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Abstract
In recent years, using semiconductor photocatalysts for antibiotic contaminant degradation under visible light has become 
a hot topic. Herein, a novel and ingenious cadmium-doped graphite phase carbon nitride (Cd-g-C3N4) photocatalyst was 
successfully constructed via the thermal polymerization method. Experimental and characterization results revealed that 
cadmium (Cd) was well doped at the g-C3N4 surface and exhibited high intercontact with g-C3N4. Additionally, the introduc-
tion of cadmium significantly improved the photocatalytic activity, and the optimum degradation efficiency of tetracycline 
(TC) reached 98.1%, which was exceeded 2.0 times that of g-C3N4 (43.9%). Meanwhile, the Cd-doped sample presented 
a higher efficiency of electrical conductivity, light absorption property, and photogenerated electron-hole pair migration 
compared with g-C3N4. Additionally, the quenching experiments and electron spin-resonance tests exhibited that holes  (h+), 
hydroxyl radicals (•OH), superoxide radicals (•O2

−) were the main active species involved in TC degradation. The effects 
of various conditions on photocatalytic degradation, such as pH, initial TC concentrations, and catalyst dosage, were also 
researched. Finally, the degradation mechanism was elaborated in detail. This work gives a reasonable point to synthesizing 
high-efficiency and economic metal-doped photocatalysts.
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Introduction

For the past few years, the environmental problems were 
overwhelming with the continuous increase in population 
and medical industry (Abbott 2010; McCauley and Ste-
phens 2012; Wang and Yang 2016). Especially, the reckless 

discharge of untreated wastewater and sewage makes anti-
biotic pollutants accumulate in water. Tetracycline (TC), the 
most common antibiotic contaminant with a huge threat to 
the water environment and human health, was frequently 
detected in the water environment. Thus, it is necessary to 
seek a green and efficient technology to degrade antibiotic 
TC pollution in water.

Photocatalysis technology, as an environmental-friendly 
process, has become a promising method applied in the 
energy and environmental remediation field (Ge et al. 2011; 
Liu et al. 2016; Wang et al. 2008; Zhu et al. 2017). The most 
important tasks in photocatalysis technology are designing 
high-efficient, non-toxic, and low-cost photocatalysts (Xiang 
et al. 2012). Recently, metallic oxides, metallic nitrides, and 
metallic sulfides have been developed as excellent photocat-
alytic materials to remove antibiotic pollutants (Chan et al. 
2017; Shi et al. 2018; Song et al. 2019; Wang et al. 2018b; 
Xu et al. 2019). However, some obvious defects, such as 
high cost, low light absorption efficiency, and photo-corro-
sion, have hindered their further application (Yan et al. 2010; 
Yu and Wang 2015; Yuan et al. 2014; Zhao et al. 2014).
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In comparison, graphite phase carbon nitride (g-C3N4), as 
a metal-free conjugate semiconductor, is considered one of 
the most promising photocatalysts than metallic photocata-
lysts (Wang et al. 2008; Lu et al. 2015; Zhou et al. 2013). 
The high physicochemical stability, tunable electronic struc-
ture, and appropriate bandgap for absorbing blue light of 
g-C3N4 make g-C3N4 receive much attention and are widely 
used in antibiotic pollutant degradation (Butchosa et al. 
2014; Chen et al. 2020; Liu et al. 2015; Wang et al. 2020a; 
Wang et al. 2019; Wang et al. 2020b; Yan et al. 2009a). Nev-
ertheless, the photodegradation properties have been limited 
by several disadvantages of g-C3N4, such as insufficient light 
absorption, low surface area, and rapid recombination rate of 
photogenerated carriers (Li et al. 2009a; Chang et al. 2018; 
Zhang and Xia 2011).

Several strategies, including chemical doping, morpho-
logical control, electronic structural design, and defects 
engineering, have been explored to overcome the shortcom-
ings of g-C3N4 (Gao et al. 2012; Katsumata et al. 2014; Ou 
et al. 2015; Qi et al. 2018). Among these strategies, metal 
element doping of g-C3N4 has been commonly regarded as 
a feasible method to improve photodegradation properties 
(Schwinghammer et al. 2014; Tahir et al. 2013; Thawee-
sak et al. 2017; Wang et al. 2018b). Metal element dop-
ing influenced the redox capacity, morphology, and crystal 
phase structure of semiconductors (Xiong et al. 2016; Gao 
et al. 2013; Ong et al. 2016; Wang et al. 2009a). Moreover, 
the light absorption ability and charge transfer efficiency of 
catalysts could be effectively improved via the metal doping 
method (Jun et al. 2013; Liu et al. 2012; Fan et al. 2019; Gao 
et al. 2012; Huang et al. 2019; Zhu et al. 2017).

To the best of our knowledge, there is rarely reported 
Cd-g-C3N4 for photocatalytic degradation. Herein, the solu-
ble cadmium ion and g-C3N4 precursor were fully mixed by 
an ingenious pretreated oil bath, and the cadmium-doped 
graphite phase carbon nitride (Cd-g-C3N4) photocatalyst was 
successfully constructed via further calcining. Different pro-
portions of cadmium were introduced into g-C3N4 by chang-
ing the Cd content. The experimental and characterization 
results demonstrated that the photocatalytic performance, 
light absorption ability, and specific surface area of g-C3N4 
were improved after cadmium doping. This study elaborated 
an innovative viewpoint for further chemistry-doped photo-
catalysts designed.

Experimental section

Chemicals

All the chemicals were of analytical grade. Cadmium chlo-
ride  (CdCl2), polyvinyl alcohol (PVA), melamine, tetra-
cycline (TC), ethylenediaminetetraacetic acid disodium 

salt (EDTA-2Na), anhydrous ethanol, isopropanol (IPA), 
4-hydroxy-2,2,6,6-tetramethyl piperidinyloxy (TEMPO), 
and deionized water  (H2O) were employed without further 
purification.

Synthesis of g‑C3N4

The g-C3N4 powder was prepared via the traditional calcina-
tion method with little revision; the specific steps were as 
follows (Wang et al. 2021): weigh 10 g melamine and put 
into a porcelain alumina crucible covered with tin foil (50 
mL). Then, the crucible was placed into a muff furnace with 
a heating rate of 10 °C/min and kept at 550 °C for 3 h. After 
the porcelain alumina crucible was cooled down to room 
temperature, the obtained g-C3N4 powder was grounded and 
collected for further use.

Synthesis of Cd‑g‑C3N4

All Cd-doped g-C3N4 samples were prepared through the 
thermal polymerization of melamine in the presence of 
 CdCl2. g-C3N4 sample of 1.0 g was taken and dissolved in 
20 mL of ethanol/H2O solution (15/5, vol/vol), and then dif-
ferent amounts of  CdCl2 was put into the solution. After 
ultrasound for half an hour, the solvent evaporated in an 
oil bath under magnetic agitation at 60 °C. Whereafter, the 
remaining solids were placed in a petri dish, covered with a 
plastic wrap, and desiccated in a vacuum-drying oven at 60 
°C for 24 h. When cooled to room temperature, the obtained 
samples were poured into a mortar to thoroughly ground. 
Then, the samples were placed into a muff furnace with a 
heating rate of 10 °C/min, kept at 550 °C for 3 h. When 
the product was static cooled, the product was marked as 
X-Cd-g-C3N4 photocatalysts (X = 5, 10, 15) with different 
cadmium chloride contents. The cadmium chloride contents 
and exact cadmium contents in carbon nitride material sam-
ples are listed in Table S1, and the brief diagram of the 
10-Cd-g-C3N4 prepared process is illustrated in Scheme S1.

Characterization

X-ray diffraction (XRD) was recorded by D8 advance via 
Cu-Kα radiation, the scan ranges of 2θ extended from 10 
to 80° with a scan speed of 8°/min. The morphological 
structure was obtained on JSM-7800F scanning electron 
microscopy (SEM). Escalab 250Xi spectrometer via Al Kα 
X-ray source was employed to measure X-ray photoelec-
tron spectroscopy (XPS). The morphologies of the catalyst 
were observed through Jeol 2100F transmission electron 
microscopy (TEM). The photoluminescence spectra (PL) 
were investigated by Fluoromax-4 spectrofluorometer at 
380-nm excitation wavelength. Fourier transform infrared 
spectroscopy (FT-IR) was measured by Bruker spectrometer, 
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with the wavenumber ranging from 500 to 4000  cm−1. 
Ultraviolet-visible diffuse reflectance absorption spectros-
copy (UV-Vis DRS) was performed on Cary 300 UV-Vis 
spectrophotometer, scanning from 200 to 800 nm. The 
Brunauer–Emmett–Teller (BET) surface area was carried 
out by Micromeritics ASAP2460. Electrochemical imped-
ance spectroscopy (ESR) was analyzed by Bruker a300. 
The total organic carbon (TOC) was tested via Analytikjena 
multi N/C 2100. The chemical element compositions were 
analyzed by the energy-dispersive spectroscopy (EDS) map-
ping images, captured on a Zeiss Sigma 300 atomic resolu-
tion analytical microscope.

Photocatalytic process

A 300 W Xenon lamp with a 420-nm pass filter was 
employed to simulate sunlight for the catalytic process. Typ-
ically, 0.04 g catalyst was weighed in a 100-mL beaker, and 
50 mL TC solution at 10 mg/L was poured into the beaker 
and stirred at 450 rpm for photocatalysis studies. To elimi-
nate the effect of adsorption, we placed the mixture solu-
tions in the dark and stirred for 0.5 h until the adsorption-
desorption equilibrium. After the light source was added, TC 
suspension was collected every 10 min with a 0.22-μm filter 
membrane. Then, the concentration of suspension was tested 
by UV-Vis spectrophotometer with a wavelength of 357 nm.

Photoelectrochemical process

The photoelectrochemical (PEC) test was conducted on 
the CHI0-660D workstation. A 300-W Xenon lamp with a 
420-nm pass filter was used as the light source. The PEC 
performance of g-C3N4 and 10-Cd-g-C3N4 was evaluated 

using a normal three-electrode system with a 0.2 M  Na2SO4 
solution. In the three-electrode system, Ag/AgCl electrode 
was the reference electrode, the Pt electrode was the counter 
electrode and the working electrode was fluorine-doped tin 
oxide (FTO) with diluted catalyst. The adhered process was 
depicted as follows: FTO was firstly ultrasonic cleaned in 
ethanol, acetone, and deionized water three times, respec-
tively. Secondly, 10 mg catalyst was uniformly immersed 
into 150 uL naphthol for ultrasonic oscillation. Finally, 100 
μL suspension was evenly dropped onto FTO and dried at 
120 °C.

Results and discussion

Structure and morphology

The structure and crystalline phase were analyzed by XRD. 
Figure 1a illustrates the XRD spectra of g-C3N4 and 10-Cd-
g-C3N4. For g-C3N4, two diffraction peaks were observed in 
the vicinity of 12.9° and 27.5°, which were in good agree-
ment with the standard XRD pattern of graphitic carbon 
nitride (JCPDS 87-1526). The peak at 12.9° was confirmed 
by the in-planar tri-s-triazine structural ordering of the con-
jugated aromatic system, and the peak at 27.5° represented 
the inter-planar periodic lamellar ordering of typical graph-
ite-like carbon nitride (Li et al. 2016). According to Bragg’s 
Law, the distance between the in-plane layers was about 0.69 
nm, and the distance between the inter-planar layers was 
about 0.33 nm (Lu et al. 2015; Zou et al. 2019). For the 
10-Cd-g-C3N4 sample, the intensities of both two peaks were 
significantly abated, indicating that the reduced hydrogen 
bond effect and the strong electrostatic interactions between 

Fig. 1  a XRD patterns of g-C3N4 and 10-Cd-g-C3N4 photocatalyst; b FT-IR spectra of g-C3N4 and 10-Cd-g-C3N4 photocatalyst
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 Cd2+ and N for  Cd2+ incorporated into the g-C3N4 lattice 
(Sher et al. 2021), as a consequence, the distance between 
the inter-planar layers of g-C3N4 was decreased (Thaweesak 
et al. 2017; Yu et al. 2016; Abu Hanif et al. 2021). Appar-
ently, there was no peak of cadmium in the 10-Cd-g-C3N4 
sample, which was due to the small content and high disper-
sion of cadmium (Jia et al. 2019; Wang et al. 2020b).

The functional groups in the g-C3N4 and 10-Cd-g-
C3N4 determined by FT-IR are illustrated in Fig. 1b. As 
for g-C3N4, the wide region from 3000 to 3500  cm−1 was 
ascribed to the stretching mode of the partial hydrogenation 
of exposed nitrogen (N-H) and the adsorbed water mole-
cules (O-H) (Tonda et al. 2014; Wang et al. 2018a; Yan et al. 
2016). In the region of 1200–1700  cm−1, five characteristic 
peaks (1245, 1327, 1412, 1573, and 1645  cm−1, respec-
tively) were found, indicating the distinctive stretching mode 
of aromatic C–N heterocycle  (C6N7) (Park et al. 2011; Sob-
hana et al. 2011). The peak at 809  cm−1 was assigned to the 
typical out-of-plane bending vibration of the tri-s-triazine-
based structure (Liu et al. 2020), which verified the presence 
of triazine units (Wang et al. 2018a; Yan et al. 2009b). Obvi-
ously, the 10-Cd-g-C3N4 sample exhibited almost similar 
FT-IR features to g-C3N4, indicating the primary framework 
of g-C3N4 was well preserved after cadmium doping. Spe-
cifically, a weak peak was found in the region of 2170  cm−1, 
which may assign to the additional stretching mode caused 
by the interaction of cadmium and g-C3N4 (Sher et al. 2021). 
Additionally, the stretching mode of the partial hydrogena-
tion of exposed nitrogen (N-H) was shifted and weakened, 
which corresponded to the Cd dopant being incorporated 
into g-C3N4 (Yang et al. 2013; Li et al. 2016).

The morphologies of as-prepared samples were examined 
by SEM. For g-C3N4, a thick layered and porous structure 
was presented (Fig. 2a−b), and the layers were piled up in an 
irregular manner (Narkbuakaew and Sujaridworakun 2020). 
Also, there was a large cross-sectional area between layers, 
which could function as excellent doping sites (Sher et al. 
2021). Different from g-C3N4, the 10-Cd-g-C3N4 sample 
exhibited a thinner nanosheets structure (Fig. 2c−d), reveal-
ing the aggregated nanosheets of g-C3N4 were exfoliated 
after Cd doping (Abu Hanif et al. 2021). Moreover, there 
were some crystal particles scattered on the nanosheets, 
which might correspond to Cd dopant.

The detailed morphologies of as-prepared samples were 
further surveyed by TEM. In Fig. 3a−b, it could be appar-
ently seen that g-C3N4 was transparent or non-transparent, 
and the black shadow was owing to the overlap of multilay-
ered nanosheets. Simultaneously, as for 10-Cd-g-C3N4, an 
ultrathin nanosheet structure with partial shadow was exhib-
ited (Fig. 3c−d), confirming that the layered structure of 
g-C3N4 was exfoliated after Cd doping, which was beneficial 
for increasing specific surface area. The elemental mapping 
(Fig. 3e−i and Fig. S1a–e) illustrated that the Cd element 
was homo-dispersed at the surface of g-C3N4, suggesting the 
successful doping of Cd. Due to the electrostatic attraction, 
the electron-rich Cd was firmly anchored on the electron-
unsaturated g-C3N4 surface, which illustrated that the cad-
mium was exhibited high intercontact with g-C3N4 (Zhang 
et al. 2016). The elements’ weight ratio of the 10-Cd-g-C3N4 
sample is illustrated in Table S2, where the elements C was 
25.73%, N was 61.98%, and Cd was 12.28%. The low con-
centration of Cd compared with other elements confirms the 

Fig. 2  SEM images of g-C3N4 
(a, b) and 10-Cd-g-C3N4 photo-
catalyst (c, d)
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cadmium doped on the g-C3N4 with a slight atomic ratio. 
The selected diffraction pattern (Fig. S1f) showed two dis-
tinct amorphous diffraction rings, which correspond to two 
peaks of carbon nitride in the XRD pattern. The energy-dis-
persive X-ray spectra (EDS) are illustrated in Fig. S1g, and 
only three peaks (C, N, Cd) were presented in the EDS map-
ping spectrum, confirming that the C, N, and Cd elements 
were homogeneous distribution and the prepared 10-Cd-g-
C3N4 sample was highly pure. All these results clarified that 
10-Cd-g-C3N4 samples were successfully constructed.

The specific surface area, pore volume, and pore size 
distribution were tested by BET, and the results are listed 
in Table S3. As exhibited in the  N2 adsorption-desorption 
isotherm (Fig. S2), the g-C3N4 and 10-Cd-g-C3N4 were type 
IV curves with H3 hysteresis hoop, which represented the 
presence of slit-shaped mesoporous structure (Iqbal et al. 
2017). The specific surface area, pore volume, and pore size 
of g-C3N4 were 13.467  m2/g, 0.077  cm3/g, and 22.131 nm, 
respectively. After Cd doping, the specific surface area, pore 
volume, and pore size of 10-Cd-g-C3N4 were 16.46  m2/g, 

Fig. 3  TEM images of g-C3N4 (a, b) and 10-Cd-g-C3N4 photocatalyst (c, d). HAADF-STEM and element mapping (e-i) of 10-Cd-g-C3N4
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0.123  cm3/g, and 25.917 nm, respectively. The 10-Cd-g-
C3N4 sample obtained a larger surface area and pore volume 
than g-C3N4. Undoubtedly, a larger surface area and pore 
volume could provide more reaction active sites, increase 
light absorption area, and accelerate the transfer of pho-
togenerated carriers, thus achieving a higher photocatalytic 
degradation rate (Chang et al. 2015).

The chemical element compositions and electronic 
structure details were investigated by XPS analysis. Fig-
ure 4a characterizes the full survey spectrum of g-C3N4 and 
10-Cd-g-C3N4. Obviously, the g-C3N4 sample consisted of 
carbon (C), nitrogen (N), and oxygen (O) elements, while 
the 10-Cd-g-C3N4 sample consisted of C, N, O, and cad-
mium (Cd) elements. The presence of the O element in 
both g-C3N4 and 10-Cd-g-C3N4 samples was caused by the 

surface absorption of water in the carbon nitride thermal 
polymerization process (Chou et al. 2016; Fang et al. 2016; 
Xue et al. 2019). No sign of chlorine (Cl) element (around 
200 eV) could be observed in the 10-Cd-g-C3N4 sample 
since the Cl element was evaporated during the heating pro-
cess (Amirthaganesan et al. 2010).

As exhibited in the high-resolution Cd 3d spectra of 
10-Cd-g-C3N4 (Fig. 4b), two peaks situated at 412.4 eV and 
405.6 eV were ascribed to the Cd  3d5/2 and Cd  3d3/2, respec-
tively (Reddy et al. 2021), further confirming the presence 
of  Cd2+ (Abu Hanif et al. 2021). Figure 4c elucidates the 
high-resolution C1s spectra of g-C3N4 and 10-Cd-g-C3N4. 
For g-C3N4, two sharp peaks were situated at 288.3 eV and 
284.8 eV, respectively. The former peak at 288.4 eV resulted 
from sp2 C atoms bonded with adjacent N atoms inside the 

Fig. 4  XPS spectra of g-C3N4 and 10-Cd-g-C3N4 photocatalyst. a Full survey spectrum, b high-resolution Cd 3d, c high-resolution C 1s, d high-
resolution N 1s
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aromatic structure (N-C=N) (Thomas et al. 2008), and the 
latter peak at 284.8 eV was specifically on behalf of C-C 
bonds (Liu et al. 2010; Takanabe et al. 2010). Obviously, 
the 10-Cd-g-C3N4 sample indicated similar C1s spectra 
with g-C3N4. The high-resolution N 1s spectra of g-C3N4 
and 10-Cd-g-C3N4 are shown in Fig. 4d. For g-C3N4, four 
peaks could be observed at 404.6 eV, 401 eV, 399.5 eV, 
and 398.7 eV. The peak at 404.6 eV was assigned to the 
effects of surface charge localization in the heterocycles or 
the π–π* excitations between the stacking interlayers (Kong 
et al. 2018; Li et al. 2018; Zhang et al. 2014; Zhang et al. 
2012). The peak at 401 eV corresponded to amino groups 
(C-N-H) from the surface uncondensed bridging N atom 
(Liu et al. 2010; Thomas et al. 2008). The peak at 399.5 eV 
corresponded to N-(C)3 groups, and the peak at 398.7 eV 
was originated from sp2-bonded N atoms in triazine units 
(C=N-C) (Li et al. 2009b; Takanabe et al. 2010), which were 
similar to previously published literature (Chao et al. 2014; 
Matanović et al. 2015). Different from g-C3N4, the peak cor-
responding to the effects of surface charge localization in the 
heterocycles or the π–π* excitations between the stacking 
interlayers were shifted to 405.6 eV in the 10-Cd-g-C3N4 
sample, which could explain by the interactions between 
 Cd2+ and N of s-triazine-based unit (Soliman et al. 2019; 
Tarulli et al. 2006). Simultaneously, both C 1s and N 1s 
spectra of the 10-Cd-g-C3N4 sample exhibited an upwards 

shifted compared with g-C3N4. All these positive shifts 
could be ascribed to the electrons transfer of the 10-Cd-g-
C3N4 sample, further proving the strong electrostatic inter-
action between Cd elements and g-C3N4 (Ji et al. 2019; Yan 
et al. 2019).

Optical properties

The optical absorption ability was an evaluation criterion 
for optical properties, which could affect the electronic 
band structures of catalyst and further affect photocatalytic 
performance. The optical absorption ability of g-C3N4 and 
10-Cd-g-C3N4 was revealed by the UV–vis diffuse adsorp-
tion spectrum (Fig. 5a). Obviously, an absorption threshold 
was found at 465 nm in g-C3N4, while the absorption thresh-
old of 10-Cd-g-C3N4 had a significant redshift compared 
with g-C3N4, which illustrated that Cd doping may increase 
the light absorption ability and cause a narrower bandgap 
(Abu Hanif et al. 2021). Moreover, for the 10-Cd-g-C3N4 
sample, the intensity of visible light adsorption was signifi-
cantly enhanced than g-C3N4, which further confirmed the 
improvement of light absorption performance (Chen et al. 
2021). The UV–vis diffuse adsorption spectrum of other 
samples with different cadmium contents is clarified in 
Fig. S3. Among these samples, the 10-Cd-g-C3N4 sample 
displayed the highest visible light absorption performance.

Fig. 5  a UV–vis diffuse reflectance spectra (DRS) and b band gap 
of g-C3N4 and 10-Cd-g-C3N4 photocatalyst. c Mott–Schottky plots 
and d the PL spectra of g-C3N4 and 10-Cd-g-C3N4 photocatalyst. e 

Photocurrent response spectra and f EIS Nyquist plots of g-C3N4 and 
10-Cd-g-C3N4 photocatalyst
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Both g-C3N4 and 10-Cd-g-C3N4 are direct-gaps semicon-
ductors (Luo et al. 2017). The band gaps of g-C3N4 and 
10-Cd-g-C3N4 were calculated based on the related Tauc 
plots. As shown in Fig. 5b, the band gaps  (Eg) of g-C3N4 
and 10-Cd-g-C3N4 were 2.57 eV and 2.29 eV. Notably, the 
Cd doping sample cause a narrower bandgap; undoubtedly, 
the narrower bandgap could reduce the excitation energy for 
photogenerated carriers, which was conducive to increasing 
the generation of electron-hole pairs, thus leading to a signif-
icant improvement in the visible light response (Kong et al. 
2018; Wang et al. 2009b; Zhang et al. 2012; Ge et al. 2012).

The band potentials were ascertained by Mott-Schottky 
plots at 1000 Hz (Fig.  5c). Both g-C3N4 and 10-Cd-g-
C3N4 displayed a positive Mott-Schottky slope, indicating 
g-C3N4 and 10-Cd-g-C3N4 were both n-type semiconductors. 
Moreover, the slope of 10-Cd-g-C3N4 was abated compared 
with g-C3N4, revealing that the electron donor density was 
increased in 10-Cd-g-C3N4. Owing to the higher electron 
donor density, the electrical conductivity and the mobility of 
charge carriers were increased, which helped for improving 
photocatalytic performance (Jun et al. 2013; Pan et al. 2018; 
Yang et al. 2013; Yuan et al. 2018; Zhou et al. 2014; Zhou 
et al. 2014). As estimated by the horizontal axis intercept, 
the flat band potential of g-C3N4 and 10-Cd-g-C3N4 were 
-0.84 eV and − 1.02 eV vs Ag/AgCl electrodes, respectively, 
which were tantamount to − 0.64 eV and − 0.82 eV vs nor-
mal hydrogen electrode (NHE), respectively. Commonly, 
conduction band potential  (ECB) is equivalent to flat band 
potential for an n-type semiconductor. As a consequence, 
the conduction band potential of g-C3N4 and 10-Cd-g-C3N4 
were − 0.64 eV and − 0.82 eV vs NHE, respectively. And 
the valence band potential  (EVB) could obtain from the fol-
lowing equation (Zhang et al. 2010):

The  EVB and  ECB positions of as-prepared samples are 
revealed in Fig. S4. For g-C3N4, the  ECB was -0.64 eV, on 
the basis of the experimental  Eg (2.57 eV), the  EVB was 1.93 
eV. For 10-Cd-g-C3N4, the  ECB was − 0.82 eV, according 
to the experimental  Eg (2.29 eV), the  EVB of 10-Cd-g-C3N4 
was 1.47 eV.

The separation, transfer, and recombination of photogen-
erated carriers were analyzed by PL (Fig. 5d). Commonly, 
the weakened PL intensity meant enhanced separation and 
transfer efficiency of photogenerated carriers. For g-C3N4, 
the fluorescence emission peak appeared at 460 nm, which 
was consistent with the absorption threshold. Moreover, the 
strong intensity of the peak indicated the severe recombina-
tion of the photogenerated electron-hole pair in the g-C3N4 
sample (Yu et al. 2013). Apparently, the fluorescence emis-
sion peak was red-shifted to 490 nm in 10-Cd-g-C3N4, which 
was corresponded to the bandgap narrowing effect (Gu et al. 

EVB = ECB + Eg

2018; Zou et al. 2019). The intensity of the peak was signifi-
cantly fell in 10-Cd-g-C3N4, which illustrated that Cd doping 
restrained the recombination of photoinduced electron-hole 
pair and accelerated the interfacial charge migration. Addi-
tionally, the PL spectra of other samples with different cad-
mium contents were manifested in Fig. S5, and the intensity 
of peak was lowest in 10-Cd-g-C3N4 (Thomas et al. 2008).

Other photoelectrochemical techniques such as photocur-
rent response measurement and electrochemical impedance 
spectroscopy (EIS) were employed to investigate the separa-
tion and transfer efficiency of photogenerated carriers. The 
photocurrent responses of as-prepared samples are revealed 
in Fig. 5e; both g-C3N4 and 10-Cd-g-C3N4 exhibited out-
standing photostability under successive on/off visible light 
irradiation cycles. Moreover, the photocurrent response den-
sity of 10-Cd-g-C3N4 was significantly increased compared 
with g-C3N4, indicating the introduction of Cd increased 
the conductivity of g-C3N4 and accelerated the separa-
tion of the electron-hole pair (Ren et al. 2017). The EIS of 
g-C3N4 and 10-Cd-g-C3N4 are depicted in Fig. 5f. Com-
monly, the smaller arc radius meant smaller transfer resist-
ance, namely, the better separation and transfer efficiency of 
photogenerated carriers (Lu et al. 2017; Yang et al. 2002). 
Notably, the arc radius of 10-Cd-g-C3N4 was smaller than 
g-C3N4, which reflects that 10-Cd-g-C3N4 possessed a high-
efficiency separation ability and interfacial charge transfer 
level of photogenerated carriers (Zhu et al. 2015).

Photocatalytic activities

In this paper, TC was selected as a contaminant. For testing 
the effect of Cd doping content on degradation performance, 
a series of comparative degradation experiments were car-
ried out under the simulated visible light irradiation (λ > 420 
nm). As illustrated in Fig. 6a, the degradation rate of TC can 
be neglected without catalysts, owing to the high stability 
of TC under visible light. Moreover, the adsorption capac-
ity of all Cd-doped g-C3N4 samples was larger than that of 
g-C3N4, corresponding to the increase of specific surface 
area after Cd doping. All Cd-doped g-C3N4 samples exhib-
ited great increased photocatalytic degradation performance 
after 60-min visible light irradiation compared with g-C3N4 
(43.9%), confirming the doping of Cd was truly enhanced 
the photocatalytic efficiency (Abu Hanif et al. 2021).

At first, the degradation performance of TC was enhanced 
with the increase of Cd doping content. As the doping con-
tent of Cd increased, the utility efficiency of visible light 
was promoted; as a consequence, more photogenerated 
carriers were provided. The 10-Cd-g-C3N4 sample exhib-
ited the highest photocatalytic degradation performance 
(98.1%). Unfortunately, when the doping content of Cd 
continuously increased, the degradation performance was 
decreased. The photocatalytic degradation performance of 
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the 15-Cd-g-C3N4 sample was only 75.9%, indicating the 
excessive Cd element could serve as the recombination 
center of the photogenerated carrier or block the surface 
active sites, as a result restraining the light absorption capac-
ity and inhibiting photocatalytic degradation performance 
(Li et al. 2009a; Zhang et al. 2016b; Zhang et al. 2010).

The degradation reaction kinetic of as-prepared catalysts 
was further investigated by the pseudo-first-order kinetic 
model, and the formula was expressed as follows:

ln
(

Ct∕C0

)

= –Kappt

where C0 is the initial concentration of TC, Ct is the 
concentration of TC at time t, and Kapp is the reaction rate 
constant  (min-1). The pseudo-first-order kinetic plots of as-
prepared catalysts are presented in Fig. S6. Results indicated 
the  Kapp of Cd-g-C3N4 samples was higher than g-C3N4, and 
the  Kapp of 10-Cd-g-C3N4 sample was the highest, dem-
onstrating that 10-Cd-g-C3N4 had the best photocatalytic 
performance.

Additionally, the photocatalytic degradation performance 
within 10 min of the 10-Cd-g-C3N4 sample was also tested 
(Fig. S7). The result illustrated that the TC was degraded 
by almost 80% within 10 min. Table S4 illustrates the com-
parison with other similar types of research, and we found 

Fig. 6  a Degradation performance of catalysts curves with different 
amounts cadmium. Experimental conditions: [Cd-g-C3N4]0 = 0.8 g 
 L−1,  [TC]0 = 10 mg  L−1, and T = 25 °C. b Degradation efficiency of 
different catalyst dosages. Experimental conditions:  [TC]0 = 10 mg 
 L−1, and T = 25 °C. c Degradation efficiency of 10-Cd-g-C3N4 com-

posites with different pH. Experimental conditions: [10-Cd-g-C3N4]0 
= 0.8 g  L−1,  [TC]0 = 10 mg  L−1, and T = 25 °C. d Degradation effi-
ciency of catalyst with different initial TC concentrations. Experi-
mental conditions: [10-Cd-g-C3N4]0 = 0.8 g  L−1, and T = 25 °C.
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the removal rate of this work was excellent by comparing it 
with other similar types of work.

The effects of different reaction conditions, such as initial 
concentration of TC, catalyst dosage, and pH of solution, 
were studied to meet the practical application. Figure 6b dis-
plays the effect of catalyst dosages on TC photodegradation. 
As the catalyst dosages increased from 0.6 g/L to 0.8 g/L, 
the degradation rate of TC was enhanced monotonically, 
which could ascribe to the increased surface active sites, 
leading to more TC absorbed on the surface of materials. 
The catalyst dosages at 0.8 g/L displayed the best photocata-
lytic degradation performance. Nevertheless, with further 
adding the catalyst dosages to 1.0 g/L, the degradation rate 
of TC was decreased slightly, which owing to the excessive 
catalyst could reduce the photo-adsorption ability, hindering 
the effective migration of photogenerated carriers (Zhang 
et al. 2016a).

For testing the effect of solution pH on degradation per-
formance, diluted hydrochloric acid and sodium hydroxide 
were used to adjust the initial pH of the solution. As clarified 
in Fig. 6c, with the initial pH decreasing from 11 to 5, the 
degradation rate of TC was enhanced monotonically. The 
initial pH of the solution at 5 exhibited the best degrada-
tion efficiency of TC (94.4%), which can be explained by 
the surface charge of TC and materials. Additionally, with 
further decreasing the initial pH to 3, the degradation rate 
of TC was decreased significantly, which could ascribe to 
the decomposition of catalyst in strongly acidic conditions.

The effect of the initial concentration of TC on degrada-
tion performance was illuminated in Fig. 6d. It could be 
notably detected that the removal rates were abated with the 
initial concentration increased, and the best removal rate was 
96.7% at the initial concentration of 10 mg/L. Two possible 
reasons could be proposed to elucidate this tendency. Firstly, 
high concentrations of contaminants might accumulate at 
the surface of the catalyst, inhibiting the light absorption 
capacity. Secondly, intermediate products produced in the 
process of contaminants degradation might occupy the sur-
face active site, leading to no contact between contaminants 
and the catalyst.

To study the effect of the water matrix on degradation 
performance, we used the as-prepared catalyst to set up a 
control test in actual water. Four different water matrices 
were chosen, such as ultra-pure water, tap water, lake water 
(Houhu, Changsha), and river water (Xiangjiang, Chang-
sha). The basic parameter information of these four types 
of water is listed in Table S4. As clarified in Fig. 7a, obvi-
ously, the degradation rate of TC was the highest in ultra-
pure water, while the degradation rate of TC was inhibited 
in the other three types of water. The degradation rate of 
TC was 81.8% in tap water, the degradation rate was 82.2% 
in lake water, and that was 71.1% in river water. Thus, the 
reason for the degradation rate of TC decreased could be 

the different content and composition of inorganic anions 
and organic matter in actual water. Moreover, the first-order 
plots of the effect of the water matrix are analyzed in Fig. 7b.

In order to evaluate the practicability of catalysts, the 
stability tests were carried out on the degradation experi-
ment by reusing the catalyst. Figure 7c depicts the degra-
dation rates of TC in four consecutive cycles. Obviously, 
the degradation rates of TC were slightly decreased with 
the increase of reuse time of 10-Cd-g-C3N4, which could 
attribute to the catalyst loss during the collection process. 
The degradation rates of TC still maintained a high level 
(89.5%) in the fourth cycle. Moreover, the XRD was also 
carried out to demonstrate the difference between catalysts 
before and after use (Fig. 7d). No obvious peak changes 
were found in the used catalyst, indicating the outstanding 
stability of 10-Cd-g-C3N4.

The ability of mineralization is an important index to 
ascertain the degree of contaminants removal in the photo-
catalytic process. As intriguingly indicated in Fig. S8, the 
mineralization efficiency of TC reached 34% within 60 min 
under visible light irradiation, which confirmed that 10-Cd-
g-C3N4 could degrade TC into small-molecule intermediate 
compounds  (CO2,  H2O).

Degradation pathway and mechanism

The trapping experiments were carried out on degradation 
experiments to determine the active species participating in 
the degradation process (Li et al. 2015). EDTA-2Na, IPA, 
and TEMPO were added to the solution as scavengers to 
capture  h+, •OH, and •O2

−, respectively. As illustrated in 
Fig. 8a−b, the degradation rate of TC was largely suppressed 
by EDTA-2Na, indicating that  h+ was the dominant active 
species in the degradation process. Similarly, the degrada-
tion rate of TC was inhibited slightly with the addition of 
TEMPO and IPA, revealing that •O2

− and •OH played aux-
iliary roles in the photocatalytic degradation process (Yan 
et al. 2010; Yu et al. 2018).

The above results were further verified by ESR, in which 
the DMPO was used as scavengers to capture •OH and 
•O2

−. As illustrated in Fig. 8c and Fig. 8d, it is hard to see 
the up and down signals of active species (neither •OH nor 
•O2

−) under dark conditions. Notably, the four-strong inten-
sity signals could be found under the visible light irradia-
tion, the intensity ratio of 1:2:2:1 were corresponded to •OH 
radical, and the intensity ratio of 1:1:1:1were corresponded 
to •O2

− radical, proving the visible light is prerequisite for 
10-Cd-g-C3N4 to product •OH and •O2

− active species.
For an in-depth understanding of the photocatalytic deg-

radation mechanism in the presence of the 10-Cd-g-C3N4 
catalyst, liquid chromatograph-mass spectrometer (LC-
MS) techniques were carried out to precisely identify the 
intermediates of TC during the photocatalytic degradation 
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process. The LC-MS chromatogram of the TC degradation 
process under visible light irradiation is shown in Fig. S9. 
Clearly, with the progress of the reaction process, the peak 
of TC (m/z = 445) was faded away. Several newly appeared 
peaks corresponded to the reactive intermediates that were 
produced during the photocatalytic degradation process. 
Moreover, the mass spectrum of the TC degradation pro-
cess provided a piece of important information for possible 
molecular structures of intermediates, in which the charge-
to-mass ratio (m/z) of intermediates was clearly detected 
(Fig. 9). According to the listed m/z of intermediates, the 
possible degradation process of TC was proposed (Fig. 10). 
Firstly, one methyl in the amino group of TC was attacked 
by •OH to generate hydroxylated product P1 (m/z = 475). 
In another pathway, P2 (m/z = 429) was formed by the 

dehydration of TC. Subsequently, P3 (m/z = 385) interme-
diate was produced through the N-demethylation and deami-
nation process of P2, and P3 was undergo the cleavage of 
carbon atomic ring and double-bond fracture, as a result of 
generating P4 (m/z = 341). Then, the further loss of ketone 
and aldehyde of P4 led to the generation of P5 (m/z =221). 
In another pathway, the ring-opening process of P3 was 
occur, which caused the formation of P6 (m/z = 301). P6 
was attacked by the •OH to generate hydroxylated product 
P7 (m/z = 285). Then, the P8 (m/z = 235) was produced 
through the decarboxylation of P7. Moreover, the P8 could 
also change to P5 through the hydrogenation and double-
bond fracture, and the formation of P9 (m/z = 149) was 
through the further ring-opening reaction of P8. In addition, 
the P10 (m/z = 141) was generated by demethylation and 

Fig. 7  a Degradation performance of catalysts curves with different 
water matrix. b First-order plots of photocatalytic degradation with 
different water matrix. Experimental conditions: [Cd-g-C3N4]0 = 0.8 
g  L−1,  [TC]0 = 10 mg  L−1, and T = 25 °C. c Degradation efficiency 

of TC over 10-Cd-g-C3N4 photocatalyst under four cycling tests. d 
XRD images of 10-Cd-g-C3N4 photocatalyst before and after four 
times used. Experiments conditions: TC concentration = 20 mg/L; 
catalyst loading = 0.8 g/L, Temperature = 25 °C
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losing the ketone of P8. Finally, with further deamidation, 
losing ketone and aldehyde, dihydroxylation, ring-opening 
reaction, successive detachment of branched-chain groups, 
and double-bond fracture, the intermediates were completely 
decomposed into  CO2,  H2O, or other small molecules.

Due to the heavy metal properties of cadmium, it is 
necessary to carry out the ion leaching experiments on the 
solution after the reaction. Experimental data (Fig. S10) 
showed that the cadmium ion leaching rate was far less than 
0.1 mg/L, which was prescribed by the national integrated 
wastewater discharge Standard of the People’s Republic of 
China (GB 8978–1996). At the same time, by comparing the 
leaching rate of the catalyst without oil bath treatment and 
that of the catalyst with oil bath treatment, we found that 
the leaching rate of the catalyst with oil bath treatment was 

far less than that of the catalyst without oil bath treatment, 
indicating that the oil bath pre-treatment made the combi-
nation of cadmium and carbon nitride closer. The cadmium 
leaching in the four cycles was 3.818 ug/L, 3.519 ug/L, 
3.230 ug/L, and 3.093 ug/L, respectively. Due to the leach-
ing of cadmium, the doping rate between Cd and g-C3N4 was 
decreased, which corresponded to the decreased degradation 
rate of TC in the cycle experiments.

According to all aforementioned results, the introduc-
tion of Cd accelerated the separation and transfer rate of 
electron-hole pairs, decreasing the recombination rate 
of photogenerated carriers, and providing more reactive 
active sites, thus enhancing the photocatalytic degrada-
tion property. A brief mechanism of the 10-Cd-g-C3N4 
sample during the TC degradation process is summarized 

Fig. 8  a Degradation efficiency of 10-Cd-g-C3N4 photocatalyst under 
different quenchers. b First-order plots of photocatalytic degradation 
under different quenchers. Experiment conditions: TC concentration 

= 20 mg/L; catalyst loading = 0.8 g/L, temperature = 25 °C. ESR 
spectra for c  DMPO− •O2

−and d  DMPO− •OH under dark and vis-
ible light condition
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in Scheme 1. First, the photogenerated electron-hole pairs 
were generated under visible light irradiation, and the 
photogenerated electron-hole pairs were separated spon-
taneously. Furthermore, the electrons were transferred to 
the conduction band, as a consequence, leaving holes at 
the valence band (Eq. (1)), the accumulated holes at the 
valence band could direct react with TC. Then, the  O2 
absorbed at the catalyst surface could react with electrons 
accumulated at the conduction band to form superoxide 
radical (Eq. (2)), owing to the  ECB of 10-Cd-g-C3N4 (-0.82 
eV vs NHE) being negative than  O2/•O2

− (− 0.33 eV vs 
NHE). The surplus electrons at the conduction band could 
further react with superoxide radicals to form hydrogen 
peroxide (Eq. (3)). However, the holes accumulated at 
the valence band could not react with  OH− to form •OH 
because the  EVB of 10-Cd-g-C3N4 (1.47 eV vs NHE) was 
negative than  OH−/•OH (2.40 eV vs NHE), which was 
not consistent with the result of trapping experiments 
and ESR. Consequently, the •OH probably derived from 
another way like  H2O2 decomposition (Eq. (4)) (Jia et al. 
2020), the evolution of  H2O2 was detected by iodometry 
(Fig. S11), in which the evolution of  H2O2 was increased 
with the irradiation time. Finally,  h+, •O2

− and •OH were 
worked together to degrade TC into small molecules (Eq. 
(5)). The reaction equations involved in the photocatalytic 
reaction process were manifested below.

Conclusion

In summary, the commendable 10-Cd-g-C3N4 photocata-
lyst was successfully prepared via the thermal polymeri-
zation method after the oil bath pretreat. The degradation 
experiments demonstrated explicitly that the photocata-
lytic activity of g-C3N4 could be enhanced significantly 
with the doping of Cd. Under an hour of visible light 
irradiation, the removal efficiency of 10-Cd-g-C3N4 
(98.1%) was 2.0 times enhanced in comparison with 
g-C3N4 (43.9%). Based on the characterization analysis, 

(1)10 − Cd − g − C
3
N

4
+ hv → e− + h−

(2)O
2
+ e− → ∙O

2

−

(3)∙O
2

− + e− + 2H+
→ H

2
O

2

(4)H
2
O

2
+ e− → ∙OH + OH−

(5)
∙O

2

− + H+ + ∙OH + TC → H
2
O + CO

2
+ intermediate products

Fig. 9  The mass spectrum of possible intermediates produced during the photocatalytic degradation process
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the enhanced photocatalytic performance by Cd dop-
ing could ascribe to the following reasons: firstly, the 
enhanced photo-absorption ability, accelerating the migra-
tion, separation, and transfer efficiency of photogenerated 

carriers. Meanwhile, Cd doping adjusted the potential of 
CB and VB of g-C3N4 to prolong the photo-absorption 
ability. Finally, the ultrathin mesoporous structure and 
the increased surface area could provide more active sites 

Fig. 10  The possible degradation pathway of TC molecule during the degradation process
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along with a shortened electron-transfer pathway, which 
was conducive to inhibiting the recombination of the pho-
togenerated electrons and holes.
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