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Abstract
One of the most essential difficulties in the design and management of bridge piers is the estimation and modeling of scour-
ing around the piers. The scour depth downstream of twin and three piers were simulated using a new outlier robust extreme 
learning machine (ORELM) model in this study. Furthermore, k-fold cross-validation with k = 4 was employed to validate 
the outcomes of numerical models. Four ORELM models with effective scouring parameters were first created to simulate 
scour depth. After then, the number of hidden layer neurons increased from two to thirty. The number of ideal hidden neu-
rons was determined by examining the modeling results. The sigmoid activation function was also introduced as the best 
function. Furthermore, a sensitivity analysis was used to identify the superior model. The best model predicted scour depth 
as a function of the Froude number (Fr), the pier diameter to flow depth ratio (D/h), and the distance between the piers to 
flow depth ratio (d/h). The values of the objective function were accurately approximated by this model. As a result, using 
the ORELM model, the R2, scatter index, and Nash–Sutcliffe efficiency coefficient were calculated to be 0.953, 0.146, and 
0.949, respectively. The most efficient parameters for simulating the scour depth were Fr and D/h, according to the modeling 
results. It is worth noting that nearly half of the superior model’s simulated outputs had an inaccuracy of less than 10%. The 
superior model’s performance has been underestimated, according to uncertainty analysis. After that, a simple and practical 
equation for calculating the scour depth was established for the superior model. Additionally, the influence of each input 
parameter on the objective function was assessed using a partial derivative sensitivity analysis.

Keywords Outlier robust extreme learning machine (ORELM) · Scour · Twin and three piers · k-fold Cross-validation · 
Uncertainty analysis · Partial derivative sensitivity analysis

Introduction

The water flow around hydraulic constructions like piers, 
abutments, and weirs causes the scouring phenomena. The 
development of a vacuum at the interface of the two media 
(sediment and fluid) due to the velocity gradient is the 
cause of this phenomenon. Scouring occurs in the region of 
bridges, abutments, downstream of the Ogee spillways, and 
submerged spillways, among other structures. These struc-
tures have a high chance of being destroyed if the scour 
hole size is increased. The restoration and rehabilitation of 
numerous buildings, particularly bridge piers damaged by 
scouring, cost a lot of money every year. As a result, assess-
ing and predicting the proportions and pattern of scouring 
around bridge piers are critical, and numerous studies have 
been conducted in this area (Harasti et al. 2021; Link et al. 
2019).
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It should be mentioned that many studies on the scour 
pattern around complex piers and pier groups have also 
been conducted. Coleman (2005) undertook an experiment 
to measure the scour around the intricate piers. They devel-
oped a method for calculating the minimum and maximum 
local scouring in the area of complex piers. Melville et al. 
(2007) have provided an analytical method for calculating 
the diameters of scour holes around complex piers. They 
validated their model’s conclusions with experimental data, 
demonstrating that this strategy is accurate enough. In the 
following paper, Ataie‐Ashtiani et al. (2010) tested the scour 
depth under the vicinity of complex piers in clear-water con-
ditions. They discovered that when the pile cap was under-
cut, the maximum scour depth occurred. In an experimen-
tal investigation, Amini et al. (2012) investigated the scour 
pattern around pier groups in clear water in shallow waters. 
Moreno et al. (2016) carried out an experiment to quan-
tify the scour around the complex piers in clear-water flow 
conditions. They discovered that when a portion of the pile 
cap is buried in the sediments, the maximum scour depth 
occurs. F. Liang et al. (2017) also investigated the scour 
hole depth surrounding the single, twin, and pier groups 
experimentally. They claimed that the scour pattern around 
single piers differs significantly from that surrounding pier 
groupings. Amini Baghbadorani et al. (2017) used empirical 
relationships to examine experimental values gathered in the 
area of pier groups in earlier investigations. They devised 
an equation to compute the scour depth around the pier 
groups, claiming that the equation’s accuracy was around 
10% higher than that of prior research. The scouring pattern 
around the pier groups and complex piers was studied by 
Amini Baghbadorani et al. (2018). They demonstrated that 
the scour pattern changes around pier groups and complex 
piers, and they established distinct equations for calculat-
ing scouring for these two types of structures. The effects 
of inclination angle on the scour pattern in the vicinity of 
two types of pier groups were investigated by Bozkuş et al. 
(2018). They evaluated the findings and gave some empirical 
equations for determining scour around pier groups.

Various investigations on the scouring pattern around 
twin and three piers have also been conducted. Ataie-Ash-
tiani and Aslani-Kordkandi (2012) measured the scour-
ing pattern around twin bridge piers. They discovered that 
between the two bridge piers, the bed shear stress was 
higher than in other regions. In addition, in an experi-
mental investigation, Das et al. (2016) looked at the scour 
values around the twin piers with circular, square, and 
triangular cross sections. They claimed that the scour hole 
length near the triangular twin piers was shorter than that 
near the circular and square piers. Wang, et al. (2016a, 
b) also conducted an experiment to determine the scour 
depth at the circular twin pier. They discovered that the 
scour depth around the downstream pier was lower than 

the scour depth around the upstream pier by examining the 
testing findings. In an experimental investigation, Wang, 
et  al. (2016a, b) looked at the scouring values around 
three piers of the same distance. They conducted the tests 
in clear water and found that the scour depth around the 
upstream pier was the same as that around the single pier.

Nowadays, artificial intelligence techniques have been 
widely used for many engineering applications (Bazraf-
shan et al. 2022; Ehteram et al. 2020; Latif 2021a, 2021b; 
Latif et al. 2020; Latif et al., 2021a, 2021b; Latif, Birima, 
et al. 2021a, b; Latif and Ahmed 2021; Najah et al. 2021; 
Parsaie and Haghiabi 2017; Parsaie et al. 2021). Also, 
artificial intelligence techniques have been used for scour 
around bridge piers prediction, for example, Etemad-
Shahidi et al. (2015) used the M5 model tree to simulate 
the scour depth around the bridge piers. They discovered 
that the M5 model tree outperformed the empirical rela-
tionships after assessing the modeling findings. Muzzam-
mil et al. (2015) used the Gene Expression Programming 
(GEP) model to estimate the scour hole size in cohesive 
sediments around bridge piers. They compared the results 
of their numerical model to the experimental findings and 
found that the GEP model outperformed the nonlinear 
regression model in terms of accuracy. Azimi et al. (2017) 
created a hybrid model for simulating scour depth in the 
vicinity of pier groups utilizing Adaptive Neuro-Fuzzy 
Inference System (ANFIS), Singular Decomposition Value 
(SVD), and Differential Evolution (DE) methods. They 
demonstrated that the hybrid model was accurate enough. 
Using the Extreme Learning Machine (ELM) model, Ebt-
ehaj et al. (2018) projected scour depth at the pier groups. 
They also compared their findings to those of artificial 
neural networks (ANN) and support vector machines 
(SVM), finding that the ELM model was more accurate.

Artificial neural networks (ANNs) are believed to be 
very popular and practical approaches based on the results 
of earlier studies and their acceptable performance in tack-
ling nonlinear problems that are difficult to solve using 
traditional analytical and numerical methods. Although 
this strategy has demonstrated accurate results in multiple 
trials, it also has several drawbacks, the most significant 
of which is the slow training speed. The slow learning 
speed of ANN models is caused by the slowness of gradi-
ent algorithms and the repeated setting of ANN parameters 
throughout the training phase. By transforming a nonlin-
ear problem into a linear problem, the extreme learning 
machine (ELM) method has solved the problem of high-
speed modeling in a single-layer feed-forward neural net-
work (SLFFNN) (Huang et al. 2004). Furthermore, this 
strategy is highly generalizable (N. Y. Liang et al. 2006). 
Although ELM models have numerous advantages, they 
tend to outlier data throughout the training phase, reduc-
ing the model’s accuracy and validity (Horata et al. 2013). 
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Zhang and Luo (2015) proposed outlier robust ELM 
(ORELM) approaches to address this issue.

Artificial intelligence techniques, such as ELM and its 
expanded forms (i.e., ORELM), are, on the other hand, fre-
quently employed by researchers and engineers. Artificial 
intelligence technologies, on the other hand, have not been 
used to simulate and estimate scouring in the region of twin 
and three piers. As a result, a new ORELM approach is used 
to model the scour depth around the twin and three piers in 
this study. The optimal number of hidden neurons is chosen 
utilizing the trial-and-error method to attain this goal. For 
modeling the scour depth, the optimum activation function 
is also introduced. It should be mentioned that the k-fold 
cross-validation approach with k = 4 is utilized to check the 
numerical model’s results. In addition, the input parameters 
are used to create four different ORELM models. The supe-
rior model and effective parameters are chosen using sen-
sitivity analysis. Error analysis and uncertainty analysis are 
also implemented in ORELM models. The superior model 
is then given a realistic and straightforward relationship. A 
partial derivative sensitivity analysis is performed for this 
equation.

Material and methods

Experimental model

The experimental data of Wang, et al. (2016a, b) and Wang, 
et al. (2016a, b) were used in this investigation to develop 
the soft computing model. A rectangular flume with length, 
width, and height of 12, 0.42, and 0.7 m is included in the 
experimental model. Two piers with a diameter of 6 cm were 
built in the twin pier type. It should be mentioned that the 
sediment layer had an initial depth of 15 cm and a length of 
6 m, and twin piers were positioned in the sediment layer at 
a distance of d. The distance between the piers was assumed 
to be between 0 and 15 times the pier diameter in the three 
piers model. Figure 1 depicts a schematic representation of 
Wang, et al. (2016a, b) and Wang, et al. (2016a, b) experi-
mental models.

Scour around piers

The scour depth in the vicinity of the pier groups (ds) is 
a function of the mean diameter of the sediment particles 
(d50), the number of piers parallel to the flow direction (m), 
the diameter of the bridge piers (D), the center-to-center 
distance between bridge piers in the direction parallel to the 
flow (d), the center-to-center distance between bridge piers 
in the direction perpendicular to the flow (Sn), flow depth 
(h), average flow:

where U is the mean vertical velocity of the approaching 
flow, and Uc is the incipient velocity of sediment motion. 
Wang, et al. (2016a, b) and Wang, et al. (2016a, b) used a 
distance of d to measure the scour around the piers. The 
values of d50, m, n, d, Sn, and Uc in their investigation were 
nearly constant. When the dimensionless parameters are 
considered, Eq. 1 is rewritten as follows:

Fr is the Froude number in this case. As a result, the 
parameters of Eq. 2 are used as input parameters in numeri-
cal models in this work. Figure 2 depicts the input parameter 
combinations for several models. In addition, Table 1 shows 
the range of experimental values used in this investigation.

ELM

Huang et al. 2004) developed ELM, which is an SLFFNN 
training method. In actuality, SLFFNN is a linear system 

(1)ds = f (d50,m, n,D, d, Sn, h,U,Uc

(2)ds∕h = f (D∕h, d∕h,Fr

Fig. 1  Schematic representation of Wang et  al. (2016a) and Wang 
et al. (2016b) experimental models (2016b)
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in which the input weights for hidden neurons and hidden 
layer biases are chosen at random, but the weights between 
hidden nodes are calculated analytically. This technique 
outperforms traditional learning algorithms in terms of per-
formance and learning speed (Huang et al. 2004). Because, 
unlike traditional methods that necessitate the adjustment 
of numerous parameters, this method does not necessitate 
extensive human interaction to attain optimal values (Ebte-
haj et al. 2016). The following is a representation of a stand-
ard single-layer neural network with N random data (xi, ti), 
N hidden neurons, and the active function g(x):

in which, wi = [wi1, wi2, … win]T is the weight vector con-
necting the hidden neurons to the input neurons; βi = [βi1, 
βi2, …, βin]T represents the weight vector connecting the 

(3)xi =
[
xi1, xi2, ..., xin

]T
∈ Rn

(4)xi =
[
xi1, xi2, ..., xin

]T
∈ Rn

(5)ti =
[
ti1, ti2, ..., tin

]T
∈ Rm

(6)
N∑
i=1

�ig(wixj + bi) = oj, j = 1, 2, ...,N

hidden neurons to the output neurons; bi is the biases of the 
hidden neurons; wixj indicates the internal multiplication of 
wi and xj. The standard SLFFNN network with the N hidden 
neurons and the activation function g(x) can estimate N data 
with a zero error (

∑N

j=1
‖oj − tj‖ = 0) , in which.

The above equations can be rewritten as follows:

The matrix H is called the output matrix of the hidden 
layers of the neural network. The ith column of the matrix 
H represents ith vector of the output of the hidden neurons 
(considering x1, x2, …, xN as input).

The determination of the input weights (wi) and the hid-
den layer biases (bi) are equivalent to finding a solution for 
β least square of the linear system Hβ = T.

The least average solution for the least square of the linear 
system is

ORELM

In addition to the general form of ELM, the following cases 
should be considered in the ORELM technique (Zhang and 
Luo 2015):

C ,  a new adjustment parameter, is introduced. 
The ratio of the training error to the output weight 
norm is this parameter. This parameter can be used 
to concurrently minimize the training error and the 
output weight norm; in other words, it can be used 
to increase the model’s generalizability performance 

(7)
N∑
i=1

�ig(wixj + bi) = tj, j = 1, 2, ....,N

(8)H� = T

(9)

H(w1, ...,wN , b1, ..., bN , x1, ..., xN ) =

⎡⎢⎢⎢⎣

g(w1.xN + b1) … g(wN .x1 + bN

⋮ ⋮ ⋮

g(w1.xN + b1 ⋯ g(wN .xN + bN

⎤⎥⎥⎥⎦
N∗N

(10)� =

⎡
⎢⎢⎣

�T
1

⋮

�T
N

⎤⎥⎥⎦
N∗m

(11)T =

⎡⎢⎢⎣

tT
1

⋮

tT
N

⎤⎥⎥⎦
N∗m

(12)‖H(w1, ...,wN
, b1, ..., bN )� − T‖ = min�‖H(w1, ...,wN

, b1, ..., bN )� − T‖

(13)� = H+T .

Fig. 2  ORELM model development using a combination of input 
parameters

Table 1  Experimental values range utilized in this study

Parameter Maximum Minimum Average Standard 
deviation

Variance

ds/h 0.625 0.008 0.227 0.152 0.023
D/h 0.500 0.250 0.359 0.107 0.011
d/h 7.50 0.250 2.588 1.954 3.817
Fr 0.258 0.116 0.186 0.040 0.002
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when compared to the ELM model, which is repre-
sented by the equation:

The scattering can be better reflected using ℓ0-norm 
instead of ℓ2-norm. Hence, the output weight β is consid-
ered with a smaller ℓ2-norm, so that the training error e 
is reduced; that is:

A non-convergent programming problem is the one 
shown above. Refreshing the issue with a tractable form 
relaxation convex without losing the dispersion index 
is a simple technique to solve it. The dispersion feature 
is ensured by replacing the ℓ1-norm with the ℓ0-norm, 
resulting in maximum convergence. As a result, the equa-
tion looks like this:

where, the augmented Lagrangian function is defined as 
follows:

where μ is the error parameter and λ * Rn is the augmented 
Lagrangian vector. According to Yang and Zhang (2011), 
the value of μ should be assumed to be μ = 2 N/||T||. The 
ideal response (e, β) and the coefficient λ are computed in 
the augmented Lagrange multiplier (ALM) by repeating to 
minimize the completed Lagrangian function. In summary, 
the repeat design of ALM, according to (λk, μ), is as follows:

These equations can be rewritten as follows:

Goodness of fit

The statistical indices of determination coefficients 
(R2), variance accounted for (VAF), root mean square 
error (RMSE), scatter index (SI), mean absolute error 

(14)����C‖T − H�‖2
2
+ ‖�‖2

2
.

(15)����C⇑ e ⇑0 + ⇑ � ⇑

2

2
subject to T − H� = e.

(16)���� ⇑ e ⇑
1
+

1

C
⇑ � ⇑

2

2
subject to T − H� = e

(17)
L�(e, �, �) = ‖e‖1 + 1

C
‖�‖2

2
+ �T (T − H� − e) +

�

2
‖T − H� − e‖2

2

(18)

{
(ek+1, �k+1) = ��� min

e,�
L�(e, �, �k)

�k+1 = �k + �
(
T − H�k+1 − ek+1

)
.

(19)

⎧⎪⎨⎪⎩

�k+1 = arg min
�
L�(ek, �, �k)

�k+1 = arg min
�
L�(ek, �, �k)

�k+1 = �k + �(T − H�k+1 − ek+1)

(MAE), mean absolute relative error (MARE), and 
Nash–Sutcliffe efficiency coefficient (NSC) are used 
in this study to evaluate the accuracy of numerical 
models:

where Oi denotes the observed values, Pi denotes the numer-
ical models’ simulated values, Ō is the average of observa-
tional values, and n denotes the number of observational 
values.

Because the statistical indices offered do not allow for 
simultaneous comparison of the models’ mean and variance, 
the Akaike information criterion (AIC) is used to compare 
the predicted discharge coefficient to the experimental value 
(Ebtehaj et al. 2016):

The number of estimated parameters employed in the 
numerical model is given by k. The ACI parameter is used 
as a benchmark for determining how well a statistical 
model adapts. It is also used to choose a model, and it 
describes the numerical model’s complexity and accuracy 
at the same time.

(20)

R2 =

�
n
∑n

i=1
PiOi −

∑n

i=1
Pi

∑n

i=1
Oi

�2
�
n
∑n

i=1

�
Pi

�2
−
∑n

i=1

�
Pi

�2��
n
∑n

i=1

�
Oi

�2
−
∑n

i=1

�
Oi

�2�

(21)VAF =

(
1 −

var
(
Pi − Oi

)

var
(
Pi

)
)

× 100

(22)RMSE =

√√√√1

n

n∑
i=1

(
Pi − Oi

)2

(23)SI =
RMSE

O

(24)MAE =

∑n

i=1
��Pi − Oi

��
n

(25)MARE =
1

n

n∑
i=1

||Pi − Oi
||

Oi

(26)NSC = 1 −

∑n

i=1

�
Oi − Pi

�2
∑n

i=1

�
Oi − O

�2

(27)AIC = n.���

[
1

n

n∑
i=1

(
R(Observed)i − R(��edicted)i

)2]
+ 2k
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Results and discussion

Number of hidden layer neurons

First, the number of hidden layer neurons is examined. Fig-
ure 3 depicts the relationship between the number of hidden 
layer neurons and numerous statistical indices. Two criteria 
must be considered when determining the ideal number of 
hidden layer neurons. (1.) The AIC value is the smallest, 
and (2.) the MARE value is less than 0.15. The number 
of hidden layer neurons was first estimated to be two, then 
increased to thirty. The numerical model considers the num-
ber of ideal hidden layer neurons to be 17 based on these 
two criteria. For example, when NHN equals 15, the numer-
ical model’s MARE and AIC values were calculated to be 
0.150 and − 41.807, respectively. Furthermore, the VAF, 
RMSE, and NSC values for these hidden neuron layers were 
estimated to be 99.758, 0.018, and 0.968, respectively.

The scatter plot and comparison of observed and simu-
lated values for NHN = 17 are shown in Fig. 4. R2, MAE, 
and SI are computed as 0.968, 0.014, and 0.096, respec-
tively, for a model with NHN = 17. As a result, the best 
number of this parameter was determined to be 17 based 
on the number of hidden layer neurons.

Activation function selection

The correctness of the numerical model’s numerous activation 
functions is assessed in this section. Sig, sin, radbas, tribas, 
and hardlim are the five activation functions in the ELM 
model. Figure 5 depicts the findings of statistical indicators. 
The VAF, SI, and RMSE values for the sig activation function 
are 96.758, 0.096, and 0.018, respectively. Meanwhile, for the 
sin activation function, the MAE and SI indices are 0.016 and 
0.011, respectively. The RMSE, NSC, and VAF indices for the 
radbas activation function are 0.039, 0.909, and 85.803 corre-
spondingly. The values of SI, MAE, and RMSE for the tribas 

Fig. 3  The number of hidden neuron layers varies according to different statistical parameters

Fig. 4  Scatter plot with simu-
lated and observed scouring 
values for NHN = 17

74531

1 3

Environmental Science and Pollution Research  (2022) 29:74526–74539



activation function, on the other hand, are 0.199, 0.030, and 
0.038, respectively. The VAF and SI values for the hardlim 
function are estimated to be 0.831 and 0.578, respectively, 
based on the findings of the activation functions. The error 
indices of activation functions tested during the development 
of ELM model are given in Table 2.

Figure 6 also shows scatter plots and outcomes of scour-
ing simulations using various activation functions. The R2 
values for the activation functions sig, sin, and radbas, for 
example, are 0.968, 0.964, and 0.946, respectively. Further-
more, the amount of R2 for tribas and hardlim functions was 

estimated to be 0.948 and 0.024, respectively. As a result, the 
sig function is identified as the superior activation function 
based on the findings of the activation functions.

k‑fold cross‑validation

The data is separated into k subgroups in this type of vali-
dation. One subset is utilized for validation, and the other 
k − 1 subsets are used for training. This process is repeated, 
with all data being utilized twice for training and valida-
tion. Finally, as a final estimate, the average result of k times 

Fig. 5  Results of statistical indices for various activation functions

Table 2  Error indices of tested 
activation functions of ELM 
model

Activation function R2 VAF RMSE SI MAE NSC

Sig 0.98 97 0.02 0.10 0.144 0.98
sin 0.96 95 0.02 0.11 0.176 0.96
radbas 0.91 86 0.04 0.20 0.32 0.91
tribas 0.92 88 0.04 0.20 0.32 0.92
hardlim 0.10 2 0.11 0.58 0.896 0.09
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validation is chosen. For k = 4, Fig. 7 depicts the k-fold 
cross-validation procedure. Figure 8 depicts the scatter plots 
for the four validation stages of the k-fold cross-validation 
approach. The R2 values for k = 1 and k = 2 in the test mode 
are 0.949 and 0.952, respectively. The R2 values for k = 3 
and k = 4 are calculated to be 0.953 and 0.950, respectively.

Performance of ORELM models

The findings of the ORELM 1 to ORELM 4 models are 
presented in this part to simulate the scour depth around 
twin and three piers. Figure 9 depicts the findings of vari-
ous statistical indices for these models. For all input param-
eters (D/h, d/h, and Fr), the ORELM model calculates the 
scour depths. The VAF and RMSE statistical indices have 
been calculated to be 95.249 and 0.033, respectively, for this 
model, while this model’s scatter index is 0.146.

Three ORELM 2 to ORELM 4 models, on the other hand, 
estimate the values of the objective function using the three 
input parameters. The ORELM 2 model, for example, is a 
function of D/h and d/h. The statistical indices of MAE, 
SI, and RMSE for this model are 0.099, 0.549, and 0.125, 
respectively.

ORELM3’s SI, VAF, and NSC values are also predicted 
to be 0.245, 84.316, and 0.814, respectively. The effect of the 
d/h has been removed from this model. In other words, the 
model uses D/h and Froude numbers to estimate the values 
of the goal function.

Furthermore, because the ORELM4 model is a function 
of d/h and Fr, the effect of the D/h parameter is neglected. 
MAE, VAF, and RMSE for ORELM4 are calculated to be 
0.056, 75.284, and 0.076, respectively. The NSC for this 
model is equivalent to 0.671.

Figures 10 and 11 provide a comparison of simulated 
and observed scouring values, as well as error distribution 
diagrams for ORELM models. The R2 coefficient for the 

ORELM model is 0.953. Furthermore, the ORELM1 model 
simulates nearly half of the scouring values with an inaccu-
racy of less than 10%. It is worth noting that around a third 
of the ORELM1 model’s outputs have an inaccuracy of more 
than 15%. The R2 score for the ORELM2 model is 0.326. 
Approximately 81% of the outcomes for this model have a 
margin of error greater than 15%. It should be noted that 
around 8% of the scouring values simulated by ORELM2 
have an inaccuracy of 10 to 15%. Furthermore, the R2 
value for the ORELM3 model is predicted to be 0.843, and 
around 32% of the findings have an error of less than 10%. 
In comparison, around 68% of the values estimated using the 
ORELM4 model have an error greater than 15%, and 9% of 
the findings have an error between 10 and 15%. The R2 value 
for ORELM is approximately 0.753.

As a result of the modeling results, the ORELM1 model 
is determined to be the superior model. In terms of D/h, d/h, 
and Fr, this model calculates the scour depths in the vicinity 
of twin and three piers. The parameters of the Froude num-
ber (Fr) and the ratio of the pier diameter to the flow depth 
(D/h) were also found as the most effective input parameters 
after an analysis of the simulation results.

Uncertainty analysis

The uncertainty analysis of ORELM models is performed in this 
section to evaluate the projected error by numerical models and 
to assess their performance. In general, the numerical model’s 
predicted error is equal to the numerical model’s simulated val-
ues (Pi) minus the observational values. (Oi) (ei = Pi − Oi). Also, 
the average of the predicted error is calculated as e =

∑n

i=1
ei . In 

addition, the standard deviation of the predicted error values is 
Se =

�∑n

i=1

�
ei − e

�2
∕n − 1 . It should be noted that the nega-

tive and positive values of ē indicate that the numerical model has 
an underestimated and overestimated performance, respectively. 
Also, using parameters of ē and Se, a confidence band is plot-
ted around the predicted error values by Wilson score’s method 
without continuity correction, then, using ± 1.64Se approximately  

Fig. 6  Scatter plot and comparison of observed and simulated scour-
ing values

◂

Fig. 7  Schematic of k-fold 
cross-validation method for 
k = 4
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Fig. 8  Scatter plot for k = 4 
in the k-fold cross-validation 
method
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95% band, which shown with 95% PEI. Table 3 shows the param-
eters for the improved model’s uncertainty analysis. The WUB 
represents the breadth of the uncertainty band in this table. The 
ORELM1, ORELM2, and ORELM4 models have underestimated 
performance, while the ORELM3 model has overestimated per-
formance, according to the results of the uncertainty analysis. In 
addition, the 95% PEI value used by the ORELM1 model to esti-
mate scour depth is between − 0.005 and 0.004. In the meantime, 
the ORELM2 uncertainty band is around − 0.017 wide. Further-
more, the value of Se for the ORELM3 and ORELM4 models is 
predicted to be 0.06 and 0.076, respectively.

As a result of the modeling results analysis, the ORELM1 
model is chosen as the superior model for estimating scour 
depth in the region of the twin and three piers. A relationship 
is constructed for this model as follows:

(28)
dS

h
=
|||||

[
1

(1 + ���(InW × InV + BHN))

]T
× OutW

|||||
.

Fig. 9  Results of statistical indices for different ORELM models

The input weights matrix is InW, the input variables 
matrix is InV, the bias-layer neuron matrix is BHN, and the 
output weights matrix is OutW. Furthermore, the best values 
for these matrices are listed below:

(29)

InV =

⎡⎢⎢⎢⎢⎣

D∕h

d∕h

Fr

⎤⎥⎥⎥⎥⎦
BHN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.047

-0.028

0.223

−0.720

0.234

0.655

−0.116

−0.178

−0.068

−0.879

−0.873

−0.066

0.602

0.101

−0.833

0.857

−0.657

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

InW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

-0.774 -0.789 0.918

0.386 -0.807 -0.297

0.983 0.573 -0.657

0.065 -0.876 -0.551

-0.640 0.665 0.757

-0.480 -0.246 0.455

-0.407 -0.354 -0.048

-0.370 0.876 -0.495

-0.141 0.335 0.335

-0.844 -0.999 0.214

0.277 0.513 0.463

0.630 -0.818 0.931

-0.361 -0.040 0.699

0.368 0.777 0.807

0.478 0.939 0.848

-0.249 0.595 -0.209

-0.401 -0.155 0.746

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

OutW =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

73.924

214.041

84.575

-219.899

105.166

-52.979

180.606

35.214

-48.781

-71.814

107.885

-75.918

81.121

-194.716

92.059

-216.919

-57.742

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Partial derivative sensitivity analysis (PDSA)

The partial derivative sensitivity analysis (PDSA) is 
applied to the superior model (ORELM1) in this section, 
and the input parameters are evaluated. In general, one of 
the most essential methods for determining the pattern of 
fluctuation of input parameters is partial derivative sensi-
tivity analysis (PDSA) (Azimi et al., 2017). Furthermore, 
a positive partial derivative sensitivity analysis indicates 

Fig. 10  Comparison of observed and simulated scour depths by different ORELM models

Fig. 11  Error distribution for different ORELM models

Table 3  Uncertainty analysis parameters for different ORELM mod-
els

Model Number 
of sam-
ples

e S
e

WUB 95% PEI

ORELM 1 209  − 0.008 0.033  − 0.005  − 0.005 to 
0.004

ORELM 2 209  − 1.423E − 09 0.125  − 0.017  − 0.017 to 
0.017

ORELM 3 209 1.0126E − 06 0.060  − 0.008  − 0.008 
to0.008

ORELM 4 209  − 3.424E − 05 0.076  − 0.01  − 0.010 to 
0.010
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that the objective function (scour) is increasing; on the 
other hand, a negative value indicates that the output 
value is decreasing. The ratio of the objective function is 
used to derive the relative derivative of each input param-
eter in this study. In other words, for each input variable, 
the relative derivative f(x) is determined (Fig. 12). The 
value of PDSA, for example, diminishes as D/h increases. 
For d/h greater than 4, however, the scour depth increases, 
and the d/h (as the input parameter) increases. Further-
more, with increasing Fr, the PDSA pattern displays a 
declining trend.

Conclusion

The scour depth around twin and three piers were 
simulated using a new outlier robust extreme learning 
machine (ORELM) in this work. k-fold cross-validation 
for k = 4 was performed to validate the simulation find-
ings. The ideal number of hidden layer neurons and 
activation function was chosen at first. In other words, 
the sigmoid function and several ideal neurons of 17 
were introduced as optimal activation. Following that, 
four ORELM models were created utilizing the input 
parameters. Analyzing the modeling results revealed 
the superior model and the most effective input param-
eters. The superior model simulated the scouring values 
with acceptable accuracy. The optimal values for all 
input parameters were estimated using this model, and 
the most effective input parameters were Fr and D/h. 
For ORELM1 (superior model), the RMSE, MAE, and 
VAF values were calculated to be 0.033, 0.025, and 
95.249, respectively. Furthermore, the error distribu-
tion revealed that approximately 18% of the ORELM 
model’s outputs had an error of between 10 and 15%. 
In addition, an uncertainty analysis was done on all 
ORELM models, and the ORELM1 model underper-
formed. It should be mentioned that for the ORELM1 
model, a simple equation was presented for engineers 

to employ in their practical work. Finally, a PDSA was 
used to solve this problem.
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