 2	2	2			
Actual Au content, wt.% 1.85	1.7	1.9			
S _{BET} , m ² /g 95	205	257			
Activation energy Ea, kJ/ 33.6 mol	42.3	31.7			
Au particle size, nm 2	1.8	1.6			
Au dispersion, % 60	63	68			
Rate, $mol_{CO}/mol_{Au} \bullet s^*$ 0.0032	0.0014	0.0059			
$TOF(h^{-1})^*$ 36	14.4	68.4			

*Turnover frequency (TOF) and reaction rates were calculated at 5 °C under kinetic conditions, at CO conversions below 20%

catalysts. The O 1s spectra were deconvoluted as three characteristic species at 530.1, 531.2, and 532.4 eV; the first peak (I) is related to lattice oxygen present in TiO₂ and Al₂O₃; the second peak (II) is due to OH groups; and the third small peak (III) stemmed from both organic carbon contaminants and H₂O according to previous studies (Gualteros et al. 2019); furthermore, in all the catalysts, an extra peak (IV) at 530.6 eV attributed to (Au-O) species, according to previous works (Masoud et al. 2019), was identified. In Fig. 4, a slight shift in the O 1s peaks for the Au/TiO₂-Al₂O₃ mixed oxide occurred with regard to the Au/TiO₂ and Au/Al₂O₃ catalysts, which may have been due to oxygen atom substitution in either Al–O–Al or Ti–O–Ti bonds.

Likewise, the Au 4f characteristic peaks are located at 85.8 eV (Au 4f $_{5/2}$) and 82.15 eV (Au 4f $_{7/2}$) according to the deconvolution of gold species (Fig. 4), where Au⁰ (81.5 eV) and Au¹⁺ (82.1 eV) are the foremost species present in the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts (see Table 2); previous studies (Masoud et al. 2019; Tsai et al. 2009) have shown that the existence of Au¹⁺ species has a great influence on the CO oxidation as observed in the Au/TiO₂-15Al₂O₃ catalysts, which displayed the highest contribution of Au¹⁺ species with regard to the Au/TiO₂ and Au/Al₂O₃ catalysts; therefore, outstanding CO oxidation at 0 °C was observed in the mixed-oxide catalysts; see the catalytic activity section below.

As for the Au/TiO₂ and Au/TiO₂-15Al₂O₃ catalysts, they showed Ti 2p photoelectron peaks at 458.5 and 464.4 eV corresponding to Ti $2p_{3/2}$ and Ti $2p_{1/2}$, respectively, where the position of Ti 2p peaks was constant for Au/TiO₂ and Au/TiO₂-15Al₂O₃, indicating that mainly the Ti⁴⁺ oxidation state was found in both catalysts. Meanwhile, the peaks at 455.6 and 461.4 eV due to presence of Ti $2p_{3/2}$ and Ti $2p_{1/2}$ suggest the existence of Ti³⁺ species in the Au/TiO₂ and Au/TiO₂-Al₂O₃ catalysts, in agreement with previous studies (Mendialdua et al. 1995). The intensity of this peak is increased by the Al₂O₃ addition; see Table 2. This increase can been due to a change in coordination environment, electronic properties, and bonding geometries (Zhang and Yates 2012).

CO adsorption

The in situ DRIFTS spectra of CO adsorbed on the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts are shown in Fig. 5A–C. According to the literature, CO adsorption has revealed two bands at ~2172 and 2118 cm⁻¹; the band at ~2172 was due to CO adsorbed on Ti⁴⁺-CO acid sites of the TiO₂ supports (β), and the second one at ~2118 has been assigned to CO linearly bound to Au⁰-CO species present in the Au/TiO₂, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts (Saavedra et al. 2018; Tsai et al. 2009; Yang et al. 2006); see Fig. 5. For the Au/Al₂O₃ catalyst, the band observed at ~2172 is due to CO adsorbed on the Lewis acid sites of the Al₂O₃ surface. In the Au/TiO₂ and

Fig. 4 XPS spectra of the Ti 2p, Au 4f, O 1s, and Al 2p deconvolution for the Au/TiO₂, Au/TiO₂-15Al₂O₃, and Au/Al₂O₃ catalysts thermally treated under H₂ at 500 °C

Table 2Deconvolutionresults for Ti 2p, O 1s, andAu 4f species of the catalysts	Catalyst	Au ⁰ (% atom)	Au ¹⁺ (% atom)	Ti ³⁺ (% atom)	Ti ⁴⁺ (% atom)	O _{I(Ti-O)} (% atom)	O _{II(O-H)} (% atom)	O _{III(H2O)} (% atom)	O _{IV(M-O)} (% atom)
thermally treated at 500 °C	Au/TiO ₂	89	11	7	93	44	23	26	7
	Au/Al ₂ O ₃	84	16			47	26	22	5
	Au/TiO ₂ -15Al ₂ O ₃	72	28	11	88	57	25	8	7

Au/TiO₂-15Al₂O₃ mixed-oxide catalysts, the Au⁰-CO band at ~2118 diminished in intensity as the temperature increased and a blue shifting wave number at ~2090 is observed. Furthermore, an additional band appeared at around ~2016 cm⁻¹, which

represents active sites produced during the CO adsorption. This band, assigned to $Au^{\delta+}$ -CO species, is related to the symmetric and asymmetric vibrations of gem-dicarbonyl doublet-CO on the positively charged Au^{1+} atom (Guan et al. 2016), suggesting the

binding formation of Au^{1+} -CO, $Au^{\delta+}$ -CO, or Au^{3+} -CO (Tsai et al. 2009; Yang et al. 2006) on the Au/TiO₂ and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts. In this way, Fig. 5B shows that for Au/ Al_2O_3 , two bands at ~2172 and 2118 cm⁻¹ are present; the band at~2172 is associated with CO adsorbed on the Al3+-CO acid sites of the Al₂O₃ supports, and the second one, noted as a weak peak at~2118, is assigned to CO linearly bound to Au⁰ species. The weak band observed at~2020 cm⁻¹ is associated to Au¹⁺-CO, $Au^{\delta+}$ -CO, and Au^{3+} -CO on Au/Al_2O_3 sites (Saavedra et al. 2018); this band is observed even at 0 °C, disappearing at 100 °C; see Fig. 5B. In fact, the in situ DRIFTS spectra of CO adsorbed on the Au/TiO₂, Au/Al₂O₃, or Au/TiO₂-15Al₂O₃ mixed-oxide catalysts demonstrate that there is a small fraction of oxidized gold sites remaining on the surface of the Au/TiO2, Au/Al2O3, and Au/TiO2-15Al₂O₃ mixed-oxide catalysts, where gold is mainly in the form of metal Au⁰; likewise, the Au^{$\delta+$} sites were stable up to 100 °C in all the samples, which correlates well with the Au⁰/Au¹⁺ species ratio, as corroborated by the XPS results presented above. The CO-DRIFTS profile evolution for the Au/TiO₂-15Al₂O₃ mixedoxide catalyst, as a function of the temperature, was totally different with respect to that displayed by the Au/TiO₂ and Au/Al₂O₃ catalysts. These CO adsorption outcomes indicate that the gold particle absorption properties of Au/TiO₂-15Al₂O₃ are different from those in the Au/TiO₂ and Au/Al₂O₃ catalysts. Also, the Au¹⁺ species are present mainly in the Au/TiO2-15Al2O3 catalyst (XPS analysis); these results suggest that oxygen can be activated at the Au¹⁺ sites to a higher extent on the Au/TiO₂-Al₂O₃ catalysts and increase the CO conversion at low temperatures with regard to the Au/TiO₂ and Au/Al₂O₃ catalysts. It can be highlighted that the Au¹⁺ species could work as a linkage that interacted with the TiO₂-15Al₂O₃ mixed oxide, giving reactive oxygen for the carbon monoxide oxidation, in accordance with earlier studies (Trautmann and Baerns 1994).

Catalytic activity

Figure 6A shows the light-off CO oxidation curves for the Au/TiO₂, Au/Al₂O₃, and Au/TiO₂-15Al₂O₃ mixed-oxide catalysts treated at 500 °C under H₂ atmosphere. The Au/ TiO₂-15Al₂O₃ mixed-oxide catalyst exhibited superior catalytic activity with regard to the Au/TiO2 and Au/Al2O3 catalysts (Fig. 6 and Table 1); the addition of gold nanoparticles to TiO₂-15Al₂O₃ promoted the catalytic oxidation at 0 $^{\circ}$ C (86% of conversion), reaching 100% of conversion at 160 °C, while for Au/TiO₂, 46% of conversion was achieved at 0 °C and 100% of conversion was reached at 170 °C; in the case of Au/Al₂O₃, 20% of conversion was achieved at 0 °C and 100% of conversion was possible at 200 °C; in this context, it is worth mentioning the peculiar behavior displayed by the Au/Al_2O_3 catalyst as a function of the reaction temperature, which has been related mostly to small gold nanoparticle sizes, local overheating of catalyst surfaces, local heating, and heat exchange by the presence of some steady states in

Fig. 6 CO oxidation reaction on the Au/TiO₂, Au/TiO₂-15Al₂O₃, and Au/Al₂O₃ catalysts for A thermally treated at 500 °C under H₂ atmosphere, B thermally treated at 300 °C under H₂ atmosphere

the catalytic system (Grunwaldt et al. 1999; Gómez-Cortés et al. 2009; Engel and Ertl 1979), as discussed below.

Figure 6B shows the light-off CO oxidation curves for the same samples shown in Fig. 6A (Au/TiO₂, Au/ Al₂O₃, and Au/TiO₂-15Al₂O₃) but now thermally treated under H₂ atmosphere at 300 °C instead of 500 °C. All the catalysts thermally treated at 300 °C showed lower activity than the ones thermally treated at 500 °C. The CO conversion of the Au/TiO₂ catalysts at 300 °C was 18% at 0 °C, reaching 100% of CO conversion at 250 °C; for the Au/Al₂O₃ catalyst, the CO conversion at 0 °C was 19%, reaching 100% of CO conversion at 200 °C, while for the Au/TiO₂-15Al₂O₃ catalyst, the CO conversion at 0 °C was 80%, reaching 100% of CO conversion at 150 °C; it is worth noting that the thermal treatment temperature had a significant impact on the Au/TiO₂ catalyst, while for the Au/Al₂O₃ and Au/TiO₂-15Al₂O₃ catalysts, the CO conversion also decreased, but only by 5% at 0 °C, when they were treated at 300 °C compared to those treated at 500 °C. Therefore, some works have reported that the catalytic activity in the CO oxidation displayed by supported gold particles depends on the calcination temperature and atmosphere used during the thermal treatment, showing that gold particles deposited on the TiO₂ anatase support synthesized by the deposition-precipitation method grow when the annealing temperature is increased, thus making the catalysts less active (Salanov and Savchenko 1985). However, in the here studied catalysts, the highest activity at 500 °C under hydrogen thermal treatment may be related to the high dispersion of gold nanoparticles mainly in the TiO_2 -15Al₂O₃ support (Table 1). The addition of Al_2O_3 to TiO₂ allows to stabilize the TiO₂ anatase phase at 500 °C and does not allow the sintering of gold nanoparticles. So, the activation temperature is fundamental in the CO oxidation, evidencing that the CO oxidation increases when the activation temperature increases as follows: 500 > 300 °C, (Camposeco and Zanella 2022); see Fig. 6.

Impact of the TiO₂-Al₂O₃ composition

A positive catalytic promotion when TiO_2 is in a higher proportion than alumina in the Au/TiO₂-Al₂O₃ catalysts was observed; see Fig. 7A. The highest CO conversion was obtained for the Au/TiO₂-15Al₂O₃ catalysts, reaching a conversion of 86% at 0 °C, followed by the Au/TiO2-10Al₂O₃ and Au/TiO₂-5Al₂O₃ catalysts with CO conversions of 76 and 73% at 0 °C, respectively. As expected, in the case of the Au/Al₂O₃-15TiO₂ and Au/Al₂O₃-5TiO₂ catalysts with higher Al₂O₃ content than TiO₂ (15% and 5% wt.% of TiO₂ in the final Al_2O_3 -TiO₂ mixed oxide, respectively), lower activity than that of the samples with higher TiO₂ content was observed. The CO conversions at 0 °C reached 22 and 13% by the Au/Al₂O₃-15TiO₂ and Au/Al₂O₃-5TiO₂ catalysts, respectively; according to these results, the addition of small amounts of alumina (5, 10, and 15 wt.%) to TiO_2 allows to delay the anatase-rutile transition, stabilizes the gold nanoparticle size, and reaches higher CO conversion at 0 °C than that displayed by catalysts with higher Al₂O₃ amounts. Previous studies have reported that the phase composition of the mixed oxide significantly affects the size of the gold crystallites and stabilizes their growth, thus positively affecting the catalytic activity (Zanella and Louis 2005). The combination of Al_2O_3 and TiO_2 proved effective in the enhancement of the activity of the gold catalysts and a higher thermal treatment temperature (500 °C) could produce even more active catalysts in the CO oxidation for specific compositions.

Fig. 7 CO conversions for the A Au/TiO₂-Al₂O₃ catalyst with different compositions thermally treated at 500 °C under hydrogen; B Au/TiO₂-15Al₂O₃ thermally treated at 500 °C under air or hydrogen; C Au/Al₂O₃ thermally treated at 500 °C under air, hydrogen, or nitro-

gen; **D**) Au/TiO₂ thermally treated at 500 °C under air or hydrogen, and **E** stability tests for Au/TiO₂-15Al₂O₃ thermally treated at 500 under H_2 atmosphere

Effect of pretreatment gas

To observe the influence of the nature of the gas used in the pretreatment of the catalyst, a thermal treatment with either air or hydrogen was performed for the Au/TiO₂-15Al₂O₃, Au/Al₂O₃, and Au/TiO₂ catalysts at 500 °C; see Fig. 7B, C, and D. Earliest studies have reported that materials synthesized by the deposition-precipitation with urea method produce Au³⁺ species that can be reduced in air or hydrogen to Au^0 in different steps (Brijaldo et al., 2014). It is shown in Fig. 7B, C, and D that the activity of the Au/TiO₂, Au/ Al₂O₃, and Au/TiO₂-15Al₂O₃ catalysts was higher when the samples were thermally treated in hydrogen instead of in air. These results confirm that the gas used in the thermal treatment (hydrogen or air) significantly affects the gold particle size and therefore, the metal dispersion. As for the Au/Al₂O₃ catalyst, it was also treated with N_2 (Fig. 7C); in this case, the peculiar CO conversion behavior as a function of the temperature was less important. It is worth mentioning that even if N2 is an inert gas, the reduction of gold is expected when the temperature of the sample is increased (Giorgio et al., 2004); however, the thermal treatment at high temperature can affect the physiochemical properties of the Au/ Al₂O₃ catalyst. The CO conversion behavior as a function of the temperature when the Au/Al_2O_3 sample was thermally treated in hydrogen or air could be associated with the existence of some steady states in the catalytic system related to a slow transition from an oxygen enriched surface on Al_2O_3 increasing the presence of Au-OH groups that together with Al–OH[–] modify the oxidation pathway and also to Au⁰-Au¹⁺ transitions during the heating of the sample when H_2 or air treatment was used, while in the case of a thermal treatment in N2, almost a typical light-off behavior is observed, resulting in the narrowing of the hysteresis curve compared to the samples thermally treated in H_2 or air. Figure 7E shows that Au/TiO₂-15Al₂O₃ thermally treated under H₂ atmosphere at 500 °C displayed an initial decrease in the CO conversion for the first 2 h of reaction at constant reaction temperature (15 °C) and then remained stable, showing CO conversion of 80% after 24 h under reaction conditions.

Hysteresis effect

In heterogeneous catalysis, hysteresis loops are frequently observed in heating–cooling reaction cycles, which mean that conversion does not match the heating and cooling processes. This interesting behavior is observed in the Au/ Al₂O₃ and Au/TiO₂-15Al₂O₃ catalysts, as it can be seen in Fig. 8, while it is not observed for Au/TiO₂ sample. There are many factors that can induce a hysteresis loop such as changes in particle size and gas composition and impurities in the catalysts, among others (Yablonskii et al., 1996). In our case, it seems to be related to the presence of Al_2O_3 and gold nanoparticle size.

The results obtained for the Au/Al₂O₃ and Au/TiO₂-15Al₂O₃ catalysts clearly point toward the impact of the gold nanoparticle size and Al₂O₃ content on the light-off temperature and particularly on the hysteresis loops. As observed in Fig. 8A–D, an inverse hysteresis loop appears when the gold nanoparticles are smaller than 2 nm as is the case of the Au/Al₂O₃ and Au/TiO₂-15Al₂O₃ catalysts; likewise, with the increase in particle size and decrease in alumina content in the catalyst (Au/TiO₂-5Al₂O₃), the catalytic activity increases and the hysteresis effect is almost not observed; see Fig. 8A. The current study shows that the nanoparticle size is found between 1.8 and 2 nm when Al₂O₃ (between 5 and 15 wt.%) is added to TiO₂. As previously mentioned, Au/ TiO₂-Al₂O₃ is more active at 0 °C than the Au/TiO₂ catalyst. Therefore, the results obtained in these binary and ternary catalysts are important for understanding the hysteresis phenomenon because it is not well developed in the literature. In the present investigation, meaningful experiments were performed to try to understand the effect of parameters such as CO/O_2 ratio, particle size, structure, and nature of the catalyst on the hysteresis effects. It is observed that the hysteresis effect on the CO oxidation employing the Au/TiO₂-Al₂O₃ catalyst is highly dependent on the gold particle size; for the catalysts with average particle size of 1.8 nm, a hysteresis effect is observed, while for a catalyst with larger particle size (5.2 nm), almost no hysteresis effect was observed; see Fig. 9A, which is in good agreement with observations reported in previous works (Casapu et al., 2016). Besides, another studied parameter was the inlet gas stoichiometric ratio (CO to O_2), observing that for higher O_2 concentration, a very slight hysteresis loop was obtained, while it was larger and more pronounced for lower oxygen concentrations as shown in Fig. 9B. The peculiar behavior observed at low reaction temperatures for the Au/Al₂O₃ catalyst may be due to the fact that at low temperatures and low O₂ to CO ratios, carbon monoxide is heavily adsorbed on the catalyst surface and prevents the O_2 adsorption. This means that two states are predominant, the CO and O₂ coverage on the surface of the Au/Al₂O₃ catalysts, while for higher temperatures or high O₂ to CO ratios, the Au/Al₂O₃ catalyst surface is saturated with oxygen atoms, and therefore, the CO reaction proceeds more rapidly; this result is in agreement with Newton et al. (2017), concluding that both the particle size and O_2 to CO ratio are factors that influence the behavior of the hysteresis effect in Au/TiO₂-Al₂O₃ and above all in the Au/Al₂O₃ catalyst.

Regarding the reaction mechanism, various pathways for CO oxidation have been reported (Salomons et al., 2006; Carlsson et al., 2004); however, one of the most accepted for gold on reducible supports, that can govern the CO oxidation reaction in the catalysts here studied within the low

Fig. 8 CO oxidation profiles for the Au/TiO₂-15Al₂O₃ mixed-oxide **A**; Au/TiO₂-10Al₂O₃ mixed oxide **B**; and Au/Al₂O₃ catalyst thermally treated under hydrogen at 300 °C **C** and at 500 °C **D**

Fig.9 A CO oxidation profiles with different gold sizes for Au/Al_2O_3 and Au/Al_2O_3 -B catalysts; and **B** CO oxidation at different CO/O_2 ratios for Au/Al_2O_3 catalyst. The samples were thermally treated at 500 °C under H₂ flow

Fig. 10 Schematic representation of the possible mechanism for CO oxidation over reducible oxide supports

temperature region, is the one in which the support acts as the oxygen supplier (Salomons et al., 2006). Figure 10 displays possible mechanisms on the surface of the catalysts thermally treated at 500 °C under H₂ atmosphere, consisting in the adsorption of CO on the surface of gold, and the participation of a support lattice oxygen atom, resulting in the formation and desorption of CO₂ and an oxygen vacancy. Then, the oxygen vacancy site is wrapped by O_2 from the gas phase, which re-oxidizes the surface of the oxide. With respect to the reaction mechanism on the Au/Al₂O₃ catalyst, it is still a topic under debate; the most accepted mechanism for the CO oxidation reaction by Au catalysts is the one involving OH coming from the Al₂O₃ surface (Costello et al., 2002). The OH content on the surface of Al_2O_3 may also explain the hysteresis effect observed in Au/Al₂O₃ catalysts as a function of the reaction temperature.

Conclusions

Au/TiO₂-Al₂O₃, Au/TiO₂, and Au/Al₂O₃ catalysts with highly dispersed gold species were synthesized. The Au/ TiO₂-15Al₂O₃ mixed oxide showed both the best performance in the oxidation of CO and resistance to deactivation for 24 h at 15 °C, achieving full CO conversion at 160 °C. Characterization of the catalysts by TEM and XPS revealed steady and well-dispersed gold particles whose dimensions oscillated between 1.6 and 2.0 nm, with higher contents of Au⁰ and Au¹⁺ species that seemed to be the main factors for achieving outstanding CO oxidation activity, allowing the occurrence of a strong metal-support interaction and featuring scattered gold on TiO₂-Al₂O₃. Likewise, the catalytic activity displayed by Au/Al₂O₃ was high due to the presence of remarkably small gold particles (1.8 nm) interacting with the Al₂O₃ support. The peculiar CO conversion behavior shown by the catalysts as a function of the reaction temperature became more evident with the samples having smaller gold nanoparticles and higher Al_2O_3 content in the mixed catalysts. As for the oxygen vacancies present in the Au/TiO₂-15Al₂O₃ mixed oxide, it seems that they contribute to upgrade the oxygen mobility and improve the catalytic activity in CO oxidation reactions. In contrast, gold particle sizes between 4 and 7 nm in the Au/Al₂O₃ sample confirmed the assumption that gold on a not reducible oxide presents weak-metal-support-interaction, for it did not show hysteresis behavior. In addition, by comparing the three gold catalytic systems here studied (Au/TiO₂-Al₂O₃, Au/TiO₂, and Au/Al₂O₃) in the CO oxidation, it is concluded that the interaction between gold nanoparticles and the support is pivotal to enhance both the catalytic performance and gold dispersion.

Acknowledgements The authors want to thank the financial support provided by the Consejo Nacional de Ciencia y Tecnología (CONA-CYT) through the CB A1-S-18269 grant, Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN104022 grant.

Author contribution Roberto Camposeco: formal analysis, writing original draft preparation, conceptualization, and validation; investigation; Rodolfo Zanella: formal analysis, investigation, writing—original draft preparation, supervision, and project administration.

Funding Consejo Nacional de Ciencia y Tecnología (CONACYT) through the CB A1-S-18269 grant, Dirección General de Asuntos del Personal Académico-UNAM through the PAPIIT IN104022 grant.

Data availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent for publication Not applicable.

Consent to participate Not applicable.

Competing interests The authors declare no competing interests.

References

- Albonetti S, Bonelli R, EpoupaMengou J, Femoni C, Tiozzo C, Zacchini S, Trifiro F (2008) Gold/iron carbonyl clusters as precursors for TiO₂ supported catalysts. Catal Today 137:483–488
- Avgouropoulos G, Papavasiliou J, Ioannides T (2008) PROX reaction over CuO–CeO₂ catalyst with reformate gas containing methanol. Catal Commun 9:1656–1660
- Bakhshayesh AM, Mohammadi MR, Fray DJ (2012) Controlling electron transport rate and recombination process of TiO₂ dyesensitized solar cells by design of double-layer films with different arrangement modes. Electrochim Acta 78:384–391
- Boaro M, Vicario M, Llorca J, de Leitenburg C, Dolcetti G, Trovarelli A (2009) A comparative study of water gas shift reaction over gold and platinum supported on ZrO₂ and CeO₂–ZrO₂. App Catal B 88:272–282
- Bokhimi X, Boldu JL, Muñoz E, Novaro O, Lopez T, Hernandez J, Gomez R, Garcia-Ruiz A (1999) Structure and composition of the nanocrystalline phases in a MgO-TiO₂ system prepared via sol-gel technique. Chem Mater 11:2716–2721
- Bouslama M, Amamra MC, Jia Z, Ben Amar MK, Chhor O, Brinza M, AbderrabbaVignes JL, Kanaev A (2012) Nanoparticulate TiO₂-Al₂O₃ photocatalytic media: effect of particle size and polymorphism on photocatalytic activity. ACS Catal 2(9):1884–1892
- Brijaldo MH, Passos FB, Rojas HA et al (2014) Hydrogenation of m-dinitrobenzene over Pt supported catalysts on TiO₂-Al₂O₃ binary oxides. Catal Lett 144:860–866
- Camposeco R, Zanella R (2022) Activity boosting of gold nanoparticles supported on V_2O_5/TiO_2 nanostructures for CO oxidation at low temperature. Catal Today 392–393:49–59
- Camposeco R, Castillo S, Mejía-Centeno I, Navarrete J, Nava N (2015) Boosted surface acidity in TiO₂ and Al₂O₃-TiO₂ nanotubes as catalytic supports. Appl Surf Sci 356:115–123
- Carlsson P, Osterlund L, Thormahlen P, Palmqvist A, Fridell E, Jansson J, Skoglundh MA (2004) Transient in situ FTIR and XANES study of CO oxidation over Pt/AIO catalysts. J Catal 226:422–434
- Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Nature of the active site for CO oxidation on highly active Au/γ-Al₂O₃. Appl Catal A 232(1–2):159–168
- Casapu M, Fischer A, Gänzler AM, Popescu R, Crone M, Gerthsen D, Türk M, Grunwaldt JD (2016) Origin of the normal and inverse hysteresis behavior during CO oxidation over Pt/Al₂O₃. ACS Catal 7:343–355
- Date M, Okumura M, Tsubota S, Haruta M (2004) Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed 43(16):2129–2132
- Duan A, Li R, Jiang G, Gao J, Zhao Z, Wan G, Zhang D, Huang W, Chung KH (2009) Hydrodesulphurization performance of NiW/TiO₂-Al₂O₃ catalyst for ultra clean diesel. Catal Today 140(3–4):187–191
- Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. In: Advances in catalysis, vol 28. Academic Press, Cambridge, pp 1–78
- Galindo I, de Los Reyes J (2007) Effect of alumina–titania supports on the activity of Pd, Pt and bimetallic Pd–Pt catalysts for hydrorefining applications. Fuel Process Technol 88(9):859–863

- Gavrila D, Georgakab A, Loukopoulos
b V et al (2006) On the mechanism of selective CO oxidation on nanosized
 $Au/\gamma-Al_2O_3$ catalysts. Gold Bull 39:192–199
- Glez V, Castillo S, Morán-Pineda M, Zanella R, Gomez R (2009) Effect of TiO₂ In₂O₃ and TiO₂ Al₂O₃ sol-gel supports on the morphology of gold nanoparticles. J Nano Res 5:1–12
- Gómez-Cortés A, Díaz G, Zanella R, Ramírez H, Santiago P, Saniger JM (2009) Au-Ir/TiO₂ prepared by deposition precipitation with urea: improved activity and stability in CO oxidation. J Phys Chem C 113:9710–9720
- Gualteros JAD, Garcia MAS, da Silva AGM et al (2019) Synthesis of highly dispersed gold nanoparticles on Al_2O_3 , SiO_2 , and TiO_2 for the solvent-free oxidation of benzyl alcohol under low metal loadings. J Mater Sci 54:238–251
- Guan H, Lin J, Qiao B, Yang X, Li L, Miao S, Liu J, Wang A, Wang X, Zhang T (2016) Catalytically active Rh sub-nanoclusters on TiO₂ for CO oxidation at cryogenic temperatures. Angew Chem Int 55:2820–2824
- Grunwaldt JD, Maciejewski M, Becker OS, Fabrizioli P, Baiker A (1999) Comparative study of Au/TiO₂ and Au/ZrO₂ catalysts for low-temperature CO oxidation. J Catal 186:458–469
- Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem Lett 16:405–408
- Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R (2021) Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials 11(8):2033
- Huang W, Duan A, Zhao Z, Wan G, Jiang G, Dou T (2008) Timodified alumina supports prepared by sol-gel method used for deep HDS catalysts. Catal Today 131:314–321
- Lakshmanan P, Park J, Park E (2014) Recent advances in preferential oxidation of CO in H_2 over gold catalysts. Catal Surv Asia 18(2-3):75–88
- Lopez T, Bosch P, Tzompantzi F, Gomez R, Navarrete J, Lopez-Salinas E, Llanos ME (2000) Effect of sulfation methods on TiO₂–SiO₂ sol–gel catalyst acidity. Appl Catal A 197:107–117
- Ma Z, Dai S (2011) Development of novel supported gold catalysts: a materials perspective. Nano Res 4:3–32
- Masoud N, Partsch T, de Jong KP (2019) Thermal stability of oxidesupported gold nanoparticles. Gold Bull 52:105–114
- Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V_2O_5 , V_6O_{13} , VO_2 and V_2O_3 . J Electron Spectrosc Relat Phenom 71:249–261
- Morán-Pineda M, Castillo S, Asomoza M, Gomez R (2002) Al₂O₃-TiO₂ sol-gel mixed oxides as suitable supports for the reduction of NO by CO. React Kinet Catal Lett 76:75–81
- Newton M (2017) Time resolved operando X-ray techniques in catalysis, a case study: CO oxidation by O_2 over Pt surfaces and alumina supported Pt catalysts. Catalysts 7(2):58
- Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M (1998) Chemical vapor deposition of gold on Al_2O_3 , SiO₂, and TiO₂ for the oxidation of CO and of H₂. Catal Lett 51:53–58
- Oliveira RL, Bitencourt IG, Passos FB (2013) Partial oxidation of methane to syngas on Rh/Al₂O₃ and Rh/Ce-ZrO₂ catalysts. J Braz Chem Soc 24:68–75
- Reddy BM, Rao KN, Reddy GK, Bharali PJ (2006) Characterization and catalytic activity of V₂O₅/Al₂O₃-TiO₂ for selective oxidation of 4-methylanisole. Mol Catal A 253(1):44–51
- Romero-Sarria F, Penkova A, Martinez LM, Centeno MA, Hadjiivanov K, Odriozola JA (2008) Role of water in the CO oxidation reaction on Au/CeO₂: modification of the surface properties. Appl Catal B 84:119–124

- Saavedra J, Pursell CJ, Chandler BD (2018) CO oxidation kinetics over Au/TiO₂ and Au/Al₂O₃ catalysts: evidence for a common water-assisted mechanism. J Am Chem Soc 140(10):3712–3723
- Salanov AN, Savchenko VI (1985) TD and AES studies of the interaction of oxygen with Rh(100). React Kinet Catal Lett 29:101–109
- Salomons S, Votsmeier M, Hayes RE, Drochner A, Vogel H, Gieshof J (2006) CO and H_2 oxidation on a platinum monolith diesel oxidation catalyst. Catal Today 117:491–497
- Soares JMC, Morrall P, Crossley A, Harris P, Bowker M (2003) Catalytic and noncatalytic CO oxidation on Au/TiO₂ catalysts. J Catal 219:17–24
- Tavizón-Pozos, JA, Suárez-Toriello VA, de los Reyes JA, Guevara-Lara A, Pawelec B, Fierro JLG, Vrinat M, Geantet C (2016) Deep hydrodesulfurization of dibenzothiophenes over niw sulfide catalysts supported on sol-gel titania-alumina. Top Catal 59:241–251
- Trautmann S, Baerns M (1994) Infrared spectroscopic studies of CO adsorption on rhodium supported by SiO₂, Al₂O₃, and TiO₂. J Catal 150:335–344
- Tsai Y, Chao H, Lin H (2009) Low temperature carbon monoxide oxidation over gold nanoparticles supported on sodium titanate nanotubes. J of Mol Catal A Chem 298:115–124
- Valange S, Védrine J (2018) General and prospective views on oxidation reactions in heterogeneous catalysis. Catalysts 8:483
- Wenfu Y, Zhen M, Shannon M, Jian J, Edward H, Steven O, Sheng D (2008) Novel Au/TiO₂/Al₂O₃·xH₂O catalysts for CO oxidation. Catal Lett 21(3–4):209–218

- Wu S, Han H, Tai Q, Zhang J, Xu S, Zhou C, Yang Y, Hu H, Chen B, Zhao X (2008) Improvement in dye-sensitized solar cells employing TiO₂ electrodes coated with Al₂O₃ by reactive direct current magnetron sputtering. J Power Source 182(1):119–123
- Yablonskii GS, Lazman MZ (1996) New correlations to analyze isothermal critical phenomena in heterogeneous catalysis reactions ("Critical simplification", "hysteresis thermodynamics"). React Kinet Catal Lett 59:145–150
- Yang J, Bai H, Tan X, Lian J (2006) IR and XPS investigation of visible-light photocatalysis-nitrogen-carbon-doped TiO₂ film. App Surf Sci 253:1988–1994
- Zanella R, Louis C (2005) Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO₂ samples. Catal Today 107–108:768–777
- Zanella R, Giorgio S, Shin CH, Henry CR, Louis C (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO₂ prepared by deposition-precipitation with NaOH and urea. J Catal 222:357–367
- Zhang ZJ, Yates T (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.