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Abstract
Three artificial intelligence (AI) data-driven techniques, including artificial neural network (ANN), support vector regression 
(SVR), and adaptive neuro-fuzzy inference system (ANFIS), were applied for modeling and predicting turbidity removal 
from water using graphene oxide (GO). Based on partial mutual information (PIM) algorithm, pH, GO dosage, and initial 
turbidity were selected as the input variables for developing the models. The prediction performance of the AI-based models 
was compared with each other and with the response surface methodology (RSM) model, previously reported by the authors, 
as well. The models’ estimation accuracy was assessed through statistical measures, including mean-squared error (MSE), 
root-mean-square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). Among the evaluated 
models, ANN had the highest estimation accuracy as it showed the highest R2 for the validation data (0.949) and the lowest 
MSE, RMSE, and MAE values. Furthermore, ANN predicted 76.1% of data points with relative errors (RE) less than 10%. In 
contrast, the weakest prediction performance belonged to the SVR model with the lowest R2 for both calibration (0.712) and 
validation (0.864) data. Besides, only 57.1% of the SVR’s predictions were characterized by RE < 10%. The ANFIS and RSM 
models exhibited a more or less similar performance in terms of R2 for the validation data (0.877 and 0.871, respectively) 
and other statistical parameters. According to the results, the ANN technique is proposed as the best option for modeling 
the process. Nevertheless, as the RSM technique provides valuable information about the contribution of the independent 
operational parameters and their complex interaction effects using the least number of experiments, simulating the process 
by this technique before modeling by ANN is inevitable.

Keywords  ANN · ANFIS · SVR · RSM · Graphene oxide (GO) · Coagulation–flocculation process

Introduction

Although water treatment plants (WTPs) are mostly operated 
by experts and experienced operators, developing intelligent 
data-driven models is an essential requirement for enhancing 
the operation and control quality of the treatment processes. 
Undoubtedly, the use of intelligent data-driven models for 
predicting the treatment units’ responses to various tech-
nical, physical, chemical, and biological features would 
enhance the performance of the WTPs. Nowadays, intelli-
gent data-driven models are well-known techniques for pre-
dicting the dynamic state of the environmental systems (May 
et al. 2008; Wu et al. 2014; Hawari et al. 2017; Saadatpour 
et al. 2020). The data-driven models could be instrumental 
in operating WTPs when applying physically based numeri-
cal models, and/or human resources may cause some restric-
tions. However, the development of the data-driven models 
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requires a proper and deep understanding of the theoretical 
foundations of the processes and their physical, chemical, 
biological, and technical concepts that generate the observed 
system dynamics in a WTP (Li et al. 2014; Wu et al. 2014; 
Li et al. 2015a, b; Saadatpour et al. 2020).

Various techniques have been suggested within the litera-
ture to develop data-driven models, based on their applica-
tion to a range of environmental systems (Pascual-Pañach 
et al. 2021). Artificial neural network (ANN) is an advanced 
data-driven method inspired by the nervous system in bio-
logical organisms and extensively considered in various 
environmental disciplines (Onukwuli et al. 2021). Typically, 
ANN structure consists of an input layer, one or more hidden 
layers, and an output layer. These layers are interconnected 
to processing units, named neurons, through weights of the 
neural network (Samadi et al. 2021a). ANN can approximate 
all types of nonlinear relationships between inputs and out-
puts if the data-preprocessing techniques are used (Rajen-
dra et al. 2009). Najah et al. (2009) attempted to propose a 
model for predicting total dissolved solids (TDS), electri-
cal conductivity (EC), and turbidity at the Johor river basin 
using three-layered feed-forward backpropagation ANN. 
According to their results, the water quality parameters were 
simulated correctly and predicted with a mean absolute error 
of about 10%. Nasr et al. (2012) applied an ANN technique 
to simulate the performance of the El-Agamy wastewater 
treatment plant in Egypt. As they reported, chemical oxy-
gen demand (COD), biochemical oxygen demand (BOD), 
and total suspended solids (TSS) were estimated with a high 
correlation coefficient (R2 > 0.9) with the ANN model. In 
another study, Giwa et al. (2016) investigated the effect of 
mixed liquor suspended solid (MLSS), dissolved oxygen 
(DO), EC, and pH on the removal efficiency of COD, phos-
phate ( PO−3

4
-P ), and ammonium (NH+

4
-N) from wastewater 

in an integrated electrically enhanced membrane bioreac-
tor. The ANN model based on the Levenberg–Marquardt 
backpropagation algorithm predicted the effluent concentra-
tion of the contaminants with a high correlation coefficient 
(R2 = 0.99) (Giwa et al. 2016).

Despite the fact that ANN models are capable of pre-
dicting water quality parameters, in some cases where the 
input parameters are unclear, these techniques encounter 
problems in determining nonlinear relationships. Some 
studies revealed that an adaptive neuro-fuzzy inference sys-
tem (ANFIS) may be a better alternative for such problems 
(Fu et al. 2020). Indeed, it has the advantages of both ANN 
and fuzzy inference system (FIS) to handle the uncertainty 
and noisy data (Zaghloul et al. 2020). Kim and Parnichkun 
(2017) proposed a hybrid of k-means-ANFIS to predict the 
settled water turbidity and determine the optimum coagu-
lant dosage using full-scale historical data. Based on the 
results, sub-models constructed by the k-means-ANFIS were 
superior to single ANFIS and ANN. In another research 

conducted by Hawari et al. (2017), fuzzy logic-based and 
multiple linear regression (MLR) models were used to pre-
dict the treated wastewater volume from a multimedia filter 
under different influent flow rates and turbidities. As they 
explained, although the regression model had higher accu-
racy in predicting the treated wastewater, the fuzzy-based 
model, due to considering the uncertainties in input param-
eters, was more reliable (Hawari et al. 2017).

Support vector regression (SVR) is another supervised 
machine learning technique which can alleviate the limita-
tion of ANNs. Unlike ANNs, SVR has a simple geometric 
interpretation, and also a few model parameters should be 
adjusted (Parveen et al. 2017). Some previous studies have 
been shown that SVR-based models can be superior to MLR 
and ANN in predicting the adsorption process (Parveen et al. 
2017 and 2019). Li et al. (2021) used machine learning 
methods including SVR and Gaussian process regression 
(GPR) to determine the relationship between the hydraulic 
conditions and the efficiency of the flocculation process. 
They reported that the SVR model predicted the turbidity 
removal efficiencies, based on various hydraulic conditions, 
better than the GPR model. However, working with a large 
dataset due to memory requirement and determining the best 
kernel function are significant challenges to SVR (Zaghloul 
et al. 2020).

Unlike the physically based numerical models, which are 
applied to depict and quantify the relationships between dif-
ferent input–output variables, the artificial intelligence (AI) 
techniques are capable of considering the uncertainties and 
provide a fast and accurate way to determine the system 
responses without depicting the structures of the processes 
(Saadatpour et al. 2020).

Coagulation–flocculation is one of the most crucial water 
treatment processes known as an economic and robust 
method for destabilizing suspended and colloidal particles 
and removing turbidity from water (Metcalf and Eddy 2003; 
Onukwuli et al. 2021). The process is severely affected by 
operational and environmental factors such as pH, initial 
turbidity, coagulant dosage, mixing speed, process time, and 
temperature (Gupta et al. 2016; Aboubaraka et al. 2017). 
The variety of effective factors makes the process highly 
complicated. This raises the need for an efficient predictive 
model for the process (Zhu et al. 2021).

Due to the cost-effectiveness and more or less satisfying 
performance of conventional coagulants such as metal salts, 
they have been widely used in water treatment works. None-
theless, the traditional coagulants have drawbacks such as 
generating large sludge volumes, inefficiency at low temper-
atures, and bringing about the Alzheimer’s disease, making 
them as a threat to human health and environment (Crini and 
Lichtfouse 2019; Nnaji et al. 2020; Ezemagu et al. 2021).

Graphene oxide (GO) is a two-dimensional carbon-based 
nanomaterial that due to its special surface properties and 
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functional groups has recently been examined as a coagulant 
in water and wastewater treatment studies (Yang et al. 2013; 
Aboubaraka et al. 2017; Rezania et al. 2021). Moreover, 
GO is superior to other conventional coagulants in terms of 
biodegradability (Sanchez et al. 2012). However, due to the 
novelty of the subject and lack of studies in this field, there 
are very few reports regarding the modeling of the GO-based 
coagulation–flocculation process. Rezania et  al. (2021) 
investigated the GO performance as a coagulant in turbid-
ity removal from water and simulated the process through 
response surface methodology (RSM). Although RSM is 
appropriate for modeling quadratic processes and provides 
comprehensive information on sensitivity analysis and inter-
action of independent operating parameters (Igwegbe et al. 
2021), not all nonlinear systems are necessarily well compat-
ible with second-order polynomials (Bhatti et al. 2011). In 
addition, RSM modeling requires a predefined acceptable 
fitting function (Karthic et al. 2013) and a determining suit-
able range for each input parameter (Maran and Priya 2015).

According to the best knowledge of the authors, no 
reports have been published so far on modeling the GO-
based coagulation–flocculation process using the aforesaid 
AI techniques and as well on comparing the models’ per-
formance and determining the most appropriate technique 
for predicting the process efficiency. As discussed above, 
the successful applications of ANN, ANFIS, and SVR tech-
niques have been reported in many environmental engineer-
ing problems, especially in predicting water and wastewater 
treatment processes. These data mining techniques represent 
priorities over conventional modeling, such as the strength 
to handle large amounts of noisy data even in dynamic and 
nonlinear frameworks, especially when the underlying 
physical, chemical, or biological process is not completely 
understood. All these factors, along with features such as 
generality, user-friendly, and ready-made apps, provided a 
strong incentive to evaluate and compare the performance 
of the aforementioned techniques in predicting the turbidity 
removal from water using graphene oxide (GO).

In addition, it is of high importance to note that the coagu-
lation performance and mechanisms of GO nanoparticles are 
different from conventional coagulants because the coagula-
tion properties of GO are due to its surface characteristics, 
while the coagulation properties of conventional coagulants 
are brought about from their hydrolysis in water. Therefore, 
determining an appropriate AI technique for modeling the 
GO-based coagulation–flocculation process will be valuable.

Given the reasons discussed above, the main objective of 
the present work was developing and comparing the capabil-
ity of the aforementioned AI-based data mining models, i.e., 
ANN, SVR, and ANFIS, in predicting the GO performance 
as a coagulant in the removal of turbidity from drinking 
water. The prediction performance of the AI-based mod-
els was compared with each other and with the response 

surface methodology (RSM) model, previously reported 
by the authors (Rezania et al. 2021), as well. The experi-
ments were performed using jar test instrument, and partial 
mutual information (PMI) algorithm was used to determine 
the appropriate input variables. The models’ prediction per-
formance was compared using statistical indicators.

Methodology

Data collection

The data used for the development of the models have already 
been generated by the authors in a recent study (Rezania 
et al. 2021), in which they evaluated the GO performance as 
a novel coagulant in turbidity removal from water. The study 
was performed using single-layer GO with a layer thickness of 
0.7–1.4 nm. For preparing turbid samples, garden soil particles 
passed through the sieve No. 200 were dispersed in 2 L tap 
water. In order to obtain a uniform dispersion, the stock suspen-
sion was first stirred at 100 rpm for 1 h and then left for 24 h for 
complete hydration of the particles. In the next step, the sus-
pension was stirred again and allowed to settle for 60 min. The 
obtained supernatant was used to prepare samples with different 
levels of turbidity (Rezania et al. 2021). A six-paddle jar test 
apparatus was used for performing the coagulation–flocculation 
process. The turbid samples were first agitated at rapid mixing 
rate of 200 rpm for 2 min and then were slowly stirred at 50 rpm 
for 15 min at room temperature. The effect of pH (3–11), GO 
dosage (2.5–30 mg/L), initial turbidity (25–300 NTU), rapid 
mixing time (1–5 min), and slow mixing time (10–40 min) 
on the turbidity removal efficiency was evaluated through the 
mentioned jar test procedure. After performing 79 one factor at 
a time (OFAT) tests, the process was simulated through RSM 
(Rezania et al. 2021). A central composite design (CCD) con-
taining 20 different combinations of experimental runs, with 8 
star points, 6 axials, and 6 center points, was selected for build-
ing quadratic models. To reduce the experimental errors, all 
experiments were carried out in randomized order. The second-
order polynomial model in coded form obtained by Rezania 
et al. (2021) is as follows:

Input variable selection

Selecting variables relevant to the target is one of the most 
important issues regarding the development of data-driven 

(1)
Y(%) = 92.56 + 2.16X

1
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2
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3
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models. Furthermore, the performance of such models can 
be adversely affected if either too few or too many inputs 
are selected (Wu et al. 2014; Li et al. 2015a,b). Generally, 
input data selection in an environmental modeling context 
is a complicated issue due to a lack of understanding of the 
underlying physical–chemical and biological processes. 
For this reason, the partial mutual information (PMI) algo-
rithm introduced by Sharma (2000) is commonly used to 
determine the appropriate input data.

The PMI value for the output variable y and the input 
variable x for a selected input data set {z} are calculated 
as follows:

where x′

= x- E[x|z],y′

= y- E[y|z] , operator E[.] denotes the 
expectation operation, f

(
y

′) and f
(
x

′) are the marginal prob-
ability density functions (pdfs), and f

(
x

′

,y
′) is joint prob-

ability densities. As the greater the PMI score, the higher the 
effectiveness of the input variable on the response.

Based on the PMI analysis results (described in the third 
to the fifth section), among the evaluated parameters, GO 
dosage, pH, and initial turbidity were determined as the most 
effective independent variables for developing the models. 
This result is consistent with the explanations of Rezania 
et al. (2021) that changing the rapid and slow mixing times 
had a negligible effect on turbidity removal efficiency using 
GO. Similarly, Naeem et al. (2018) showed that because of 
the abundant active sites on GO-based nanocomposite, a sig-
nificant adsorptive removal of contaminant particles occurred 
in the early minutes of the process, and increase in the contact 
time did not have much effect on process efficiency.

Data splitting

In this step, the available data is split into calibration 
(including training and test datasets if cross-validation is 
used) and validation data sets. Data splitting can be cat-
egorized as unsupervised and supervised methods (Maier 
et al. 2010). In the present study, random data splitting 
as the most commonly used unsupervised data splitting 
method was used (Mirri et al. 2020). As a result, the 79 
experimental data obtained from OFAT tests was divided 
into calibration (73%) and validation (27%) sets and used 
to calibrate and validate the selected artificial intelligence 
models, i.e., ANN, ANFIS, and SVR. The validation data 
was also applied to Eq. 1 to calculate the predicted val-
ues of turbidity removal efficiency by the RSM model. 
Finally, all models were evaluated and compared with one 
another in terms of their performance in predicting turbid-
ity removal from water using GO.

(2)PMI = ∬ f
(
x

�

,y
�)
log[

f
(
x
�

,y
�)

f
(
x
�
)
f
(
y

�
) ]dx�

dy
�

Artificial intelligence models

Artificial neural network (ANN)

ANNs based on their capability of learning from large-size 
data sets are applicable in predicting nonlinear functions 
(Samadi et al. 2021b). The original database should be large 
enough to be divided into calibration and validation sets, 
either using the supervised or unsupervised method (Maier 
et al. 2010). Training data are used during the learning pro-
cess to find the pattern between variables and response(s).

Validation data is also utilized to evaluate network perfor-
mance. In the present work, the feed-forward backpropaga-
tion neural network, which is one of the most popular ANN 
architectures developed by Rumelhart et al. (1986), was cre-
ated in MATLAB 2020b mathematical software. In the back-
propagation algorithm, when the output is firstly calculated, 
the difference between the obtained and the desired response 
is mapped; then, weights of the network are updated with 
the aim of minimizing the loss function. The number of hid-
den layers is a significant aspect of a neural network design 
since it can affect the accuracy of the response. As there 
is still no specific method for determining appropriate net-
work architecture before the learning step, it is often done 
by trial-and-error process. Nevertheless, for the vast major-
ity of problems, to avoid the risk of over-fitting, using one 
hidden layer with sufficient neurons is more reasonable than 
increasing the number of the hidden layers (Wu et al. 2015). 
For this reason, an ANN network with one hidden layer was 
used in this study. The network structure used in this paper 
(see Fig. 1) comprises three layers, which are illustrated 
completely in the Discussion section.

Adaptive neuro‑fuzzy inference systems (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS), pro-
posed by Jang (1993), is a composite of ANN and fuzzy 
inference system (FIS). Adaptive networks reduce the 
required time for processing large datasets by finding opti-
mal network structure automatically. In this approach, input 
data functions such as weights and biases can be adapted in 

Fig. 1   Structure of the developed ANN model
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the training process, which leads to reduce the error rate. On 
the other side, FIS uses the “IF…THEN” rules as well con-
nectors “OR” or “AND” to map inputs to output(s). Every 
FIS is consisting of three main parts: fuzzy rules, a database, 
and a reasoning mechanism (Onukwuli et al. 2021). The rule 
base of the FIS with two inputs (x1 and x2) and one output 
(f), based on the Takagi–Sugeno type (Takagi and Sugeno 
1983; Anadebe et al. 2020), can be shown as follows:

where A1 and A2 and B1 and B2 are the fuzzy sets for input 
parameters x1 and x2, respectively, and p1 and q1 and p2 and 
q2 are the consequent parameters obtained by the least square 
method. The detailed descriptions of the general structure of 
the ANFIS (see Fig. 2) are expressed as:

•	 Layer 1: every node in this layer is an adaptive node 
that computes the membership value of an input variable. 
Generalized bell-shaped, Gaussian, trapezoidal-shaped, 
and triangular-shaped are some popular types of mem-
bership functions. If the Gaussian membership function 
(μ) is adopted, the output of the node is calculated as 
follows:

where x is the input to node i and Ai is the linguistic vari-
able and (σi,c

i
 ) are premise parameters. Indeed, Fuzzifi-

cation occurs in this layer.
•	 Layer 2: in this layer, circle (fixed) nodes, labeled as Π, 

multiplies the incoming signals from the previous layer, 
which represent the firing strength:

(3)
Rule1 ∶ if x1 is A1 and x2 is B1 then f1 = p1x1 + q1x2

(4)
Rule2 ∶ if x1 is A2 and x2 is B2 then f2 = p2x1 + q2x2

(5)μAi = exp

[
−0.5

(
x − c

i

)
σi2

]

•	 Layer 3: each node in this layer calculates the normalized 
firing strength as

•	 Layer 4: the output of each node can be obtained by mul-
tiplying the normalized firing strength with the first-order 
Sugeno model as follows:

•	 Layer 5: the single node in this layer computes the output 
of the model by Eq. 9:

Support vector regression (SVR)

Support vector regression (SVR) is a machine learning 
algorithm that applies some basic concepts of support vec-
tor machine (SVM) for complicated regression problems. 
In this study, ɛ-SVR technique, as the most widely Lib-
SVM model, was used using the MATLAB 2020b plat-
form. For a dataset {(xi,yi), i = 1, 2, ⋅ ⋅ ⋅, N}, where xi ε 
RN is the input and yi ε RN is the target; the SVR function 
mathematically can be shown as

where ω is the parameter of the linear SVR, b   is the bias 
term, and ϕ(x) is a nonlinear mapping function. ω and b can 
be estimated by minimizing the regression risk as follows:

(6)ω
i
= μAi × μBi i = 1, 2

(7)ω
i
=

ω�

ωi+ω2

i = 1, 2

(8)ωi fi = ωi

[
p
i
× xi + q

i
× x2

]

(9)
�

i

−
∗i fi =

∑
i
∗
i
f
i∑

i
∗
i

(10)f (x) = ω × ϕ(x) + b

Fig. 2   ANFIS architecture
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where c represents the penalty variable and  ξi, ξ∗i   are slack 
variables. Using the “Lagrangian” function, the approximate 
function can be expressed by Eq. 12:

where �+�i∗ are Lagrangian multipliers and k
(
x,xi

)
 is the 

kernel function. In this work, the radial basis function (RBF) 
kernel was applied for constructing the SVR. The RBF ker-
nel due to its high computational efficiency and capability of 
separating linear data is the most useful function (Nie et al. 
2020), which is as follows:

where � is the kernel parameter. As the accuracy of the SVR 
model can be affected by the value of � , c , and � , the best 
values of them were determined by trial and error process.

Model evaluation

The goodness-of-fit of the developed models was assessed 
via statistical indices, including the mean-squared error 
(MSE), root mean square error (RMSE), mean absolute error 
(MAE), and coefficient of determination (R2). MSE can be 
obtained using Eq. 14:

where yact,i and yest,i represent the ith observed and estimated 
values of the efficiency of the turbidity removal, respec-
tively, and n is the total number of input data. MSE varies 
from positive infinity to zero, such that the closer it is to 
zero, the better the fit of the model.

RMSE is the square root of the average of squared errors. 
This non-negative index indicates the best fit to the data in 
the value of zero (never happen in practice). RMSE is for-
mulated as follows:

MAE, shown in Eq. 16, is another proper error index sta-
tistic representing the average absolute difference between 
the predicted and the observed values. Similarly, MAE val-
ues near zero show a relevant result of the model:

(11)

Minimize ∶
�
1

2
⇑ ω ⇑

2 + c
∑N

i=1
ξi + ξ ∗

i

�

Subjected to ∶

⎧
⎪⎨⎪⎩

yi − f (x) ≤ ξi + ε

f (x) − yi ≤ ξ ∗
i
+ ε

ξi, ξ
∗
i
≥ 0

(12)f (x) =
∑N

i=1

�
a + a∗

1

�
k
�
x, xi

�
+ b

(13)K
(
xi, xj

)
= exp

(
−γ

‖‖‖xi − xj
‖‖‖
2
)

(14)MSE =

∑n

i=1

�
yact,i − yest,i

�2
n

(15)RMSE =

�∑n

i=1

�
yact − yest

�2
n

The coefficient of R2 indicates the ability of the model to 
approximate the actual data points, which varies between 
zero and one. The more the coefficient of determination, the 
better the fit of the model to the data. R2 is calculated by the 
following relation:

where yact and yest denote the ith measured and predicted 
values of the turbidity removal efficiency, respectively.

The relative error is another indicator for assessing the 
models’ accuracy in predicting responses. Based on the for-
mula represented in Eq. 18, the lower the value of the rela-
tive error, the higher the accuracy of the proposed model:

Results and discussion

Assessment of the ANN model

The proposed optimal ANN structure consists of an input 
layer (representing the most appropriate variables, i.e., GO 
dosage, pH, and initial turbidity), one hidden layer, and one 
output layer as the network’s response (turbidity removal 
efficiency). Additionally, “Tansig” and “Purelin” transfer 
functions were employed at the hidden and the output lay-
ers, respectively. In order to avoid over-fitting of the model, 
a program was developed in MATLAB 2020b software to 
find the optimum number of neurons and to automatically 
provide the best network training and learning functions, as 
well. As a result, a network with three neurons in the hidden 
layer, the “Trainbr” as learning function, and the “learnlv1” 
as the training function indicated the most accurate response 
compared with the other architectures.

Figure 3a and b show the modeling results of the effi-
ciency of the turbidity removal from water utilizing GO 
in the lab-scale water treatment process. The scatter plot 
of observed and predicted turbidity removal values for 
calibration data is displayed in Fig. 3a. The high value 
of R2 (0.9129) shows an excellent performance of the 
model. Additionally, the coefficient of determination 
(R2) between the actual values (results obtained in the 
laboratory) and the predicted values of the validation 
data estimated through ANN is equal to 0.9492, which 
indicates that the model reasonably offers a good fit (see 

(16)MAE =

∑n

i=1
��yact − yest

��
n

(17)R2 =

�∑n

i=1

�
yact − yact

��
yest − yest

��2
∑n

i=1

�
yact − yact

�2 ∑n

i=1

�
yest − yest

�2

(18)RE =
yact − yest

yact
× 100
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Fig. 3b). The high coefficients of R2 in Fig. 3 prove that 
the calibration and validation processes of the devel-
oped ANN model have been accomplished well. Similar 
results have been reported by Onukwuli et al. (2021) who 
simulated the dye-polluted wastewater decontamination 
using bio-coagulants via ANN model. They fed the model 
with 100 experimental data, 70% of which was used for 
training and the rest for validation and testing processes. 
According to their results, the developed ANN model pre-
dicted the process with very high accuracy (Regression 
coefficient R2 = 0.9999) due to its ability to approximate 
all types of structures (Onukwuli et al. 2021). Zangooei 
et al. (2016) simulated the coagulation–flocculation pro-
cess with poly aluminum chloride (PAC) as coagulant, to 
predict the water turbidity after the process. They con-
sidered three independent variables including pH, PAC 
dosage, and influent turbidity for modeling the process 
using multi-layer neural network. As they described, their 
ANN model had the ability to predict the effluent turbid-
ity with a high coefficient of determination (R2 = 0.96) 
during testing the model (Zangooei et al. 2016). It is note-
worthy that Zangooei et al. (2016) used 236 experimental 
data, of which 85 percent was used for training, and the 
rest was used for the testing of the network. It is there-
fore interesting that using much lower number of data 
in the present study (79 data) and only 73% of the data 
for training the model, the ANN technique still obtained 
outstanding results in terms of the coefficient of deter-
mination for both the calibration (R2 = 0. 9129) and the 
validation (R2 = 0. 9492) processes. Such observation may 
be supported by the fact that ANN as a black box model 
focuses mainly on the analysis of the available data and 
simulation of any nonlinear equation (Golbaz et al. 2020).

Assessment of the ANFIS model

ANFIS calibration and validation performances are pre-
sented in Fig. 4a and b, respectively. With regard to the 
coefficient of determination equal to 0.936 for calibration of 
ANFIS model (Fig. 4a), it can be concluded that the devel-
oped model has a suitable performance in approximating 
the turbidity removal efficiency using GO as a coagulant. 
Moreover, the coefficient of R2 (0.877) for validation data 
denotes the effectiveness and the reliability of the proposed 
model for extracting features from input data (Fig. 4b).

Similarly, Taheri et al. (2013) pointed out that ANFIS 
model successfully predicted the electrocoagulation–coagu-
lation process with R2 value of 0.923 for a total of 78 test and 
train data. Also, some previous investigations recommended 
ANFIS as a powerful tool for modeling of adsorption pro-
cess (Khomeyrani et al. 2021; Hanumanthu et al. 2021). 
Heddam et al. (2012) used ANFIS for modeling of coagulant 
dosage in a water treatment plant. As they described, the 
developed subtractive clustering-based ANFIS model pro-
vided accurate and reliable coagulant dosage prediction. The 
qualitative human judgment and expert knowledge, depend-
ency of input variables, absence of mathematical models, 
and nonlinearity of relationships are the conditions making 
ANFIS a favorable modeling method for the processes such 
as coagulation–flocculation which involve many complex 
physical and chemical phenomena (Heddam et al. 2012; 
Hawari et al. 2017).

Assessment of the SVR model

The coefficient of determination between the predicted 
values and the calibration data is shown in Fig.  5a. 

Fig. 3   Coefficient of determination between observed and predicted values of the calibration (a) and the validation (b) data for ANN model
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Regarding the correlation coefficient of more than 0.7, 
SVR had an acceptable performance in the calibration 
process. Similarly, R2 of 0.864 between the observed 
and the predicted values in the validation process 
pointed out the applicability of SVR for predicting the 
turbidity removal from water using GO (see Fig. 5b). 
This may be attributed to the fact that although other 
traditional regression models use the empirical risk 
minimization principle (ERM) to minimize the train-
ing error, SVR, using the structural risk minimization 
(SRM) principle, considers the capacity of the learning 
machines, which leads to optimizing the generalization 
accuracy (Parveen et al. 2017).

Parveen et al. (2017) reported high correlation coeffi-
cient of R = 0.9986 for predicting the adsorptive removal 
of Cr(VI) ions from wastewater via SVR-based model they 
developed using a whole data set of 124 samples (80% as 

training and 20% as test datasets). According to another 
study conducted by Parveen et al. (2019), the SVR-based 
model accurately predicted the adsorptive removal of 
Ni(II) ions from wastewater, with high correlation coef-
ficient (R) of 0.993. They used a whole dataset of 382 
samples partitioned into two parts as the training (80%) 
and the test (20%) datasets. Additionally, Zaghloul et al. 
(2020) proved that SVR technique, thanks to the penalty 
placed on the prediction errors, predicted the aerobic gran-
ular process with high accuracy (R2 of 0.99 for validation 
data). They fed their SVR model with 2920 experimental 
data, 89% of which was used for training and the rest for 
validation processes. Comparison of the results of the pre-
sent study with previous studies shows that the prediction 
performance of the SVR technique depends not only on the 
type of problem, but also on availability of a sufficiently 
large data set.

Fig. 4   Coefficient of determination between observed and predicted values of the calibration (a) and the validation (b) data for ANFIS model

Fig. 5   Coefficient of determination between observed and predicted values of the calibration (a) and the validation (b) data for SVR model
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Comparison of the data‑driven models

Table 1 shows satisfactory relationship between the experi-
mental results and the predicted data proposed by RSM, 
ANN, ANFIS, and SVR models through validation process. 
Statistical measures including MSE, RMSE, MAE, and R2 
were used to precisely compare the capability of the models 
in predicting the turbidity removal using GO. The results are 
given in Table 2. As seen in the table, the predicted values of 
all the models correlated very well with the observed results 
(R2 > 0.86). Generally, correlation of R2 greater than 0.8 and 
low relative errors between measured and predicted values 
prove strong model performance (Kennedy et al. 2015).

However, the highest R2 of the validation process and 
the lowest values of MSE, RMSE, and MAE indicators 
were obtained for the ANN model. While the values of 
the validation R2 for the ANFIS, SVR, and RSM models 
were more or less similar and in the range of 0.864–0.877, 
this parameter was remarkably higher and about 0.95 for 
the ANN model. It means ANN model was the most accu-
rate model in approximating the effect of GO on turbidity 
removal from water, thanks to its capability of predicting 
multiple complex and nonlinear functions. Besides, ANN 
technique is flexible in terms of adding new experimental 
data to build a reliable and accurate ANN model without 
requiring a standard experimental design (Geyikçi et al. 
2012; Maran and Priya 2015).

The results are consistent with some previous reports. 
According to Zangooei et al. (2016), ANN model outper-
formed fuzzy regression analysis in simulating the coagu-
lation–flocculation process and predicting effluent turbidity 
under different experimental conditions (pH, influent turbid-
ity, and PAC concentration). As they described, the R2 of 
the validation process for the ANN model was 0.96, while 
it was 0.93 for the fuzzy regression analysis with quadratic 
function. In addition, Maran and Priya (2015), Golbaz et al. 
(2020), Onu et al. (2021), and Onukwuli et al. (2021) proved 
the superiority of the ANN over the RSM model due to the 
higher deviation of the predictions of the RSM while insig-
nificant residual values of the ANN. However, Igwegbe et al. 
(2019) who simulated the adsorptive removal of methylene 
blue dye by ANN and RSM techniques, both using the same 
experiments planned through the CCD (21 runs), explained 
that due to the very limited number of experimental runs, the 

Table 1   Experimental 
observations and the models’ 
predicted values in validation 
process

Run pH GO dosage 
(mg/L)

Initial turbidity 
(NTU)

Turbidity removal (%)

Actual RSM SVR ANFIS ANN

1 10 15 25 49.11 45.92 63.84 76.97 59.05
2 10 0 25 0 15.29 37.86 15.88 9.46
3 6.5 16.25 25 71.41 74.15 62.23 58.14 92.94
4 4.42 24.43 80.74 90.47 89.26 98.92 98.47 98.49
5 10 2.5 100 30.09 33.44 57.74 41.77 32.64
6 7 15 100 88.20 83.88 75.50 96.26 84.07
7 10 15 150 53.24 51.59 73.74 48.66 55.80
8 6.5 30 162.5 97.09 97.08 88.98 90.64 90.99
9 10 16.25 162.5 62.04 72.74 77.42 50.37 52.48
10 5 2.5 200 79.50 89.85 84.08 84.10 83.86
11 6 5 200 88.63 86.66 74.52 86.15 85.74
12 7 5 200 82.02 79.42 75.02 65.04 83.57
13 9 5 200 70.58 59.12 66.68 56.78 65.27
14 4 10 200 93.95 98.40 88.50 90.85 91.98
15 6 10 200 87.05 93.34 81.48 84.27 93.11
16 8 10 200 75.00 74.51 71.47 68.74 79.77
17 5 15 200 90.48 97.57 92.26 98.29 94.07
18 8 15 200 81.95 80.64 73.40 88.43 78.78
19 5 25 200 96.14 98.57 92.81 90.66 93.41
20 7 25 200 87.31 96.42 83.11 96.02 82.26
21 9 25 200 62.19 92.52 75.45 78.06 75.36

Table 2   Statistical evaluation parameters for the validation data

Model MSE RMSE MAE R.2 (coefficient of 
determination)

ANN 32.61 5.71 4.22 0.949
ANFIS 69.66 8.34 6.078 0.877
SVR 129.41 11.37 8.1 0.864
RSM 63.43 7.93 4.88 0.871
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prediction performance of ANN model was less acceptable 
compared with RSM model. Similar results were also reported 
by Uzoh and Onukwuli (2017), who compared prediction per-
formance of ANN and RSM models, both developed using the 
same 30 experiments designed by RSM. Uzoh and Onukwuli 
(2017) described that ANN generally performs better when 
very large number of data points is used for training the net-
work. Therefore, it can be concluded that in a situation where 
very little data can be provided and used, the RSM technique 
will make a more accurate prediction than the ANN method.

As represented in Fig. 5 and Table 2, the SVR model had 
the lowest values of the R2 for both calibration (0.7119) and 
validation (0.8643) datasets and the highest MSE, RMSE, 
and MAE values, as well. Accordingly, the SVR model 
exhibited the weakest performance in predicting the GO-
based coagulation process, among the evaluated techniques. 
This result is inconsistent with those reported by Parveen 
et al. (2019) who explained that the SVR-based model pre-
dicted the adsorptive removal of Cr(VI) ions from wastewa-
ter with a higher correlation coefficient than the ANN model 
(R = 0.9986 and 0.9331, respectively). These contradictory 
results point to the fact that the performance of the modeling 
techniques depends substantially on the type of problem and 
also confirm the importance of determining the appropriate 
method for modeling each process.

The ANFIS model represented the highest R2 for the 
calibration process. This indicates that ANFIS had the best 
performance in the training step. In addition, for both ANN 
and SVR models, the value of R2 for the validation data 
was larger than that of the calibration data, while this was 
vice versa for the ANFIS model as it showed smaller R2 for 
the validation than the calibration data. This is because the 
ANFIS model considers the uncertainties of the input/output 
data and experimental conditions, which helps the model pro-
vide a more appropriate drawing of the actual process. Zan-
gooei et al. (2016) who used ANFIS technique for modeling 
the turbidity removal using PAC as the coagulant similarly 
reported a larger R2 for the training than the testing dataset.

Figure 6 shows the observed data alongside the estimated 
values of the turbidity removal efficiency for the proposed 
models during the validation process. In order to better inter-
pret the figure from the viewpoint of the characteristics of 
errors of each model, the relative errors of the predictions 
generated by the models were measured according to Eq. 17 
and plotted versus the observed data in Fig. 7a. It should 
be noted that the relative error is indefinite when the actual 
value is zero as it appears in the denominator (Chen et al. 
2017). For this reason, the second point of Fig. 6 in which the 
observed removal efficiency was equal to zero was not rep-
resented in Fig. 7a. As seen in Fig. 7a, for all the models, the 
largest relative errors were obtained for the smaller observed 
data (i.e., the lower efficiencies). It can also be found that 
as the amount of the observed data increases, the relative 

errors approach zero. Obtaining smaller relative errors for the 
larger observed data (i.e., the higher efficiencies) and larger 
relative errors for the smaller observed data could be, respec-
tively, attributed to the abundance of the larger observed data 
and the low number of the smaller observed data. In fact, 
the models were better trained and calibrated for the larger 
observed values. It is noteworthy that the very good perfor-
mance of the GO under the most of the tested conditions led 
to the abundance of the larger observed values.

Figure 7b shows the relative errors versus the frequency 
distribution for each model based on the validation data set. 
According to the obtained results, the SVR model led to larger 
errors compared with the two others. As depicted in Fig. 7b, 
only 57.1% of the predictions generated by the SVR model 
had a relative error less than 10%. However, 76.1%, 71.4%, 
and 66.6% of the results generated by ANN, RSM, and ANFIS 
models, respectively, were characterized by the same relative 
error. Moreover, about 62% of the results obtained by the SVR 
model revealed a positive relative error, indicating an obvious 
tendency of the model to underestimate the observed data. This 
was vice versa for the ANN model, which overestimated 62% 
of the experimental results. The performance of the ANFIS 
and RSM models were better in this regard as they predicted 
the observed data with more normal error distributions than the 
ANN and SVR models. Based on the results, 47.7% and 52.3% 
of the predictions generated by the ANFIS and RSM models, 
respectively, suffered from a negative relative error.

Generally, all the models provided accurate and reli-
able turbidity removal predictions and could minimize the 
dependency on knowledge of the physicochemical properties 
of the processes. However, the characteristics of the ANN 
technique, such as the ability to learn nonlinear functions 
with complex relationships, not stopping the output approxi-
mation in case of the corruption of one or more cells of 
the ANN (fault tolerance), and generalizing and inferring 
unseen relationships on unobserved data, made this tech-
nique superior than the other models in predicting the pro-
cess efficiency. Nevertheless, the ability of the ANFIS model 

Fig. 6   Comparison of the measured and the predicted values for the 
validation data set
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to take into account the uncertainties in the approximation 
process cannot be ignored, and therefore, it is recommended 
to use this AI technique for modeling the processes with 
considerable uncertainties in the input/output data and the 
experimental conditions. Additionally, despite the fact that 
the predictions of the RSM model were less accurate than 
the ANN and ANFIS models, use of this modeling tech-
nique, even before developing the artificial intelligence mod-
els, is essential for understanding the nature of the process 
and obtaining useful information about the contribution of 
independent variables and their complex interactions.

Identification of the input parameters using PMI

The degree of importance of input variables used in the 
data-driven models on the desired output was investigated 
using the PMI algorithm. The higher the PMI score for the 
identified variable, the greater the effect of that parameter 
on the response. In order to address the impacts of physi-
cal and chemical issues on turbidity removal efficiency, 
the input parameters including pH, GO dosage, initial 

turbidity, and rate of slow and rapid mixing steps were 
considered. The results indicated that pH, GO dosage, 
and initial turbidity were the most important parameters, 
affecting the water turbidity removal using GO as a coagu-
lant. The PMI scores obtained for pH, GO dosage, and 
initial turbidity (as input parameters for developing the 
data-driven models) were 0.72, 0.608, and 0.415, respec-
tively, which showed that pH was the most effective input 
parameter on the process efficiency. It is noteworthy that 
the results obtained by the PMI algorithm were in line with 
those reported by Rezania et al. (2021), who simulated 
the process through RSM and found pH and GO dosage 
orderly as the most effective parameters on the process.

Conclusions

In the present study, three different artificial intelligence 
models consisting of ANN, ANFIS, and SVR were devel-
oped for predicting the turbidity removal efficiency using 
GO as a coagulant and then compared with each other and 

Fig. 7   Relative errors versus 
the observed data (a) and the 
frequency distribution (b) for 
the validation data set
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with the results obtained by the RSM model, previously 
reported by the authors, as well. The ability of the models 
to predict the process efficiency was compared using statis-
tical indices. All the models successfully approximated the 
behavior of the process, based on their high coefficients of 
determination (R2 > 0.86) for validation process. However, 
the highest validation R2 and the lowest values of MSE, 
RMSE, and MAE indicators were obtained for the ANN 
model (0.949, 32.61, 5.71, and 4.22, respectively), indi-
cating the superior performance of this AI technique than 
the other techniques in predicting the process efficiency. In 
contrast, the SVR model represented the weakest prediction 
performance with the lowest validation R2 of 0.864. It was 
also found that the ANN model predicted the observed data 
with low error margins as 76.1% of predictions performed 
by this technique had relative errors (RE) of less than 10%. 
However, only 57.1% of the predictions generated by the 
SVR model were characterized with RE < 10%.

According to the results, ANN was distinguished as the 
most appropriate technique for modeling the process. How-
ever, simulating the process using RSM technique is also 
recommended as it helps to understand the nature of the 
process and the interaction effects of the independent vari-
ables, using the least number of the experiments.

For future research works, it is recommended to train 
the algorithms developed in the present work using more 
experimental data, in order to expand the applicability of the 
models. Moreover, using other machine learning algorithms 
for modeling the process and comparing the results with the 
present study will be of great value.
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