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Abstract
Geopolymers are innovative cementitious materials that can completely replace traditional Portland cement composites and 
have a lower carbon footprint than Portland cement. Recent efforts have been made to incorporate various nanomaterials, 
most notably nano-silica (nS), into geopolymer concrete (GPC) to improve the composite’s properties and performance. 
Compression strength (CS) is one of the essential properties of all types of concrete composites, including geopolymer 
concrete. As a result, creating a credible model for forecasting concrete CS is critical for saving time, energy, and money, 
as well as providing guidance for scheduling the construction process and removing formworks. This paper presents a 
large amount of mixed design data correlated to mechanical strength using empirical correlations and neural networks. 
Several models, including artificial neural network, M5P-tree, linear regression, nonlinear regression, and multi-logistic 
regression models, were utilized to create models for forecasting the CS of GPC incorporated with nS. In this case, about 
207 tested CS values were collected from literature studies and then analyzed to promote the models. For the first time, 
eleven effective variables were employed as input model parameters during the modeling process, including the alkaline 
solution to binder ratio, binder content, fine and coarse aggregate content, NaOH and Na2SiO3 content, Na2SiO3/NaOH 
ratio, molarity, nS content, curing temperatures, and ages. The developed models were assessed using different statisti-
cal tools such as root mean squared error, mean absolute error, scatter index, objective function value, and coefficient 
of determination. Based on these statistical assessment tools, results revealed that the ANN model estimated the CS of 
GPC incorporated with nS more accurately than the other models. On the other hand, the alkaline solution to binder ratio, 
molarity, NaOH content, curing temperature, and ages were those parameters that have significant influences on the CS 
of GPC incorporated with nS.
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Introduction

The most frequently used construction material is con-
crete (Abdullah et al. 2021; Faraj et al. 2022). Yet, Port-
land cement is the primary cementing material used to 
bind the ingredients of the concrete composites (Sharif 
2021). However, producing Portland cement necessitates 
a significant quantity of energy and raw materials, which 

creates a large amount of total carbon dioxide (about 7%) 
into the atmosphere (Mahasenan et al. 2003; Hamah Sor 
et al. 2021). However, cement-based concrete remains the 
most widely used material in the global building industry 
(Shaikh 2016). Therefore, it has become mandatory for all 
nations to consider CO2 emission regulations and reduc-
tions (Yildirim et al. 2015). As a result, extensive research 
has been conducted to develop a new material that can be 
used as an alternative to Portland cement (Provis et al., 
2015); among them, geopolymer technology was devel-
oped in France by Professor Davidovits (Abdel-Gawwad 
and Abo-El-Enein 2016). Due to the high consumption of 
waste materials in mixed proportions, GPC emits approxi-
mately 70% less green gas than conventional concrete 
(Weil et al. 2009).
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Geopolymers are an inorganic alumino-silicate polymer 
family produced through alkaline activation of various alu-
minosilicate virgin or waste materials rich in silicon and alu-
minum (Davidovits, 2015; Qaidi et al. 2022). The mixed pro-
portions of the GPC consist of aluminosilicate source binder 
materials, fine and coarse aggregates, alkaline solutions, and 
water. The polymerization between the alkaline solutions 
and source binder materials produces solid concrete, almost 
like traditional concrete composites (Ahmed et al. 2021a). 
Many factors influenced the properties and performances of 
GPC, including the molarity of NaOH, the ratio of Na2SiO3/
NaOH, curing regime and ages, water to solids ratio, alkaline 
solution to binder ratio, elemental composition and type of 
source binder materials, ratio of Si to Al in the geopolymer 
system, mixing time and rest period, superplasticizer dos-
age and extra water contents, and coarse and fine aggregate 
contents (Mohammed et al. 2021).

Nanotechnology is the ability to monitor and restruc-
ture matter at the atomic and molecular levels in the range 
of 1 to 100 nm, as well as the contribution to the distinct 
properties and phenomena at that size that are equivalent 
to those associated with individual atoms and molecules or 
bulk behavior (Roco et al. 2000). Nanotechnology is a bur-
geoning field of research, with novel science and practical 
applications gradually gaining prominence over the last two 
decades. Recently, efforts have been made to incorporate 
nanoparticles (NPs) into construction materials to improve 
the properties and performance of concrete (Lazaro et al. 
2016). NPs were introduced with geopolymer matrices to 
enhance durability issues, physical structure, and mechanical 
properties of the geopolymer mixture (Assaedi et al. 2016). 
Because NPs have a higher surface area to volume ratio, 
they are highly reactive and have an effect on reaction rates 
(Wiesner and Bottero 2017). As a result, NPs modify the 
microstructure of GPC at the atomic level, resulting in sig-
nificant improvements in both the fresh and hardened states, 
as well as microstructural behavior of geopolymer compos-
ites (Adak et al. 2017). In the literature, a wide range of NPs 
like nano-silica (nS) (Mustakim et al., 2020), nano-clay (nC) 
(Ravitheja and Kumar, 2019), nano-alumina (nA) (Shah-
rajabian and Behfarnia, 2018), carbon nanotubes (CNT) 
(Kotop et al. 2021), nano-metakaolin (Nm) (Rabiaa et al., 
2020), and nano-titanium (nT) (Sastry et al. 2021) were 
consumed to improve various properties of the geopolymer 
composites, with nS being the most frequent as shown in 
Table 1. Since nano-silica was the most used nanomaterial 
to prepare geopolymer concrete composites (Ahmed et al. 
2022) among all other NP types, therefore, this study was 
devoted to proposing different models to estimate the CS of 
GPC composites incorporated with nS.

Compression strength is a critical characteristic of all 
concrete composites, including GPC. The CS provides a 
broad assessment of the quality of the concrete (Ahmed et al. 

2021b). However, the concrete’s CS at 28 days is critical in 
structural design and construction. As a result, creating a 
credible model for estimating the CS of concrete is crucial 
in terms of modifying or validating the concrete mix pro-
portions (Golafshani et al., 2020). Several factors influence 
the CS of GPC, resulting in a wide range of compression 
strength results; consequently, estimating CS is a prob-
lematic issue for scholars and engineers. As a result, new 
numerical and mathematical models are required to clarify 
this issue (Shahmansouri et al., 2020a). Machine learning 
methods have been utilized in the literature to model vari-
ous features of concretes, such as the CS of green concrete 
(Velay-Lizancos et al., 2017), essential mechanical prop-
erties of recycled concrete aggregate (Gholampour et al., 
2020), recycled concrete aggregate modulus of elasticity 
(Golafshani and Behnood, 2018), the CS of environmen-
tally friendly GPC using natural zeolite and silica-fume 
(Shahmansouri et al., 2020b), the CS of nS-modified self-
compacting concrete (Faraj et al., 2021), and the CS of fly 
ash-based GPC composites (Ahmed et al. 2021c).

In the literature, there is a shortage of studies examin-
ing the impact of different mixture proportion parameters 
on the CS of GPC incorporated with nS at various curing 
temperatures and ages. Also, according to a complete and 
systematic assessment of GPC, the construction industry 
rarely uses an authoritative and developed model that uses 
numerous parameters to estimate the CS of GPC incorpo-
rated with nS. Most efforts have focused on a single-scale 
model that does not account for a wide range of experimen-
tal data or factors. Moreover, the CS of GPC is influenced by 
several factors. As a result, in a single equation and model 
structure, the effects of eleven variables such as the alkaline 
solution to binder ratio (l/b), binder content (b), fine (FA) 
and coarse (CA) aggregate content, sodium hydroxide (SH) 
and sodium silicate (SS) content, the ratio of SS/SH, the 
molarity of SH (M), nS content, curing temperatures (T), 
and ages of concrete specimens (A) were considered and 
quantified on the CS of GPC incorporated with nS by using 
different model techniques, namely artificial neural network 
(ANN), M5P-tree (M5P), linear regression (LR), nonlinear 
regression (NLR), and multi-logistic (MLR) models. Finally, 
different statistical tools, such as the root mean squared error 
(RMSE), mean absolute error (MAE), scatter index (SI), 
OBJ value, and the coefficient of determination (R2), were 
used to evaluate the created models’ accuracy.

Research significance

The primary goal of this paper is to create multiscale models 
for estimating the CS of GPC incorporated with nS. Thus, 
a diverse range of laboratory work data, approximately 207 
tested specimens with a variety of l/b, b, FA, CA, SH, SS, 
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Table 1   Properties and dosages of NPs reported in the literature to modify geopolymer concrete

References Binder Type of NPs NPs% Properties of NPs

Mustakim et al. 2020 F- GGBFS nS 0, 0.5, 1, 1.5, 2, and 2.5% NA
Çevik et al. 2018 F nS 0.0 and 3% 99.8% SiO2

Sastry et al. 2021 F nT 0, 1, 2, 3, 4, and 5% 59.93% titanium and 40.55% oxygen, grain size 
(20–10 µm)

Rabiaa et al. 2020 GGBFS nS 0, 2, 4, 6, and 8% Particle size = 14 nm, surface area (m2/g) = 200, 
99.65% SiO2

nM 0, 2, 4, 6, and 8% Particle size = 88.7 nm, surface area 
(m2/g) = 140.792, 45.5% SiO2, 37% Al2O3

Adak et al. 2017 F nS 0.0 and 6% Particle size = 4–16 nm, solid content 
(%wt.) = 31, density (g/cm3) = 2.37, viscosity 
(Pa·S) = 8.5, pH = 9.0–9.6

Behfarnia and Rostami 2017 GGBFS nS 0, 0.5, 1, 3, and 5% Purity (%) = 99.8, particle size = 20–30 nm, den-
sity (kg/m3) = 200, Blain (m2/g) = 193

Nuaklong et al. 2020 F + RHA nS 0, 1, 2, and 3% Purity (%) = 99.8, average size = 12 nm, surface 
area (m2/g) = 200

Patel et al. 2015 F nS 0, 0.5, 1, and 1.5% Surface area (m2/g) = 200 ± 25, average 
size = 12 nm, purity (%) = 99.8, pH in 4% 
dispersion = 3.4–4.7, moisture 2 h at 105 °C 
(wt.%) ≤ 1.5

Ibrahim et al 2018a NP nS 0, 1, 2.5, 5, and 7.5% Solid content (%) = 50, average particle size 
(nm) = 35, bulk density (g/cm3) = 1.4, spe-
cific surface area (m2/g) = 80, Na2O content 
(%) = 0.2, viscosity (cps) = 15, pH = 9.5

Mahboubi et al. 2019 MK nS 0, 1, 2, and 3% NA
nC 0, 1, 2, and 3%

Naskar and Chakraborty 2016 F nS 0, 0.75, 3, and 6% NA
nT 0.0 and 1%
CNT 0.0 and 0.02%

Nuaklong et al. 2018 F + OPC nS 0, 1, 2, and 3% Average diameter = 40 nm, density = 0.13 g/cm3, 
BET specific area = 50 m2/g, purity (%) = 99.8

Ravitheja and Kumar 2019 F + GGBFS nC 0, 4, 6, 8, and 10% NA
Emad et al. 2018 GGBFS nS 0.0 and 2% Average particle size = 30 nm, surface area = 45 

m2/g, purity (%) = 99.17
Vyas et al. 2020 F nS 0, 2, 4, 6, and 8% Average particle size = 10 nm
Etemadi et al. 2020 GGBFS nS 0, 1, 2, and 3% NA
Angelin Lincy and Velkennedy 2020 GGBFS nS 0, 0.5, and 1% Purity (%) = 99.9, surface area (m2/g) = 201, 

specific gravity = 2.34
Saini and Vattipalli 2020 GGBFS nS 0.0 and 2% Purity (%) = 99.88, particle Size = 17 nm, specific 

gravity = 2.3, specific surface area (m2/g) = 202, 
pH value = 4.12, tamped density (g/L) = 44

Kotop et al. 2021 F + GGBFS nC 0, 2.5, 5, and 7% SiO2 = 61.24, Al2O3 = 20.89
CNT 0.01, 0.02% Length = 10–100 mm, inner diameter = 1.5–

15 nm, outer diameter = 50 nm
Ibrahim et al 2018b NP nS 0, 1, 2.5, 5, and 7.5% Solid content (%) = 50, average particle size 

(nm) = 35, bulk density (g/cm3) = 1.4, spe-
cific surface area (m2/g) = 80, Na2O content 
(%) = 0.2, viscosity (cps) = 15, pH = 9.5

Shahrajabian and Behfarnia 2018 GGBFS nA 0, 1, 2, and 3% Particle size (nm) = 20, Blaine (m2/g) = 100, 
purity (%) = 99.7

nC 0, 1, 2, and 3% Particle size (nm) = 1–2, Blaine (m2/g) = 220–
270, density (g/cm3) = 0.5–0.7

nS 0, 1, 2, and 3% Particle size (nm) = 11–13, Blaine (m2/g) = 200, 
density (g/cm3) = 2.4, purity (%) = 99

Their and Özakça, 2018 F- GGBFS nS 0.0 and 2% Specific surface area = 170–230 m2/g, specific 
gravity = 2.2, purity (%) = 99.8
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M, SS/SH, nS, T, and ana A, were collected and reviewed 
using a variety of analytical approaches with the goal of (i) 
providing most effortless equations to be used by practicing 
engineers and scholars in their GPC mix design works; (ii) 
clarifying the effects of each mix proportion parameter and 
curing temperature and age on the CS of GPC incorporated 
with nS; (iii) quantifying and offering systematic multiscale 
models for forecasting the CS of GPC utilizing eleven vari-
able input parameters; (iv) using statistical assessment meth-
ods such as MAE, RMSE, R2, OBJ, and SI to find the most 
authoritative model to forecast the CS of GPC composites 
incorporated with nS from various model strategies (LR, 
NLR, MLR, ANN, and M5P).

Methodology

The authors conducted an extensive search of several data-
bases, including Research Gate, Science Direct, Google 
Scholar, Scopus, and the Web of Science. A wealth of papers 
was discovered discussing the effect of various NP types 
on the properties of geopolymer paste composites. How-
ever, a limited number of documents were found regarding 
the impact of NPs on the properties of GPC composites. In 
total, 207 datasets of the CS values were obtained. In the 
literature, a wide range of NPs like nS, nC, nA, CNT, nM, 
and nT were consumed to improve various properties of the 
GPC composites, with nS being the most frequent, as can 
be seen in Table 1. Therefore, in this study, the authors take 
those articles that used nS to improve various properties of 
the GPC composites.

In the modeling process, eleven input parameters were 
used, limiting the authors’ ability to utilize a greater 
number of data in the created models. The gathered data-
sets were statistically analyzed and classified into three 
groups. The models were built using the larger group, 
which included 135 datasets. The second group is made 
up of 36 datasets that were used to test the created models, 
and the final group is made up of 36 datasets that were 

consumed to validate the suggested models (Golafshani 
et al. 2020; Faraj et al. 2021). Table 2 shows the data-
set ranges, including all significant parameters and the 
observed CS of the GPC incorporated with nS. The input 
dataset contains the following values: l/b ranges from 0.4 
to 0.4, b ranges from 300 to 500 kg/m3, FA ranges from 
490 to 990 kg/m3, CA ranges from 810 to 1470 kg/m3, SH 
ranges from 18.17 to 159.75 kg/m3, SS ranges from 40.8 
to 187.5 kg/m3, M ranges from 4 to 16 M, SS/SH ranges 
from 0.33 to 3, nS ranges from 0 to 60 kg/m3, T ranges 
from 23 to 70 °C, A ranges from 0.5 to 180 days, and CS 
ranges from 3.2 to 81.3 MPa. The previous datasets were 
used to propose various models such as LR, NLR, MLR, 
ANN, and M5P to estimate the CS of GPC incorporated 
with nS; then, the developed models were evaluated using 
statistical criteria such as R2, RMSE, MAE, SI, and OBJ 
to determine the most reliable and accurate model. Addi-
tional details about this work’s methodology are shortened 
in a flowchart, as illustrated in Fig. 1.

Statistical assessment

Sufficient information about each variable input model 
parameter is provided in the following sections through 
“Alkaline solution to binder ratio (l/b)” to “Compressive 
strength (CS).”

Alkaline solution to binder ratio (l/b)

Based on the collected datasets, the ratio of l/b of the GPC 
mixtures modified with nS was in the range of 0.4 to 0.6, 
with the average and standard deviations of 0.49 and 0.05, 
respectively. Also, regarding other statistical analyses, it 
was found that the variance was 0.002, skewness was 0.66, 
and the kurtosis was − 0.25. Figure 2 depicts the relation-
ship between CS and l/b with histograms of GPC mixtures 
incorporated with nS.

Table 1   (continued)

References Binder Type of NPs NPs% Properties of NPs

Ibrahim et al. 2018c NP nS 0, 1, 2.5, 5, and 7.5% Solid content (%) = 50, average particle size 
(nm) = 35, bulk density (g/cm3) = 1.4, spe-
cific surface area (m2/g) = 80, Na2O content 
(%) = 0.2, viscosity (cps) = 15, pH = 9.5

Janaki et al. 2021 GGBFS + SF CNT 0, 2,5, and 10% CNTs have diameter of 20 to 120 nm and are 
several micrometers in length

NPs, nano-particles; F, fly ash; GGBFS, ground granulated blast furnace slag; MK, metakaolin; SF, silica fume; RHA, rice husk ash; NP, natural 
pozzolan; OPC, ordinary Portland cement; nS, nano-SiO2; nT, nano-TiO2; nM, nano-metakaolin; nC, nano-clay; CNT, carbon nanotube; nA, 
nano-Al2O3
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Binder content (b)

According to Table 1, F, GGBFS, MK, SF, RHA, and NP are 
those ashes that scholars used as source binder materials to 
produce GPC composites. The ranges of these binders were 
between 300 and 500 kg/m3, with the average and standard 

deviations of 417 kg/m3 and 51.8 kg/m3, correspondingly. 
At the same time, other statistical assessment tools like vari-
ance, skewness, and kurtosis were 2689, 0.11, and − 0.81, 
respectively, for the collected datasets. Figure 3 illustrates 
the CS and b content variation and frequencies of the gath-
ered data of GPC mixtures incorporated with nS.

Fig. 1   The flowchart diagram process followed in this study

Fig. 2   Correlations between 
CS and l/b ratio with histogram 
of GPC mixtures incorporated 
with nS
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Fine aggregate content (FA)

Like traditional concrete mixtures, natural and crushed sands 
were used as the FA in GPC mixtures. The FA should be 
satisfied with the requirements of ASTM standards. Accord-
ing to gathered datasets from the literature article, it was 
found that the range of FA was between 490 and 990 kg/
m3, with an average of 681 kg/m3 and standard deviations 
of 135.2 kg/m3. More information regarding other statistical 
assessment tools can be found in Fig. 4.

Coarse aggregate content (CA)

Natural, crushed, and recycled aggregates are those forms 
of aggregates that were used as the CA in geopolymer con-
crete mixtures, just like conventional concrete mixtures. 
Same as FA, the CA should have all the properties which 
are required by ASTM standards. Regarding the ranges 
of CA, it was concluded that the contents of CA in past 
research varied between 810 and 1470 kg/m3 with an average 
of 1113.8 kg/m3 and standard deviations of 183.2 kg/m3. On 
the other hand, the variance, skewness, and kurtosis were 
33,580, − 0.19, and − 0.71, respectively. Also, the correla-
tions between the CS of tested datasets and the CA contents 
can be found in Fig. 5.

NaOH content (SH)

Pellets and flakes are two forms of SH in a solid state 
with a purity above 97%. This material is mixed with the 
required amount of water to prepare a solution of SH with 
the required molarity. In this study, according to the col-
lected datasets, the amount of SH in 1 m3 of GPC mixtures 
incorporated with nS was in the range between 18.1 and 
159.7 kg/m3, with an average of 71.3 kg/m3 and a standard 
deviation of 33.9 kg/m3. Extra information about other sta-
tistical assessment criteria and correlations between the CS 
and SH content can be found in Fig. 6.

Na2SiO3 content (SS)

Water glass or sodium silicate is present in a liquid form 
which mainly consists of Na2O, SiO2, and H2O. Based on 
the previous research conducted on the GPC mixtures incor-
porated with nS, the range of SS was found between 40.8 
and 187.5 kg/m3, with an average of 134.4 kg/m3 and the 
standard deviations of 35.6 kg/m3. In comparison, other 
stats information like variance, skewness, and kurtosis were 
1268, − 1.42, and 1.55, correspondingly. Furthermore, the 
correlations between the CS and the SS contents of GPC 
can be found in Fig. 7.

Fig. 3   Correlations between 
CS and binder content with 
histogram of GPC mixtures 
incorporated with nS

Fig. 4   Correlations between CS 
and FA content with histogram 
of GPC mixtures incorporated 
with nS
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Molarity (M)

In the field of GPC science, the concentrations of sodium 
hydroxide inside water were called molarity. The authors 
of this study found that the molarity of SH in the collected 
papers was in the range between 4 and 16 M, with an aver-
age of 11.9 M and standard deviations of 3.3 M. Also, it was 
found that the variance of the reviewed datasets was 11.1, 
the skewness was − 1.4, and kurtosis was 1.3. The variations 
between the CS and M with the frequency of their datasets of 
GPC incorporated with nS are presented in Fig. 8.

Na2SiO3/NaOH (SS/SH)

This parameter consists of a mixture of SS and SH with the 
required molarity. Usually, it is prepared about 24 h before 
mixing the GPC ingredients. According to the gathered 
datasets, this parameter was used in the range between 0.33 
and 3, with an average of 2.05 and standard deviations of 
0.76. Also, the other statistical criteria were found to be 
0.59, − 1.2, and 0.22 for the variance, skewness, and kur-
tosis, respectively. Moreover, correlations between the CS 
and the SS/SH are illustrated in Fig. 9, with the frequencies 
of their datasets.

Fig. 5   Correlations between CS 
and CA content with histogram 
of GPC mixtures incorporated 
with nS

Fig. 6   Correlations between CS 
and SH content with histogram 
of GPC mixtures incorporated 
with nS

Fig. 7   Correlations between CS 
and SS content with histogram 
of GPC mixtures incorporated 
with nS
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Nano‑silica (nS) content

As mentioned earlier, nS was the most frequently NPs that 
scholars used to improve various properties of GPC compos-
ites. It was used as a binder replacement or just by the addi-
tion. Table 1 shows the different properties of nS and other 
NP types that were utilized in GPC composites. Regarding 
the values of this input model parameter, it was found that 
the range of nS was used to improve GPC composites in the 
range between 0 and 60 kg/m3, with an average of 11.6 kg/
m3, and the standard deviation of 14.5 kg/m3. Similarly, 
other statistical criteria with the correlations between the 
CS and the nS content can be found in Fig. 10.

Curing temperatures (T)

Ambient, steam, and oven curing regimes were commonly 
used to cure GPC composites. One of the reasons behind 
using NPs in GPC composites is to take away from the oven 
and steam curing methods and go toward ambient curing 
methods. Based on the collected datasets, GPC specimens 
modified with nS were cured in the temperature ranges 
between 23 and 70 °C, with an average of 42.05 °C and 
the standard deviations of 17.4 °C. Also, other statistical 
assessment tolls like variance, skewness, and kurtosis were 
303.9, 0.11, and − 1.92, respectively. The variations of the 
CS with the nS content and the frequencies of nS datasets 
are presented in Fig. 11.

Fig. 8   Correlations between 
CS and molarity of SH with 
histogram of GPC mixtures 
incorporated with nS

Fig. 9   Correlations between CS 
and SS/SH ratio with histogram 
of GPC mixtures incorporated 
with nS

Fig. 10   Correlations between 
CS and nS content with 
histogram of GPC mixtures 
incorporated with nS
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Age of specimens (A)

To gain sufficient early and late CS, the curing ages should 
be extended to promote the polymerization process, which 
strengthens geopolymers. Thus, based on the collected data-
sets, the cure time for GPC incorporated with nS ranged 
from 0.5 to 180 days, with an average of 28 days and stand-
ard deviations of 31.8 days. Similarly, the published data-
sets’ variance, skewness, and kurtosis were 1012.8, 2.36, 
and 6.96, respectively. The relationships between the CS and 
the specimen ages with the frequencies of collected data are 
shown in Fig. 12.

Compressive strength (CS)

An applied vertical load per unit area of the GPC speci-
mens was known as normal stress or compressive strength. 
This property is one of the critical mechanical properties 
of GPC composites. As shown in Table 2, the range of the 
CS for the gathered datasets was in the range between 3.2 
and 81.3 MPa, with an average of 36.2 MPa and standard 
deviations of 17.52 MPa. At the same time, other statistical 
criteria like variance, skewness, and kurtosis were 307, 0.15, 
and − 0.75, respectively.

Modeling

Based on the coefficients of the determinations (R2) of the 
collected input model parameters, as shown in Figs. 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, and 12, there is no direct relationship 
between the CS and any individual input model parameters. 
Therefore, multiscale model techniques, including M5P, 
MLR, ANN, LR, and NLR, are employed to develop empiri-
cal models to forecast the CS of GPC composites incorpo-
rated with nS in different mix proportion parameters, curing 
regimes, and specimen ages.

For creating the models, the collected datasets are split 
into three categories. The models were built using the larger 
group, which included 135 datasets. The second group is 
made up of 36 datasets that were utilized to test the created 
models, and the final group is made up of 36 datasets that 
were consumed to validate the suggested models (Golafshani 
et al. 2020; Faraj et al. 2021). The forecasts of various mod-
els were compared employing these criteria: (1) The model’s 
validity should be established scientifically; (2) between esti-
mated and tested data, it should have a lower percentage of 
error; (3) the RMSE, OBJ, and SI values of the suggested 
equations should be low, while the R2 value should be high.

Fig. 11   Correlations between 
CS and T with histogram of 
GPC mixtures incorporated 
with nS

Fig. 12   Correlations between 
CS and A with histogram of 
GPC mixtures incorporated 
with nS
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(a)	 Linear regression model (LR)

LR is one of the standard methods that scholars used to 
estimate and forecast the CS of concrete composites (Faraj 
et al., 2021). This model has a general form, as depicted in 
Eq. (1) (Ahmed et al. 2021c).

where, CS, x1 , a, and b represent the compressive strength, 
one of the variable input parameters, and model parameters, 
respectively. This equation contains just one variable of 
input data, so to have more practical and reliable investiga-
tions, Eq. (2) is suggested, which contains a wide range of 
input variable data parameters that can cover all of the geo-
polymer concrete mixture proportions and curing conditions, 
as well as curing ages.

As mentioned earlier, all these main variables in Eq. (2) 
were described except that the a, b, c, d, e, f, g, h, i, j, k, and 
l are the model parameters. Equation (2) is a one-of-a-kind 
equation because it incorporates a large number of inde-
pendent variables to generate GPC incorporated with nS that 
may be extremely useful in the construction industry. On the 
other hand, because all variables can be adjusted linearly, the 
proposed Eq. (2) can be considered an extension of Eq. (1).

(b)	 Nonlinear regression model (NLR)

In terms of the NLR, Eq. (3) may be regarded as a general 
form for proposing an NLR model (Ahmed et al. 2021c). 

(1)CS = a + b(x1)

(2)
CS = a + b

(

l

b

)

+ c(b) + d(FA) + e(CA) + f (SH)

+ g(SS) + h(M) + i
(

SS

SH

)

+ j(nS) + k(T) + l(A)

The interrelationships between the variables in Eqs. (1) and 
(2) can be used to calculate the CS of normal geopolymer 
concrete mixtures and geopolymer concrete mixtures modi-
fied with nS using Eq. (3).

where: all of the variables in this equation were provided 
earlier, except that the a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, 
q, r, s, t, u, and v are described as a model parameter.

	 (iii)	 Multi-logistic regression model (MLR)

As with the previous models, the collected datasets were 
subjected to multi-logistic regression analysis, and the 
general form of the MLR is shown in Eq. (4) based on the 
research conducted by Ahmed et al. (2021c) and Faraj et al. 
(2021). MLR is used to distinguish a nominal predictor vari-
able from one or more independent variables.

where: all of the variables in this equation were provided 
earlier. Moreover, in this equation, the value of nS should 
be greater than 0.

	 (iv)	 Artificial neural network (ANN)

ANN is a powerful simulation software designed for 
data analysis and computation that processes and analyzes 

(3)

CS =a ∗

(

l

b

)b

∗ (b)c ∗ (FA)d ∗ (CA)e ∗ (SH)
f ∗ (SS)g

∗ (M)
h ∗

(

SS

SH

)i

∗ (T)j ∗ (A)k + l

∗

(

l

b

)m

∗ (b)n ∗ (FA)o ∗ (CA)p ∗ (SH)
q ∗ (SS)r

∗ (M)
s ∗

(

SS

SH

)t

∗ (T)u ∗ (A)v ∗ (nS)w

(4)
CS = a ∗

(

l

b

)b

∗ (b)c ∗ (FA)d ∗ (CA)e ∗ (SH)f ∗ (SS)g

∗ (M)
h ∗

(

SS

SH

)i

∗ (nS)j ∗ (T)k ∗ (A)l

Table 3   The tested ANN 
architectures

No. of hidden 
layers

No. of neurons in 
left side

No. of neurons in 
right side

R2 MAE (MPa) RMSE (MPa)

1 1 0 0.9114 5.8711 7.545
1 2 0 0.9346 5.0137 6.1308
1 9 0 0.9744 2.631 3.849
1 11 0 0.9707 2.9734 4.1676
2 1 1 0.9085 6.144 7.8757
2 3 3 0.9495 4.2999 5.4882
2 5 5 0.9707 3.1309 4.2717
2 7 7 0.9731 2.8988 4.0177
2 9 9 0.9741 3.1746 4.297
2 11 11 0.9768 2.8848 4.0084
2 12 12 0.9771 2.8316 3.892
2 13 13 0.9761 2.8787 3.9387
2 17 17 0.9752 3.0827 4.1476
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Fig. 13   Comparison between 
tested and predicted CS of GPC 
mixtures incorporated with nS 
using LR model: a training data, 
b testing data, c validating data
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data similarly to a human brain. This machine learning tool 
is widely used in construction engineering to forecast the 
future behavior of a variety of numerical problems (Moham-
med 2018; Sihag et al. 2018).

An ANN model is generally divided into three main lay-
ers: input, hidden, and output. Depending on the proposed 
problem, each input and output layer can be one or more 
layers. On the other hand, the hidden layer is usually ranged 
for two or more layers. Although the input and output layers 
are generally determined by the collected data and the pur-
pose of the designed model, the hidden layer is determined 
by the rated weight, transfer function, and bias of each layer 
to other layers. A multi-layer feed-forward network is con-
structed using a combination of proportions, weight/bias, 
and several parameters as inputs, including (l/b, b, FA, CA, 
etc.), and the output ANN is compressive strength.

There is no standardized method for designing network 
architecture. As a result, the number of hidden layers and 
neurons is determined through a trial and error procedure. 
One of the primary goals of the network’s training process is 
to determine the optimal number of iterations (epochs) that 
provide the lowest MAE, RMSE, and best R2-value close to 
1. The effect of several epochs on lowering the MAE and 
RMSE has been studied. For the purpose of training the 
designed ANN, the collected dataset (a total of 207 data) 
was divided into three parts. Approximately 70% of the 
collected data was used as training data to train the net-
work. The dataset was tested with 15% of the total data, 
and the remaining data were used to validate the trained 
network (Demircan et al., 2011). The designed ANN was 
trained and tested for various hidden layers to determine 
the optimal network structure based on the fitness of the 
predicted CS of GPC incorporated with nS with the CS 
of the actual collected data. It was observed that the ANN 
structure with two hidden layers, 24 neurons, and a hyper-
bolic tangent transfer function was a best-trained network 
that provides a maximum R2 and minimum both MAE and 
RMSE (shown in Table 3). As a part of this work, an ANN 
model has been used to estimate the future value of the CS 

of GPC incorporated with nS. The general equation of the 
ANN model is shown in Eqs. (5), (6), and (7).

From linear node 0:

From sigmoid node 1:

From sigmoid node 2:

(e)	 M5P-tree model (M5P)
The M5P model tree reconstructs Quinlan’s M5P-tree 

algorithm (Quinlan 1992), a decision tree with a linear 
regression function added to the leaf nodes. The decision 
tree encapsulates the algorithms in a tree structure formed 
by nodes formed during training on data. The nodes of the 
decision tree are classified as root nodes, internal nodes, and 
leaf nodes. Nodes are interconnected through branches until 
the leaves are reached (Malerba et al., 2004). Mohammed 
(2018) also introduced the M5P-tree as a robust decision tree 
learner model for regression analysis. The linear regression 
functions are placed at the terminal nodes by this learner 
algorithm. Classifying all datasets into multiple sub-spaces 
assigns a multivariate linear regression model to each sub-
space. The M5P-tree algorithm operates on continuous class 
problems rather than discrete segments and is capable of 
handling tasks with a high number of dimensions. It reveals 
the developed information of each linear model component 
constructed to estimate the nonlinear correlation of the data-
sets. The information about division criteria for the M5-tree 
model is obtained through the error calculation at each node. 
The standard deviation of the class entering that node at each 
node is used to analyze errors. At each node, the attribute 
that maximizes the reduction of estimated error is used to 
evaluate any task performed by that node. As a result of this 
division in the M5P tree, a large tree-like structure will be 
generated, which will result in overfitting. The enormous 
tree is trimmed in the followed step, and linear regression 
functions restore the pruned subtrees. The general equation 
form of the M5P-tree model is the same as the linear regres-
sion equation, as shown in Eq. (8).

where: the descriptions of all of the variables in this 
Eq. (8) were provided earlier.

(5)CS = Threshold +

(

Node1

1 + e−B1

)

+

(

Node2

1 + e−B2

)

+…

(6)B1 = Threshold +
∑

(Attribute ∗ Variable)

(7)B2 = Threshold +
∑

(Attribute ∗ Variable)

(8)

CS =a + b
(

l

b

)

+ c(b) + d(FA) + e(CA)

+ f (SH) + g(SS) + h(M) + i
(

SS

SH

)

+ j(nS) + k(T)

+ l(A)

Fig. 14   Residual error diagram of CS of GPC mixtures incorporated 
with nS using training, testing, and validating datasets for LR model
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Fig. 15   Comparison between 
tested and predicted CS of GPC 
mixtures incorporated with nS 
using NLR model: a training 
data, b testing data, c validat-
ing data
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Model efficiencies

To rate and assess the proposed models’ accuracy, various 
performance stats tools such as R2, RMSE, MAE, SI, and 
OBJ were used, which they have the following equations:

where:
xp and yp are estimated and tested CS values; y′ and x′ are 

averages of experimentally tested and the estimated values 
from the models, respectively. tr, tst, and val referred to the 
training, testing, and validating datasets, respectively, and 
n is the number of datasets. Except for the R2 value, 0 is 
the optimal value for all other evaluation parameters. How-
ever, 1 is the highest benefit for R2. When it comes to the SI 
parameter, a model has bad performance when it is > 0.3, 
acceptable performance when it is 0.2 SI 0.3, excellent per-
formance when it is 0.1 SI 0.2, and great performance when 

(9)R2 =

⎛

⎜

⎜

⎜

⎜

⎝

∑p

p=1

�

yp − y
��

xp − x
��

�

�

∑p

p=1

�

yp − y
�
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��

∑p
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�

xp − x
�
�2
�

⎞

⎟

⎟

⎟

⎟
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2

(10)RMSE =

�

∑p

p=1
(xp − yp)

2

n

(11)MAE =

∑p

p=1
�(xp − yp)�

n

(12)SI =
RMSE

y
�

(13)

OBJ =

(

n
tr

n
all

∗
RMSE

tr
+MAE

tr

R
2
tr
+ 1

)

+

(

n
tst

n
all

∗
RMSE

tst
+MAE

tst

R
2
tst
+ 1

)

+

(

n
val

n
all

∗
RMSE

val
+MAE

val

R
2

val
+ 1

)

it is 0.1 SI 0.1 (Faraj et al., 2021). Furthermore, the OBJ 
parameter was employed as a performance measurement 
parameter in Eq. (13) to measure the efficiency of the sug-
gested models.

Results and analysis

(a)	 LR model

The output of this model revealed that the l/b, SS/SH, 
and M are those parameters that have a greater impact on 
the CS of GPC incorporated with nS than other param-
eters. This result was confirmed by a wide range of pub-
lished experimental works in the literature (Hardjito et al. 
2004; Deb et al. 2014; Oyebisi et al. 2020). Equation (14) 
with the weight of each model parameter is the output of 
this model. Optimizing the sum of error squares and the 
least square method, which were implemented in an Excel 
program using Solver to calculate the ideal value for the 
equation in one cell designated the objective cell, were 
used to determine the weighting of each parameter on the 
CS of GPC mixtures incorporating nS. The values of other 
equation cells constrained this object cell in the worksheet 
(Faraj et al., 2021).

Figure 13a, b, and c depict the relationship between esti-
mated and real CS of GPC mixtures incorporated with nS 
for training, testing, and validating datasets, respectively. 
Moreover, this model was evaluated by some statistical 
assessment tools, and it was observed that the R2 and RMSE 
for the training datasets were equal to 0.7989 and 7.65 MPa, 
respectively, and as illustrated in Figs. 25 and 26, the other 
statistical criteria like OBJ and SI were 8.05 MPa and 0.209. 
Finally, utilizing training, testing, and validating datasets, 
the residual CS for the LR model for the forecasted and 
observed CS is displayed in Fig. 14.

(b)	 NLR model

The correlations between the actual and forecasted CS 
of GPC mixtures incorporated with nS are presented in 
Fig. 15a, b, and c for the training, testing, and validating 
datasets, correspondingly. As shown in Eq. (15), the weight 
of the model parameters demonstrated that the l/b, SH, and 

(14)

CS =110.06 − 66.6

(

l

b

)

+ 0.06(b) − 0.01(FA)

+ 0.005(CA) − 0.34(SH) + 0.12(SS)

− 3.12(M) − 13.9

(

SS

SH

)

− 0.18(nS) + 0.11(T)

+ 0.23(A)

Fig. 16   Residual error diagram of CS of GPC mixtures incorporated 
with nS using training, testing, and validating datasets for NLR model
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Fig. 17   Comparison between 
tested and predicted CS of GPC 
mixtures incorporated with nS 
using MLR model: a training 
data, b testing data, c validat-
ing data
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M are those input variable parameters that significantly 
affect the CS of geopolymer concrete mixtures modified 
with nS. This result was also well-validated in the previ-
ous experimental laboratory research works (Hardjito et al. 
2004; Aliabdo et al. 2016; Ghafoor et al. 2021).

Similar to the LR model, this model was also assessed by 
some statistical criteria, and it was found that the R2, RMSE, 
OBJ, and SI of the training datasets were equal to 0.8792, 
5.92 MPa, 5.80 MPa, and 0.162, respectively. Furthermore, 

(15)

CS = − 4643005 ∗

(

l

b

)3.78

∗ (b)1.34 ∗ (FA)
−1.87

∗ (CA)
0.08 ∗ (SH)

5.5 ∗ (SS)
−7.85 ∗ (M)

2.72

∗

(

SS

SH

)−6.06

∗ (T)
−0.53 ∗ (A)

0.02 + 73.89

∗

(

l

b

)0.37

∗ (b)
−0.03 ∗ (FA)

−0.45 ∗ (CA)
0.44 ∗ (SH)

−0.15 ∗ (SS)
−0.001

∗ (M)−0.02 ∗

(

SS

SH

)−0.15

∗ (T)0.0002 ∗ (A)0.15 ∗ (nS)0.002

the difference between actual and estimated CS of geopoly-
mer concrete mixtures modified with nS can be found in 
Fig. 16 for all the validating, testing, and training datasets.

	 (iii)	 MLR model

Equation (16) shows the generated models for the MLR 
model with various variable parameters. The most signifi-
cant independent factors that impact the CS of the geopoly-
mer concrete mixtures modified with nS in the MLR model 
were SS content, age of the specimens, and curing tempera-
tures, which are matched with some experimental studies 
published in the past articles (Jindal et al. 2017; Hassan et al. 
2019; Ghafoor et al. 2021).

Figure 17a was created by utilizing training datasets 
to depict the anticipated and measured CS correlations 
for the GPC mixtures incorporated with nS. Furthermore, 
similar to the earlier models, this model was tested using 
two parts of data (validating and testing data) to demon-
strate its efficacy for variables not included in the model 
data (training data). The findings indicate that by substitut-
ing the independent variables into the established equa-
tion, this model can predict the CS of GPC, as illustrated 
in Fig. 17b and c. The values of R2 and RMSE for this 
developed model are 0.7787 and 8.02 MPa, respectively, 
for the training datasets. Also, as depicted in Figs. 25 and 
26, the value of other statistical assessment tools like OBJ 

(16)

CS =29.0347208 ∗

(

l

b

)−1.47

∗ (b)
0.04

∗ (FA)
−0.21 ∗ (CA)

−0.26 ∗ (SH)
−0.09

∗ (SS)
0.56 ∗ (M)

−0.49∗

(

SS

SH

)−0.22

∗ (nS)
−0.005 ∗ (T)

0.13 ∗ (A)
0.2

Fig. 18   Residual error diagram of CS of GPC mixtures incorpo-
rated with nS using training, testing, and validating datasets for MLR 
model

Fig. 19   Optimal network struc-
tures of the ANN model
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Fig. 20   Comparison between 
tested and predicted CS of GPC 
mixtures incorporated with nS 
using ANN model: a training 
data, b testing data, c validat-
ing data
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and SI values was observed at 8.8 MPa and 0.22, respec-
tively. Lastly, utilizing validating, training, and testing 
data, the residual CS for the MLR model for predicted 
and observed CS of GPC incorporated with nS is displayed 
in Fig. 18.

	 (iv)	 ANN model

In this study, the authors tried a lot to get the high effi-
ciency of the ANN by applying different numbers of the 
hidden layer, neurons, momentum, learning rate, and itera-
tion, as can be seen in Table 3. Lastly, it was observed that 
when the ANN has two hidden layers, 24 neurons (12 for 
left side and 12 for the right side as shown in Fig. 19), 
0.2 momenta, 0.1 learning rate, and 2000 iterations give 
the best-predicted values of the CS of the GPC mixtures 
incorporated with nS. The ANN model was equipped with 
the training datasets, accompanied by testing and validat-
ing datasets to predict the compression strength values for 
the correct input parameters. The comparisons between 
estimated and experimentally tested CS of GPC mixtures 
incorporated with nS for training, testing, and validating 
datasets are presented in Fig. 20a, b, and c. The consumed 
data have + 10% and − 20% error lines for the training and 
testing datasets, and ± 10% for the validating datasets, 
which is better than the other developed models. Fur-
thermore, this model has a better performance than other 
models to predict the CS of the GPC incorporated with nS 
based on the value of OBJ and SI illustrated in Figs. 25 
and 26. Also, the value of R2 = 0.9771, MAE = 2.83 MPa, 
and RMSE = 3.89 MPa. Finally, the differences in the 
value of the CS for estimated and tested GPC mixtures 
incorporated with nS can be found in Fig. 21 by consum-
ing all the datasets.

(e)	 M5P model

The predicted and observed CS of the GPC mixtures 
incorporated with nS for whole the datasets are shown in 
Fig. 22a, b, and c. Similar to the other models, it was dis-
covered that the l/b and M of the GPC mixtures incorporated 
with nS have the greatest impact on the CS of the GPC mix-
tures incorporated with nS, which agrees with experimental 
findings in the past studies (Hardjito et al. 2004; Aliabdo 
et al. 2016; Ghafoor et al. 2021). Figure 23 shows the tree-
shaped branch correlations. Also, the model (in Eq. (17)) 
parameters are summarized in Table 4, and the model vari-
ables will be selected based on the linear tree registration 
function.

For all of the training, testing, and validation datasets, 
there is a 20% error line. Finally, for all datasets, the residual 
CS for the M5P model was displayed in Fig. 24 for both 
predicted and observed CS. Furthermore, this model’s R2, 
RMSE, MAE, OBJ, and SI evaluation criteria are 0.9454, 
5.59 MPa, 4.45 MPa, 6.0 MPa, and 0.153, respectively, for 
the training datasets.

Proposed models’ performance

As early mentioned, the efficiency of the developed models 
was evaluated by employing these five stats tools: RMSE, 
MAE, SI, OBJ, and R2. When compared to the LR, NLR, 
MLR, and M5P models, the ANN model has a higher R2 
with lower RMSE and MAE values, as well as lower OBJ 
and SI values.

In addition, Fig. 27 shows a comparison of model predic-
tions of the CS of GPC mixtures incorporated with nS based 
on the testing datasets. Furthermore, Figs. 14, 16, 18, 21, 
and 24 display the residual errors for the CS by consuming 
all the datasets. The whole figures show that the estimated 
and tested CS values for the ANN model are close, indicat-
ing that the ANN model is more accurate than other models.

Figure 25 shows the OBJ values for all of the proposed 
models. The OBJ is 8.05, 5.8, 8.8, 3.59, and 6.0 for LR, 
NLR, MLR, ANN, and M5P, respectively. The ANN model 
has a lower OBJ value, about 124% less than the LR model, 
61.5% less than the NLR model, 145% less than the MLR 

(17)

CS =a + b
(

l

b

)

+ c(b) + d(FA) + e(CA)

+ f (SH) + g(SS) + h(M)

+ i
(

SS

SH

)

+ j(nS) + k(T) + l(A)

Fig. 21   Residual error diagram of CS of GPC mixtures incorpo-
rated with nS using training, testing, and validating datasets for ANN 
model
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Fig. 22   Comparison between 
tested and predicted CS of GPC 
mixtures incorporated with 
nS using M5P-tree model: a 
training data, b testing data, c 
validating data
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Fig. 23   M5P-tree pruned model tree

Table 4   M5P-tree model 
parameters (Eq. (17))

(LM) num: 1 2 3 4 5 6

a  − 93.696  + 32.7126  + 32.8862  − 2.7578  − 166.0773  − 13.196
b 274.4776 38.4951 38.4951 38.4951 141.2642 53.0334
c  + 0.0488  − 0.0138  − 0.0138  + 0.0534  + 0.1562  + 0.0806
d  + 0.0655  + 0.024
e  + 0.0029  + 0.0077  + 0.0077  + 0.0174  − 0.0269
f  + 0.2796  − 0.0513  − 0.0513  − 0.1534  − 0.0386  − 0.0386
g  − 0.0501  + 0.0119  + 0.0119  − 0.0114  − 0.0154  − 0.0154
h  − 0.5772  − 0.8632  − 0.8632  − 0.8632  − 0.4692  − 0.4692
i
j  − 0.0307  − 0.0307  + 0.0683  + 0.0516  − 0.0282  − 0.0282
k  + 0.3218  + 0.077
l  + 0.1921  + 0.1625  + 0.1575  + 0.2233  + 0.9407  + 0.181

Fig. 24   Residual error diagram of CS of GPC mixtures incorporated 
with nS using training, testing, and validating datasets for M5P model Fig. 25   The OBJ values of all developed models
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model, and 67% less than the M5P model. This also empha-
sized that the ANN model better forecasts the CS of GPC 
incorporated with nS.

In addition, Fig. 26 shows the SI values for the created 
models during the training, validating, and testing phases. 
The SI values for NLR and ANN models for the entire train-
ing, testing, and validating datasets were between 0.1 and 
0.2, signalizing good accuracy for these models. While, for 
the other remaining models, the values of SI were between 
0.2 and 0.3, this result revealed that the performance of 
the LR, MLR, and M5P models is in fair condition. Simi-
lar to other statistical assessment criteria, the ANN model 
has smaller SI values among the entire models. The ANN 
model has lower SI values (for training datasets) than the 
LR, NLR, MLR, and M5P models by 97.2%, 52.8%, 107.5%, 
and 44.3%, respectively. This also demonstrated that when 
forecasting the CS of GPC mixtures incorporated with nS, 

the ANN model is more efficient and performs better than 
the other models (Fig. 27).

Conclusions

Using new scientifical technics like empirical correlations 
and neural networks to estimate the CS of GPC mixtures 
incorporated with nS can save time and money. LR, NLR, 
MLR, ANN, and M5P models were used in this article to 
develop predictive models for estimating the CS of GPC 
mixtures incorporated with nS. Based on the extensive revi-
sion and data gathering, the following conclusion can be 
drawn:

	 (i)	 The average amount of nS used in GPC mixtures was 
11.6 kg/m3, or approximately 3% of the binder con-
tent. Additionally, the percentage of nS substituted 
with binder varied between 0 and 60 kg/m3.

	 (ii)	 The LR, NLR, MLR, ANN, and M5P models were 
all successfully utilized to create predictive models 
for the CS of the GPC mixtures incorporated with nS. 
The estimated CS closely matched experimentally 
measured CS of GPC mixtures that contained nS.

	 (iii)	 The whole created models satisfied all the statistical 
assessment criteria such as R2, RMSE, MAE, OBJ, 
and SI.

	 (iv)	 The ANN model outperforms the other three models 
based on statistical evaluation and sensitivity analy-
sis. For the training, testing, and validating datasets, 
the R2 values are 0.9771, 0.9777, and 0.9923, respec-
tively. Furthermore, the RMSE, MAE, OBJ, and SI 
stats criteria for the training dataset for the ANN 
model are 3.892 MPa, 2.832 MPa, 3.59 MPa, and 
0.106, respectively. Consequently, the ANN model 
has greater generality and suitability in the initiatory 
design of GPC mixtures incorporated with nS.

	 (v)	 The two-layer ANN model with twelve neurons in 
each layer is the best model combination for estimat-
ing the CS of GPC mixtures incorporated with nS.

	 (vi)	 The sequence for suitability and having greater per-
formances of the proposed models is as follows: 
ANN, NLR, M5P, LR, and MLR.

	(vii)	 The obtained results indicate that the most significant 
variable parameters for estimating the CS of GPC 
mixtures which contained nS are the l/b, SS/SH, M, 
T, and A.
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