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Abstract

Pollution of water bodies and sediments/soils by trace elements remains a global threat and a serious environmental hazard
to biodiversity and human’s health. Globalization and industrialization resulted in the increase and availability of these
substances in the environment posing unpredictable adverse effects to living organisms. To determine pollution status and
risk contamination by trace elements, data available in the literature of the last 40 years on trace elements occurrence in
three environmental matrices (water bodies, sediments/soils, and biota) from Continental Portugal were collected (about 90
studies). Data were compared to water and sediment quality guidelines to assess potential ecological risks. Most environ-
mentally relevant hazardous elements include Zn, Cu, Cd, Pb, and As. Various studies found trace elements at levels higher
than those considered safe by environmental guidelines. In surface waters, Al, Zn, Se, and Ag were found above aquatic life
limits in about 60% of the reviewed papers, while Cu, Zn, and As exceed those values in more than 60% of mining waters.
Hg and Cd in sediments from mining areas exceeded aquatic life limits and potential ecological risk showed extremely high
risk for most of the elements. The data compiled in this review is very heterogenous, varying in terms of sampling schemes,
trace elements analysed, and spatiotemporal settings. This heterogenicity leads to data differences that make meaningful
comparisons difficult. Nevertheless, the compilation of scattered environmental spatial and temporal trace elements data, of
either natural sources or human activity as well as the ultimate effect on biological systems, is of the upmost importance to
broaden its knowledge, risk assessment, and implementation of mitigation measures.
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Introduction

Environmental pollution is among the main challenges of
today’s society and is a major source of living organism’s
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the earth’s crust and those originated from anthropogenic
activities such as the industry (e.g., refineries, coal burn-
ing, petroleum combustion, nuclear power stations among
others), agriculture, pharmaceutical, domestic effluents,
and atmospheric sources and transport systems (e.g., wind,
rain) (Fig. 1) (Fuentes et al. 2020, Liu et al. 2020, Mandal
and Kaur, 2019). Most living organisms’ exposure results
from human activities that lead to undesirable environmen-
tal contamination. However, exposure can also be a result
of natural processes such as metal corrosion, atmospheric
deposition, soil erosion of metal ions and leaching of heavy
metals, sediment re-suspension, and metal evaporation from
water resources to soil and ground water (Fig. 1) (Moiseenko
et al. 2019, Zhang et al. 2014).

The presence of trace elements in the aquatic ecosystems
is widely reported and both abiotic and biotic processes
affect their distribution and circulation (Chon et al. 2012,
Moiseenko et al. 2019, Zhang et al. 2014). Sediments play
an important role in trace elements cycling (Chon et al.
2012, Martins et al. 2013). In fact, sediments can behave
as both reservoir and non-point source of trace elements
in the water column contributing to their persistence and
recalcitrance in the aquatic environment (Chon et al. 2012,
Ribeiro et al. 2018). Exposed organisms may absorb dis-
solved elements from surrounding water and food, and/or
accumulate in various tissues in significant amounts caus-
ing harmful effects or entering the food web (Fuentes et al.
2020, Li et al. 2018). Trace element bioavailability is influ-
enced by physical and chemical factors (e.g., temperature,
phase association, adsorption, speciation at thermodynamic
equilibrium, complexation kinetics, and solubility), climatic

factors, and biogeochemical cycling. Therefore, an accurate
ecological status of the aquatic environment should evaluate
the occurrence and distribution of trace elements in different
compartments such as water, sediments, and biota to have
integrative data on the system.

Portugal is located along the Atlantic coast in southwest-
ern Europe. It has more than 10 million inhabitants, and
most of the Portuguese population is fixed in the coastal
areas, where most industrial, agricultural, and port activities
are implemented. As a result, estuaries, rivers, and coastal
areas are impacted by intensive anthropogenic activities that
result in the release of diverse pollutants including trace ele-
ments in these compartments. Several works stressed the
ecological status regarding the occurrence of trace elements
in coastal waters and estuaries, mainly Douro, Mondego,
Tagus, and Sado (Alves et al. 2009, Antunes et al. 2018a,
Couto et al. 2019, Franca et al. 2005, Ribeiro et al. 2018).
Besides, mining is a relevant economic activity in Portugal;
however, mining activities are responsible for trace elements
pollution of the surrounding environment. In fact, several
works reported the occurrence of high levels of trace ele-
ments nearby mining areas in compartments such as water,
sediments, and soils and even biota (Carvalho et al. 2011,
Favas et al. 2016, Ferreira da Silva et al. 2009). Therefore,
trace element contamination emerged as an issue of major
concern due to their high levels and consequently threat to
biodiversity and humans. This review intends to (a) sum-
marize the occurrence of trace elements in water, sedi-
ments, and aquatic biota in Portugal, (b) current gaps, (c)
to assess potential risk by identifying the contaminants that
represent a high concern due to their concentration and/or
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toxicological effects, and (d) propose solutions for envi-
ronmental risk management. This manuscript provides the
current state of the art regarding trace elements pollution
status in Portugal. Compliance with these data is important
not only for researchers, local regulatory authorities, and
environmental protection measures (regional, national and
global) but also contributes to the global worldwide knowl-
edge about trace elements crucial to strengthen international
cooperation, to assure a more sustainable global develop-
ment and support scientific policymaking.

Data collection and characterization
of the study area

This search was based on ScienceDirect and ISI web
of Knowledge databases considering articles published
between the 1980s and 2021 that comprise waters, sedi-
ments/soil, and biota.

The area focused on this review is mainland Portu-
gal (geographic coordinates 42°9'8" and 36°57'39"N and
6°11'10" and 9"29'45"W) corresponding to less than 1/6 of
the Iberian Peninsula.

Mainland Portugal has a coast of nearly 832-km,
mostly low, level, and straight, apart from several harbors
located in river indentations. The northern coast is char-
acterized by rocky bays or rias, and the southern one is
rich in lagoons and sandbanks. The Portuguese Instituto
Nacional de Estatistica (Europa, 1985) reports 92 000 ha
of rivers, streams, estuaries and bays in the territory. The
Portuguese average annual runoff from rainfall is 20 000
million m?. More 17 000 million m? are obtained from
rivers whose springs are located in Spanish territory, caus-
ing a total annual river discharge of 37 000 million m?
leaving the country. The entire drainage is the Atlantic

Ocean, to which all the most important rivers flow in a
predominantly east-west direction. There are 11 independ-
ent river systems in Portugal with the length of the main
river within the country exceeding 60 km (Table 1, Fig. 2).

Ecological risk assessment

To assess ecological risk, both water and sediments
reported maximum values were compared to Freshwater
long-term Water Quality Guidelines for the Protection of
Aquatic Life (CCME 2017) and Sediment Quality Guide-
lines for the Protection of Aquatic Life (CCME 2015),
respectively. Furthermore, the environmental risks of trace
elements in sediments were assessed by the determina-
tion of the potential ecological risk index. This index was
proposed by Hakanson (1980) and indicates the degree of
biological risk and can be calculated as follows: (Devane-
san et al. 2017, Hakanson 1980, He et al. 2021)

£ = (TixC)/C

where E; is the potential ecological risk index of sin-
gle trace element i in sediment samples. Tj is the toxicity
response factor for a trace element i: As, Cd, Cr, Cu, Ni,
Pb, Zn, and Hg are 10, 30, 2, 5, 2, 5, 1, and 40, respectively
(Hakanson, 1980). C' is the measured concentration of trace
element i and Cﬁl is the reference value of trace element i
collected from the natural geochemical background (Ribeiro
et al. 2018). Average concentrations for 90 naturally occur-
ring elements in the Earth’s crust can be found in the litera-
ture (Wedepohl 1995). The terminologies used to describe
the potential ecological risk are low risk (Ej <40), moder-
ate risk (40 < E' < 80), high risk (80 < E! < 160), very high
risk (160 < E' < 320), or extremely high risk (E > 320).

Table 1 Hydrologic data of the principal rivers of Portugal (adapted of http://www.fao.org/3/T0798E08.htm)

River Length (km) Basin area (km?) Mean annual flow  Principal tributaries
(m*/s)
Minho 75 792 363 Coura, Mouro
Lima 65 1145 74 Laboreiro, Vez
Cavado 118 1648 94 Homem, Rabagio
Ave 85 1395 48 Este, Vizela
Douro 322 18559 527 Sabor, Tua, Corgo, Tamega, Agueda, Coa, Tavora, Paiva
Vouga 136 3656 67 Sul, Caima, Ul, Agueda
Mondego 220 6772 117 Dio, Alva, Ceira, Arunca
Tagus 275 24913 453 Erges, Ponsul, Ocreza, Zézere, Sever, Sorraia, Almansor
Sado 175 7628 27 Xarrama, Alcacova, Marateca, Arcio, Avalao
Mira 130 1781 9 Torto
Guadiana 260 11541 185 Caia, Degebe, Cobro, Odeleite, Vascao
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Fig.2 Map of the main Portuguese rivers (adapted from FAO, available at http://www.fao.org/3/T0798E08.htm)

Occurrence of trace elements in water
bodies, sediments/soils, and biota
of Portugal

Water bodies

Trace elements occurrence in water bodies was reported
in estuaries and coastal areas, lagoons, rivers, and streams
and also water bodies near mining areas (streams, rivers,
ground water, and irrigation waters) (Table 2). Various
trace elements have been examined, though Zn, Cu, Pb,
and Cd are among the most investigated (Table 2). Both
Douro River and estuary are among the most studied eco-
systems and various studies were conducted in order to
determine a wide panel of trace elements (Li, Be, Al, V,
Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and
U) in surface estuarine waters in Douro estuary (Couto
et al. 2014, Ribeiro et al. 2018). In the work developed
by Couto and co-workers, estuarine waters were col-
lected in 11 sampling sites in four sampling campaigns in
2007/2008. Results showed sporadic high levels for most
trace elements, suggesting punctual and local sources.
Significant spatial differences were also found. Most of
the elements tended to increase in the inner stations to the
mouth of the river. Indeed, some trace elements associated
with agriculture procedures (Zn, Cu, and Ni) were higher
in the middle part of the estuary, suggesting a possible

@ Springer

common source. A comprehensive study considering dif-
ferent matrices such as water, sediments, and biota was
also done in 2013 in the Douro River estuary. In that study,
the overall concentrations were sorted as follows: Al > Zn
>Li>Se>Ba>V>Cu>Mo>Pb>Ni>U>Cr>Sb
> Ag > Co > Cd > Tl ~ Be. Water mean Al, Cr, Cu, Zn,
Se, Ag, and Pb concentrations were above acceptable val-
ues for aquatic organisms (Ribeiro et al. 2018). A similar
study was performed in Ave estuary where the trend Al >
Zn>Se>Mo>Li>Ba>V>Cu>Pb>Ni>Cr>U
> Be > Co = Sb > Ag = Cd > TI was found (Couto et al.
2019). Al, Zn, Se, Cu, Ag, Pb, and Cd mean values were
also found above aquatic life limits.

The occurrence of mercury (Hg) has also been investi-
gated in Portuguese waters, and various works reported Hg
analysis (Iglesias et al. 2020, Lillebg 2011, Ramalhosa et al.
2006). The presence of this element has been investigated
in Douro River estuary, Oporto coastal area, Ria de Aveiro,
Sado River estuary, and Caveira stream water with values up
to 0.08 pg L', In most of the published studies, Hg levels
were not of environmental concern.

In a country frequently devastated by summer fires,
a recent paper correlated the forest fires of October 2017
with changes in the water’s chemical watercourses in the
Mondego hydrological basin (showing increases in Al, Fe,
Mn, As, Ba, and Zn concentrations) and biological constitu-
ents, after the beginning of rainfall due to sediments, ashes,
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debris and products of combustion runoff (Sequeira et al.
2020a, Sequeira et al. 2020b).

The presence of trace elements in water bodies has also
been investigated in mining areas (Table 2). For instance,
both surface and/or groundwater contamination has been
observed in the vicinity of many post-mining areas, namely
with an increase of As, Cd, Cu, Pb, and Zn resulting from
129 years of pyrite and Cu exploitation, spread along the
Grandola stream (Ferreira da Silva et al. 2015). U mining
pose, particular challenges for remediation and future land
use. There are two studies in U mining areas, one in Man-
gualde, extensively explored until 1993, with high produc-
tion of poor ore, where toxic levels of Mn, Fe, Al, U, and Sr
were found. The other was in Horta da Vilarica, with U con-
centrations in stream water toxic to aquatic plants and inver-
tebrates in one sampling point of the 15 sampling points
selected (Antunes et al. 2007, Cordeiro et al. 2016). One
study states the risk of inhabitants of a nearby village (S.
Francisco de Assis) located downstream the Barroca Grande
tailings deposit and impoundments, probably exposed to
some potential health risks through the intake of As, Cd,
and also Pb via vegetable consumption, even though waters
had low metal concentrations. Zn and Mn were present in
significant concentrations though below the standard para-
metric values. The concentrations of other elements were all
legally acceptable, with values up to 7.8 pg L' for As; 0.36
pg L~! for Cd, and 23.1 pg L™! for Pb (Candeias et al. 2014).

Remediation processes, applied in the period of
2005-2008, using confination, tailings and debris control,
and phytoremediation of the Mur¢ds complex, contributed to
a soil and water decrease of metals and arsenic; nevertheless,
these procedures were not sufficient to assure a rehabilitation
of the area (Antunes et al. 2016). In fact, mining activities
have a considerable effect in the vicinity of the mine during
its exploration. The mining places that have been abandoned
or improperly closed may however continue to provoke dam-
ages to soils, water courses, and even the atmosphere. Post-
mining regions represent, therefore, an important environ-
mental issue. This topic has been a European problem of
political debate and scientific concern for some 50 years
(Keenan and Holcombe, 2021, Wirth et al. 2012).

(Ferreira da Silva et al. 2015)

(Silva et al. 2005)

Ref

face water quality standards;
As, Cd, Cu, Pb, and Zn
sources of potential chronic

stream toxicity.
Acid effluents, Fe, Al, Cu, Pb,

Zn, Cd, and As exceeding

Exceeding local and/or sur-
ALL.

Main results/risk assessment

Levels (pg L!) max

n.r.
n.r.

Al As, Ca, Cd, Cu, Fe, Hg,

Mg, Mn, Ni, Pb, Zn
Fe, Al, Cu, Pb, Zn, Cd,

As

Trace element

Sediments and soils

Source/sample collection
Surface water

three seasonal periods
Year n.r.

Drainage waters
September 2000

Sediments are among the most studied matrices concern-
ing the presence of trace elements and their occurrence was
reported in estuaries, rivers, lagoons, and streams (Table 3).
Different sediment sampling strategies (location, depth,
grain size/fraction, etc.) and sediment digestion procedures
(different mixtures of acids (HF, HC1, HNO;), microwave vs
conventional digestion, etc.) make inter-studies comparison
of the published papers impossible. This section highlights

Caveira - Grandola Stream
Corona and Lousal stream,

Sado River

Boldface values refer to values that exceed CCME guidelines for aquatic life limit fresh water (ALL) (CCME 2019)

ERL, effect low range; n.d., not detected; n.r., not referred; ALL, aquatic life limit freshwater

Table 2 (continued)

Area

@ Springer
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some of the most relevant studies comparing, whenever pos-
sible, studies in the same geographical areas.

The Sado estuary is among the most studied ecosystems
(Caeiro et al. 2005, Cortesdo and Vale, 1995). Caeiro et al.
(2005) reported that from 78 sampling stations, analysed in
May 2006, 3% were highly contaminated and registered a
high potential for adverse biological effects, while 47% had
moderate contamination by Cd, Cu, Pb, Cr, Hg, Al, Zn, and
As. Nevertheless, another study, also conducted in 2006,
showed that Hg was not a cause of environmental risk in
this estuary (Lillebg 2011). Another study in 2009 referred
that the most important anthropogenic metal sources in this
estuary have been historically related to pyrite mines that
discarded mining waste directly into the river without appro-
priate treatment (high levels of Cd and Zn), the industries on
the north shore (pulp and paper mills, pesticides and fertiliz-
ers factories) and shipyards (high levels of Pb, Cu, Cr, and
Ni), as well as intensive farming, mostly of rice, and fish
farms around the estuary. Also, the weak residual current
flow characteristic of this system enhanced the accumulation
of sediment; therefore, locally introduced pollutants settled
out rather than being transported away (Serafim et al. 2013).

Tagus (Tejo), one of the largest estuaries on the Atlantic
coast of Europe, has also been studied in several works. For
instance, Cacador et al. (1996) evaluated the presence of
various trace elements in two salt marshes sediments and
showed that profiles of Zn, Pb, and Cu concentrations in
vegetated sediments differed from those recorded in non-
vegetated areas and that at subsurface layers (with higher
root density) Zn, Pb, and Cu were enriched. In a monitoring
study conducted by Duarte et al. (2014) in 2011, 19 sampling
points were selected along Tagus estuary and concluded that
with the exception of Cr and Cu, the analyzed metals (Zn,
Pb, Cd, Ni, Cu, and Cr) showed similar distributions and a
homogenous distribution in the proximity of discharge areas.
The presence of yttrium and rare-earth elements collected
in 78 sampling stations was also investigated in this estuary
(Brito et al. 2018). Distribution of yttrium and rare earth
elements was correlated with sediment grain size and asso-
ciated with wastewater treatment plants (WWTP) located
in the north margin and the legacy of an abandoned indus-
trial complex in the south margin of the estuary (Brito et al.
2018). A study of heavy metal concentrations in sediment,
benthic invertebrates, and fish in three salt marsh areas sub-
jected to different pollution loads carried out in 2003 (Franga
et al. 2005) obtained lower values than those obtained in
previous studies for the Tagus estuary in 1993 (Cagador
et al. 1993). This change could be related to a reduction in
pollutant input, since the Tagus River was heavily polluted
during the 1980s and the 1990s, but some industries stopped
activity and several WWTP begun to operate since then.

Douro, one of the rivers with the larger hydrographic basin
on the Iberian Peninsula, has also been studied in several

@ Springer

works, from the transboundary Douro River basin to its
mouth. In a study where 107 samples were collected from
stream sediments in 2004 (Reis et al. 2014) higher concen-
trations of Cu, Zn, and, in particular, Pb, in the most labile
fractions, were found. The higher values were found where the
total element contents were also higher, suggesting an impor-
tant contribution of anthropogenic activities to the total con-
tents of these elements in the sediments. Cr and Ni were the
main metals from a lithological source. Several other studies
were focused on estuarine sediments. Water, sediments, and
plants were collected in May 2013 and the possible occur-
rence of several trace elements as Li, Be, Al, V, Cr, Co, Ni,
Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, TI, Pb, and U were checked;
Al and Zn were the trace element found at the higher concen-
trations at both sediments and water. Pb, Cu, and Zn levels
in sediments were critical in comparison to the established
probable effect levels (Ribeiro et al. 2018). Prior studies have
shown an evident signature of anthropogenic trace metal con-
tamination (Zn, Cu, Pb, Cr, Cd, and Ni) with consequences
for estuarine communities and salt marsh vegetation (Almeida
et al. 2006, Mucha et al. 2004b). A more recent study carried
out in 2019 in 6 sampling sites showed a potential for Cd, Hg,
and Pb to accumulate in organisms, with consequences for the
entire trophic chain (Iglesias et al. 2020).

Ave and its tributaries have also been the focus of several
research works. In 1992, a study emphasized the contribu-
tion of leather tanning, metal plating, and textile industries
as the main sources of toxic metal contamination (Cd, Cr,
Cu, Pb, and Zn) in these streams (Gongalves et al. 1992).
Other work, performed in1999, included more sampling sta-
tions to accomplish a better description of the basin showing
similar results in Ave river and its tributary, river Este. Cd
showed to be the most problematic pollutant followed by
Zn, Cu, and Cr, with a strong correlation to local industry
(Soares et al. 1999). Data from 2013 collected in the lower
basin near the mouth of Ave river showed strong contamina-
tion by anthropogenic activities for Al, Mn, Ba, and Zn and
high enrichment factors (EF)for Se, Cd, Zn, Li, Cu, Ag, Pb,
and U (Couto et al. 2019).

Sediments of the biggest artificial lake of the Iberian Pen-
insula in the Guadiana Basin, Alqueva, that drains the west-
ern part of the Iberian Pyrite Belt, were studied and Cd was
shown to contribute to the highest pollution levels followed
by Pb and As. Despite the trace element contamination of
the Alqueva sediments, sequential extraction studies showed
that most of them were found in the oxidizable and residual
fractions indicating that they were sparingly bioavailable,
with exception of Cd (acid-labile fraction) and Pb (reducible
fraction) (Palma et al. 2015).

Portugal is a country with a long mining tradition and still
has a strong mining activity. Land pollution due to mining
activities is a major issue in many European countries and
Portugal is not an exception. Therefore, the presence of trace
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elements in mining sediments (stream sediments and soils)
were reported in several works (Table 3) and at 18 differ-
ent mining sites across Portugal. Environmental potential
problems were found in Castromil (Au mining areas aban-
doned since 1940), Ag—Pb—Zn-Terramonte mines (closed in
1973), Pb-Zn Coval da M6 mines (total shutdown in 1972),
Alto da Varzea radium mine (closed in 1946), tin—tung-
sten Panasqueira mine (still active), the tin—tungsten sector
located in the Central Iberian Zone of the Iberian Massif,
in the Portuguese—Spanish border - Monfortinho, Caveira
(closed in de 1980s), Lousal (closed in 1988), Aljustrel
(Iberian pyrite belt mining sites still active), and S. Domin-
gos (closed in 1966) (Alvarenga et al. 2012, Antunes et al.
2018a, Antunes et al. 2018b, Candeias et al. 2011, Candeias
et al. 2014, Ferreira da Silva et al. 2009, Ferreira da Silva
et al. 2015, Silva et al. 2005). A recent review on the soils
affected by mining activities in the Portuguese sector of
the Iberian Pyrite Belt describes some of the rehabilitation
actions, from constructive techniques to dig and contain the
contaminated tailings and waste materials to more uncon-
ventional processes (Mourinha et al. 2022).

Biota

Trace elements have also been found in algae, plants,
bivalve mollusk (e.g., mussels), and fish (Table 4). For
instance, the presence of various trace elements was inves-
tigated in Ave and Douro estuaries in algae and plants
located near the estuaries (Couto et al. 2019, Ribeiro et al.
2018). Estuarine plants slowly accumulate trace elements,
being identified as bioindicators of estuary pollution.
Those studies showed the presence of trace elements in
distinct families of native estuarine flora. In the Douro
estuary, high levels of Al, Zn, and Ba were determined
in plants and macroalgae. No correlation was observed
between flora and waters and sediments concentrations at
the same sampling locations. Such differences could be
related to the various parameters that affect the sorption
of trace metals including plant life cycle, metal availability
among others (Antunes et al., 2018a, b, Bonanno et al.
2018). Additionally, most of these plants are annual or
biannual while trace elements sediments concentrations
reveal chronic exposure and may explain the variations
found among species and the concentrations found in
sediments. In Ave estuary flora, the trace element con-
centrations were similar to high levels found for Al, Zn
Ba, and Cu. The highest trace element levels were found
in specimens of Plantago sp. and in macrophytes such
as Oenanthe crocata and Veronica anagallis-aquatica,
showing that these species may be metal accumulators
and can be used as phytoindicators of local pollution. The
occurrence of trace elements was also analyzed in aquatic
mosses (Fontinalis antipyretica) in Ave (and tributaries)

and Cavado rivers and a correlation was found between the
elements found in selected flora and sediments (Gongalves
et al. 1992, Gongalves et al. 1994). Data demonstrated
that this species was a bioaccumulator and highlighted
its importance as a metal bioindicator. Cr and Zn con-
centrations up to 107 and 70 times the natural concentra-
tion, respectively, were found in the plants. As mosses do
not have conductive tissues, toxic metals are completely
taken up from the water in accordance with their rela-
tive dissolved quantities. The increase in Hg contamina-
tion was related to the decrease of the local microbenthic
community (~8400 microorganisms corresponding to 31
macrobenthic taxa) in Ria de Aveiro (Nunes et al. 2008).
Invertebrates and fish trace element contamination has
also been described. For instance, mussels Mytilus spe-
cies have been wildly studied not only because they are
commercially important but also because they are con-
sidered sentinels of environmental pollution making them
an excellent metal biomonitoring species (Coimbra et al.
1991, Figueiredo et al. 2022, Machado et al. 1999, Santos
et al. 2014). Seasonal and spatial variations of trace ele-
ments were reported in M. galloprovincialis (Figueiredo
et al. 2022) and Santos et al. (2014) reported levels of
several trace elements including Hg, Pb, Cr, and Cd below
maximum allowed values.

The presence of Hg was found in green alga (Ulva sp.),
bivalves (Scrobicularia plana and Cerastoderma edule),
worms (Hediste diversicolor) or crabs (Carcinus mae-
nas) collected from the intertidal mudflats in Sado estu-
ary (Lillebg 2011). Nevertheless, no correlation was found
among sediments and water levels and biota. In the Tagus
estuary, the presence of significant levels of heavy met-
als was found in worms (Nereis diversicolor), bivalves (S.
plana), brown shrimp (C. crangon), shore crab (C. maenas),
grey mullet (L. ramada), sole (Solea senegalensis), and sand
gob (Pomatoschistus minutus). Various studies have been
showing the adverse effects of trace elements on aquatic
organisms. In fact, exposure to various trace elements has
been shown to induce biochemical, genotoxicity effects, and
decreases survival (Garriz and Miranda, 2020, Velma and
Tchounwou, 2010).

The presence of various trace elements in diatoms and
various plant species associated with mine areas was also
reported (Table 4). In Filvida stream Coval da M6, the pres-
ence of Pb, Zn, Cd, Co, Cu, Mn, and Ni in benthic diatoms
communities was shown and geochemical results showed
a very toxic environment. The mixture of metals and their
high concentrations in stream sediments near the mine was
too toxic to allow a stable diatom community development.
Further downstream, the decrease in metal concentrations to
lower levels (two orders of magnitude) permitted the growth
of diatoms, many of which with deformations particularly in
F. capucina var. rumpens.

@ Springer
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Global assessment of trace elements in Portugal

Our literature survey revealed that currently available
data is heterogenous, varying in terms of study design,
selected trace elements, and spatiotemporal locations.
This heterogenicity leads to data differences that make
meaningful comparisons difficult. Furthermore, compre-
hensive studies are scarce in what concerns spatiotem-
poral monitoring studies using different matrices (e.g.,
water, sediments, and biota) as they require multidisci-
plinary teams to obtain, integrate and correlate different
data. Transboundary cooperative monitoring programs
should also be promoted as many hydrographic basins
are shared between Portugal and Spain. Additionally, the
establishment of environmental geochemical background
levels of trace elements is highly needed as they have
strong regional characteristics and are crucial for accurate
risk assessment. The overall spatial distribution of stud-
ies is represented in Fig. 3. The coastline and particularly
in the north of Portugal had coverage for multiple envi-
ronmental matrices types, whereas a notable number of
interior districts had no sample coverage for any matrix
type (Fig. 3). The spatial register of sample locations may
indicate that there is enhanced research interest in those
regions. Most papers published are focused on coastal
areas and estuaries, mainly along the Atlantic coast-
line. Even in the main rivers, most studies analyze their
mouths, where the biggest Portuguese cities are located.
In fact, coastal transition ecosystems as estuaries and
coastal lagoons are among the most productive in terms of
biological importance and therefore of high environmen-
tal relevance. However, they are also amongst the most
modified due to anthropogenic activities and vulnerable
to contamination by diverse classes of pollutants includ-
ing trace elements.

The total number of research regarding matrix type may
also represent the scientific priority for environmental trace
metals research. For example, there is a larger number of
papers reporting trace metals in sediments/soil in contrast
to water. This can indicate a shift away from this histori-
cally important exposure pathway. In fact, since the launch
of the Water Framework Directive, significant efforts were
made regarding the release of pollutants in addition to the
implementation of WWTPs that contributed to the reduction
of water trace element concentrations. Also, water trace ele-
ments reflet recent or occasional discharges while sediments
and soils are major reservoirs and frequently act as sources
of their presence in water bodies (Chon et al. 2012). There-
fore, the majority of papers (59%) published in this period
focus on sediments while a similar percentage focus either
on waters or biota (~20%) (Fig. 4). There are only 8% of
the papers with an integrated approach with determinations
on water, sediments, and biota. The distribution of trace

@ Springer

elements in each type of matrix (water, sediments/soils, and
biota) as can be seen in Fig. 5.

Maximum values found and the percentage of papers with
values above Aquatic Life limits are summarized in Table 5.

In waters, Zn, Cu, Pb, Cd, and As are among the trace
elements most determined and various works reported trace
element maximum levels higher than those established by
CCME guidelines for aquatic life for Al, Zn, Se, Cu, Pb, Ag
Cd, Cr, U, Ni, and As suggesting that adverse biological
effects are expected to occur (Table 5, Fig. 5). In sediments,
the pattern is similar, Pb, Cu, Zn, Cr, and Cd, and various
works reported maximum levels surpassing the correspond-
ing Interim sediment quality guidelines (ISQGs). Among
them, As, Cd, Cr, Pb, and Hg rank among the priority metals
that are of public health significance ranging from extremely
high risk to high risk (Table 5, Fig. 5) (Tchounwou et al.
2012). Thus, adverse biological effects are likely to occur
namely due to the presence of high levels of As, Cd, and Pb.
The mean concentration of trace elements in surface water
sediments is lower than that from mining areas (Table 5),
nevertheless, both sediments/soils from surface waters and
mining areas indicate that the degree of pollution by these
trace elements is severe and deserves attention.

These metallic elements are considered systemic toxi-
cants recognized as multiple organ damage inducers, even
at reduced exposure concentrations. They are also classi-
fied as human carcinogens (known or probable) according
to the US Environmental Protection Agency, and the Inter-
national Agency for Research on Cancer. Pb, Cr, Zn, As,
and Cu exceeded water quality guidelines in some studies
(Abreu et al. 2008). A worse scenario is found for sediments
with Zn, Cu, As, Pb, and Cr exceeding acceptable values
in the majority of the studies (Table 3) (Abreu et al. 2008,
Couto et al. 2019, Gongalves et al. 1992, Ribeiro et al. 2018).
Though Al is not among the most studied element, Al values
also exceed acceptable values for both water and sediments
in some studies.

Hg contamination is also a serious environmental health
problem and its complexity in the environment has been
systematically examined (Eagles-Smith et al. 2018). Even if
Hg is not among the most analyzed elements, its occurrence
was investigated in all matrices (Tables 1, 2, and 3). Hg is
an element of natural occurrence found in trace amounts in
air, water, and soil. Inorganic Hg appears naturally in surface
water because of rocks and soil erosion and weathering pro-
cesses. Hg in surface waters remains inorganic, but in certain
environmental conditions, such as acidic pH, high organic
matter and low dissolved oxygen, a fraction of it may be in
a more toxic organic form, methylHg. MethylHg has a ten-
dency to bioaccumulate, entering the food chain, therefore
becoming a human health threat (Eagles-Smith et al. 2018).
Hg is one of the most harmful environmental contaminants
and therefore mentioned in the high-priority environmental
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Soil and sediments
Rivers/Tributaries and estuaries:
Minho; Neiva; Cavado; Ave; Leca;
Douro, Esmoriz lagoon; Estarreja;
Filvida stream, Ria de Aveiro;
Agueda; Mondego;Lis,; Tagus;
Sado, Mira; Caia; Algueva;
Guadiana; Arade; Ria Formosa

Mine areas:
Murcos; Panasqueira; Horta da
Vilariga; Vale das Gatas; Castromil;

Terramonte; Valongo; Coval da Mo;
Lousal; Sevilha Mangualde;Canto
Lagar; Monfortinho: Miguel Vacas;
Alto Varzea; Aljustrel; Caveira; S.
Domingos

Industrial areas:
Estarreja; Agueda

Water System
Rivers, estuaries, lagoons, sea water:

Ave estuary; Douro estuary; Oporto
coast; Esmoriz lagoon
Ria de Aveiro; Mondego; Sado estuary

Mine areas:

Moncorvo; Cunha Baixa (ground water)
Murcés, Terramonte, Segura (surface
waters)

Sevilha mine (stream and lagoon)
Mangualde (lagoon)

Panasqueira (irrigation water)
Grandola (stream)

Alentejo (Miguel Vacas stream)

Lousal (drainage waters)

Biota
River and estuaries:
Cévado, Ave, Douro, Esmoriz, Ria de
Aveiro, Mondego, Tagus, Sado, Mira, Ria
Formosa, Guadiana
Native flora, algae, fish
Sea coast:
invertebrates
Mine areas:
Miguel Vacas, Coval da Mg,
Panasqueira,Sevilha, Horta da Vilarica,
|berian Pyrite Belt,

Fig. 3 Distribution of published works concerning the presence of trace elements on water, sediments/soils, and biota in Portugal, ball marks in
blue represent water bodies; in brown sediments/soil samples and green refers to biota

21.6% 19.8%

H water
® sediments/soils

M biota

Fig.4 Distribution percentage of published works regarding the
occurrence of trace elements in water, sediments/soils, and biota

pollutants directory within the Convention for the Protec-
tion of the Marine Environment of the North-East Atlantic
(OSPAR Commission 2009), the European Union Water
Framework Directive (EU-Directive 2000), and the United
States Environmental Protection Agency (U.S. EPA). Hydro-
dynamic flow patterns have been related to Hg dispersion and
pathways in coastal areas, causing harmful effects on biota

(Iglesias et al. 2020). Several estuaries show problematic and
deep-concerning levels (see boldface levels in Table 3).
Arsenic, usually detected at low concentrations, has a
wide distribution in practically all environmental matrices in
both inorganic (trivalent arsenite and pentavalent arsenate)
and organic forms (methylated metabolites). Environmental
As pollution occurs because of natural phenomena such as
volcanic eruptions and soil erosion, but also by anthropo-
genic activities (Mandal 2017, Tchounwou et al. 2012). As
water concentration is usually less than 10 pug L™, although
higher levels have been reported near natural mineral depos-
its or mining sites. Higher values were reported in two Por-
tuguese mining sites, and at Segura, the As water content
in December 2006 (1.190 mg L) was even higher than
in October 2006 (0.636 mg L") and was related to the As
released from Fe oxy-hydroxide (Antunes and Albuquerque,
2013, Antunes et al. 2018b). Natural levels of As in soil
usually range from 1 to 40 pg g’ (Tchounwou et al. 2012)
and CCME report values of probable effect levels (PELs)
(CCME 2006) of up to 41.6 pg g’ in marine/estuarine sedi-
ments and a guideline value of 12 pg g’! in soils. Higher val-
ues were reported in several estuarine or stream sediments

@ Springer
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Fig.5 Distribution of trace elements in each matrix (water, sediments/soils, and biota)

(see boldface values Table 3) in Minho (Mil-Homens et al.
2013), transboundary Douro (Reis et al. 2014), Tagus (Vale
et al. 2008), Ria Formosa (Sousa et al. 2019), and Guadiana
(Delgado et al. 2011). In mining areas, values of 2000 pg
! or higher were found in Castromil (values up to 6909 pg
gl (Silva et al. 2004), Aljustrel (maximum value of 3936
pg g!) (Candeias et al. 2011) and S. Domingos (Alvarenga
et al. 2012), where a value of 7955 ug g! was reported and
As presented high mobilizable contents in all sampled soils,
even though its effective bioavailable fraction represented
less than 10% of the pseudo-total content.

Cd is broadly disseminated in the earth’s crust with a mean
concentration of about 0.1 mg kg™'. Cd is commonly used in
industry in activities such as the production of alloys, pig-
ments, and batteries (Tchounwou et al. 2012). Cd compounds
are considered human carcinogens by various regulatory agen-
cies such as The International Agency for Research on Cancer
(IARC) (IARC 1993, 2009) and the US National Toxicology
Program; it has also been extensively investigated by United
Nations Environment Programs and the International Commis-
sion on Occupational Health. US Poison and Disease Registry
(ATSDR 1997) rated Cd as the sixth most toxic substance.

@ Springer

World Health Organization (Lata and Mishra, 2019) placed
cadmium in a priority position in the study of food contam-
inants. Plants act as a Cd carrier, in different salt chemical
water-soluble forms, into the food chain, so Cd polluted veg-
etable consumption or living close to highly-industrialized
places enhance toxicity potential (Lata and Mishra, 2019).

CCME reports values of 0.1 pug L' for long-term exposure
in freshwaters and 4.2 pug g™ of PEL in marine/estuarine soils
and a guideline value of 1.4 pg ¢! in agricultural soils (CCME
2006). Values superior to 19.5 pg g™ were reported in Cavado
(Gongalves et al. 1994) and in Mondego (Dias-Ferreira et al.
2016) estuarine sediments. Waters in mining areas with values
above CCME guideline were reported in three of the mines
studied (Antunes et al. 2007, Candeias et al. 2014, Favas et al.
2016) and in Ave estuary, where 80% of the samples collected
exceeded this limit (Couto et al. 2019).

Cr is naturally present in the earth’s crust, with oxidation
states (IT) to (VI). Cr compounds are stable in the trivalent
form and occur in nature in this state in minerals. Cr reaches
different environmental matrices (air, water, and soil) from
various natural and anthropogenic sources with the great-
est contribution coming from industries (Tchounwou et al.
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Table 5 Maximum trace element values and respective Aquatic Life limits (water and sediments)

Element Higher water

Freshwater long-

% papers above

Higher sediments Sediment Quality % papers above

Potential eco-

values found term Water Qual- limits found Guidelines for limits logical risk
(nature/mine) ity Guidelines (nature/mine) the Protection
(ug LY for the Protection (hggh of Aquatic Life
of Aquatic Life (CCME 2021)
(CCME 2021) ISQG/ PEL
(rg L (hggh
Al 2384 (Ave) 100 75% (3/4)
9070 (Cunha 14% (2/7)
Baixa Mine)
Hg 0.08 (Sado) 0.026 25% (1/4) 67 (Tagus) 0.170-0.486 56% (9/16) Extremely high
-- 0% (0/1) 100 (Grandola) 100% (1/1) risk
Extremely high
risk
Cr 3.1 (Douro) 1ok 50% (2/4) 2210 (Cavado) 37.3-90 (total) 50% (16/32) High risk
29.7 (Sevilha 50% (2/4) 464 (Mon- 14% (1/7) Low risk
Mine) fortinho)
Ni --- 25°% 0% (0/4)
77.4 (Sevilha 14% (1/7)
Mine)
Cu 24.7 (Ave) 2% 50% (3/6) 12628 (Agueda) 35.7-197 46% (17/37) Extremely high
1480 (Miguel 63% (5/8) 5414 (Aljustrel) 50% (7/14) risk
Vacas Mine) Extremely high
risk
Zn 264 (Esmoriz) 7* 67% (4/6) 10150 (Agueda) 123-315 46% (17/37) Very high risk
680 (Cunha 67% (6/9) 20000 (Aljustrel) 50% (7/14) Extremely high
Baixa Mine) risk
As 25.7 (Douro) 5 50% (1/2) 1022 (Tagus) 5.9-17 54% (7/13) Extremely high
1190 (Segura 70% (7/10) 7955 (S.Domin- 57% (8/14) risk
Mine) £0s) Extremely high
risk
Se 34.6 (Ave) 1 100% (3/3)
Mo 73 0% (0/3)
Ag 0.8 (Douro) 0.25 100% (3/3)
0% (0/1)
Cd 0.66 (Ave) 0.10* 40% (2/5) 32 (Cavado) 0.6-3.5 37% (11/30) Extremely high
9 (Cunha Baixa 43% (3/7) 61.6 (Aljustrel) 60% (6/10) risk
Mine) Extremely high
risk
Tl 1.23 (Douro) 0.8 33% (1/3)
Pb 18 (Esmoriz) 1* 50% (3/6) 3100 (Cavado) 35-91.3 41% (16/39) Extremely high
50.7 (Alto Varzea 50% (4/8) 26975 (S.Domin- 54% (7/13) risk
Mine) £0s) Extremely high
risk
U - 15 ---(0/3)
1842 (Cunha 33% (2/6)

Baixa Mine)

*Assuming water hardness<60 mg/L and DOC 0.5 ppm; Cr (VI)

2012). Hexavalent Cr, a powerful oxidizing agent, is a
toxic industrial pollutant classified as a human carcinogen
by several regulatory and non-regulatory agencies such as
ATSDR, IARC, and EPA (ATSDR 2012, EPA 1992, IARC
1990). CCME reports a guideline value for the protection of

aquatic life of 1 ug L! for freshwater and ISQGs and PELs
of 52.3 and 160 pg g”'. A very high value (1187 pg g'!) in
the Selho river (Ave tributary) was reported and reflected
the wastewater discharged from the leather tanning indus-
tries located in Guimaraes city (Gongalves et al. 1992). This
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Ave tributary presented very high metallic levels related to
industrial activities and probably illegal industrial wastewa-
ter discharges without prior treatment.

Pb is present in trace amounts in the earth’s crust. Pb is
the second most toxic metal after As because of its toxic
effects on living organisms (ATSDR 2016). Although Pb
occurs naturally in the environment, anthropogenic activi-
ties such as fossil fuel burning, mining, and manufactur-
ing contribute to its release in elevated concentrations. Pb
has many different industrial (batteries, ammunition, metal
products), agricultural and domestic applications (Tchoun-
wou et al. 2012). It is considered by the IARC as a probable
human carcinogen. CCME ISQGs and PELs for Pb are 30.2
and 112 pg g'! respectively; these values were exceeded in
several places in the literature cited in this review (boldface
in Table 3).

Remediation and risk management

Human activities such as agricultural production, urban
expansion, industrial activities, and mining have been
pointed out as the main contributors of trace elements input
into the environment in the last years. Trace elements pol-
lution remediation is difficult mostly because of their per-
sistence and non-biodegradability in the environment. Addi-
tionally, as a sink and source, soils and sediments represent
a repository of bioavailable heavy metals/trace elements and
take part in the returning of contaminants into circulation in
the aquatic environment depending on favorable situations.
Therefore, sediment chemistry provides valuable informa-
tion essential to assessing sediment quality in contaminated
sites and potentially harmful effects (Sarkar et al. 2014).
Hence, the improvement/implementation of tools for their
successful and effective environmental removal and well as
protection policies are needed to diminish their contamina-
tion potential and production, respectively.

There are several techniques that can be used, depending
on the concentration and nature of the contaminant, the soil
and site characteristics, the contaminant’s availability, and
the existence of specific regulations. The remediation can be
performed by the containment/isolation of the contaminated
matrices or soils, by using constructive techniques/physical
treatments; the immobilization/stabilization of the contami-
nants in the contaminated material (soils or tailings); or by
extraction/removal of the contaminants from the soil (Liu
et al. 2018, Song et al. 2021, Wang et al. 2021). The tech-
nique used is always site-specific, and, often, it combines
different strategies. In or ex situ remediation techniques for
contaminated sites targeting specifically the contaminants
can be used (Liu et al. 2018). The techniques can be further
classified as physical (e.g., soil washing, electrokinetic),
chemical (e.g., chemical addition to the soil to react and
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immobilize the contaminants), or biological (e.g., plants
and/or microorganisms to degrade, immobilize or extract
the contaminant). In mining areas (Lousal, Aljustrel, and
S.Domingos) constructive techniques were widely applied
in the rehabilitation of soil (excavation, storage, and cap-
ping) (Mourinha et al. 2022). In Aljustrel, for instance, the
dispersed slag deposits, mining residues, and contaminated
soils were removed and confined, and the deposits were
sealed with limestone and clay and covered with clean clay
soil and vegetation. Channels were constructed on the perim-
eter to collect drainage waters, conducted to evaporation-
concentration ponds, and processed in artificial wetlands to
protect the hydrological environment (Mourinha et al. 2022).

In contrast to the conventional physical and chemical
techniques for soil remediation, phytoremediation is a plant-
based and cost-effective technology that has been pointed
out as an alternative or complementary strategy to construc-
tive techniques. The main phytoremediation mechanisms
are based on phytostabilization (immobilization of pollut-
ants in the rhizosphere by the action of roots, bacteria, and
soil amendments); phytoextraction (plant aerial part uptake
and accumulation); phytostimulation (degradation in the
rhizosphere by microorganisms, stimulated by the plant’s
exudates); phytodegradation (plant enzymes degradation
within the plant tissues); phytovolatilization (conversion to
volatile forms and atmospheric release), phytodesalinization
(salt removal in saline soils with halophytes), and rhizo-
filtration (removal of contaminants from polluted aquatic
environments).

In the cited data phytoremediation is the most used
approach and various species have been used including
native plants. In fact, phytoremediation was developed as
a sustainable alternative to chemical and physical pollution
remediation approaches but is less expensive and environ-
mentally friendly. One study carried out in Ria Formosa
showed that Spartina maritima and S. fruticosa acted as Ag,
Cd, Mo, Cu, Pb, and Zn remediators, altering the sediment
metal distribution in depth and accumulating them, mostly
in roots (and in rhizomes for S. maritima). Metal transloca-
tion to aerial organs was found residual. S. maritima proved
to be a more effective metal stabilizer than S. fruticosa
(Moreira da Silva et al. 2015). Another study compared
Scirpus maritimus and Juncus maritimus from Douro salt
marshes in the bioaccumulation of Al, Cd, Cr, Cu, Fe, Mn,
Ni, Pb, and Zn. Both plants affected the sediment composi-
tion and revealed the potential for Cd phytostabilization. S.
maritimus could also concentrate Pb in its roots (Almeida
et al. 2006). Various studies showed Brassica juncea, Med-
icago sativa, Echinophora platyloba, Chara aculeolata to
be Pb hyperaccumulators (Zulfigar et al. 2019). Duraes et al.
(2015) compared the capability to uptake, translocate and
tolerate Cu, Zn, and Pb by macrophytes (Juncus effusus L.,
Scirpus holoschoenus L., Thypha latifolia L., and Juncus
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sp.) and land plants (Cistus ladanifer L., Erica andevalensis
C.-R., Nerium oleander L., Isatis tinctoria L., Rosmarinus
officinalis L., Cynodon dactylon L. and Hordeum murinum
L.) from Aljustrel, Lousal and Sdo Domingos mining sites
and Morocco (Tighza and Zeida) and concluded that the
aquatic plants showed a higher capacity for Zn bioaccumu-
lation and translocation with the metal mobility sequence
Zn>Cu>Pb. Another study highlighted the uranium con-
centrations in water—soil—plant matrices and the efficiency,
taking into account a heterogeneous assemblage of terrestrial
and aquatic native plant species to act as biomonitor and
phytoremediator for environmental U-contamination in the
Sevilha mine (Favas et al. 2016). In that study, a total of 53
plant species belonging to 22 families were collected from
24 sampling sites. The maximum potential of U accumula-
tion was recorded in roots of Juncus squarrosus (450 mg
kg™Y), Carlina corymbosa (181 mg kg™"), Juncus bufonius
(39.9 mg kg™Y), Callitriche stagnalis (55.6 mg kg™"), Lemna
minor (53.0 mg kg™'), and Riccia fluitans (50.6 mg kg™')
confirming the unique efficiency of roots in accumulating
this element from soil or sediments (phytostabilization)
(Favas et al. 2016). U accumulation by Scorpiurium deflexi-
folium, Fontinalis antipyretica, Nasturtium officinale (roots),
Oenanthe crocata (thizomes/ roots), and Rorippa sylvestris
(aerial parts) was also demonstrated and showed a consist-
ent higher trend of its concentration in the majority of the
plants in comparison to water (Cordeiro et al. 2016). The
perennial herb Rorippa sylvestris (creeping yellowcress) had
significantly higher U concentration in the shoots compared
to roots, with translocation factor (TF) 700 times higher than
unity, acting as a possible phytoextractor. The process of nat-
ural attenuation of contamination by phytostabilization of U
in the rhizosphere, with the contribution of the native plant
community offered an cost-effective and technical benefit,
and this study could contribute to improve U-contaminated
areas using the studied plant species in future environmental
projects (Cordeiro et al. 2016). However, phytoremediation
as also some drawbacks (Farraji et al. 2016) The extensive
treatment period makes it only suited for remote areas, and
the trace elements accumulated in biomass may lead to sec-
ondary pollution. Also, this process does not degrade the
trace elements, but decreases the compound’s ability to
migrate to soil and water. It is also possible that if flora
is consumed by wildlife, these pollutants could enter the
food chain. However, various complementary processes and
methods can be used to enhance phytoremediation efficiency
and overcome its present disadvantages. Phytoremediation
can also be operated at large scales and contribute to the
conservation of soil and ecosystem structure, prevention of
erosion and leaching of metal. Furthermore, phytoremedia-
tion in degraded areas can offer more habitats for wildlife.
Nevertheless, the overexploitation of natural resources
leads to their depletion and negative ecological impact

affecting not only all living organisms’ health but also eco-
nomic growth. Therefore, governments and policymakers
should implement measures for better management and
sustainable production as well as strategies for the reduc-
tion and release of these contaminants to the environment,
promoting sustainable use and consumption.

Conclusions

Trace elements are ubiquitous environmental pollutants in
aquatic and terrestrial ecosystems and have been considered
a severe environmental problem. The potential hazard of an
environmental chemical is a function of various factors includ-
ing its persistence, toxicity, and bio/accumulative potential.
Due to these three main characteristics trace elements are
considered hazardous. Most hazardous trace elements envi-
ronmentally relevant include Cr, Zn, Cd, Pb, Hg, and As. The
trophic transfer of these elements in aquatic and terrestrial food
chains/webs has important implications for both wildlife and
human health. Reviewed data on surface waters showed that
Al, Zn, Se, and Ag were above aquatic life limits in 60% of
the published works. Cu, Zn, and As exceed aquatic life limits
in more than 60% of mining waters. Hg and Cd in sediments
from mining areas exceeded aquatic life limits and potential
ecological risk showed extremely high risk for most of the ele-
ments. According to a potential ecological risk assessment, an
extremely high risk was detected for Hg, Cu, As, Cd, and Pb.
Therefore, it is crucial to continue to monitor the concentra-
tions of trace elements in different environmental matrices for
environmental protection works, management and mitigation
measures. Furthermore, the establishment of environmental
background concentrations of trace elements should be docu-
mented in the different environmental matrices and specific
research area for later use as reference and to allow an accurate
environmental risk assessment.
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