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Abstract
Nitrogen and phosphorus are critical for the vegetation ecosystem and two of the most insufficient nutrients in the soil. In 
agriculture practice, many chemical fertilizers are being applied to soil to improve soil nutrients and yield. This farming pro-
cedure poses considerable environmental risks which affect agricultural sustainability. As robust soil microorganisms, plant 
growth-promoting rhizobacteria (PGPR) have emerged as an environmentally friendly way of maintaining and improving 
the soil’s available nitrogen and phosphorus. As a special PGPR, rhizospheric diazotrophs can fix nitrogen in the rhizosphere 
and promote plant growth. However, the mechanisms and influences of rhizospheric nitrogen fixation (NF) are not well 
researched as symbiotic NF lacks summarizing. Phosphate-solubilizing bacteria (PSB) are important members of PGPR. 
They can dissolve both insoluble mineral and organic phosphate in soil and enhance the phosphorus uptake of plants. The 
application of PSB can significantly increase plant biomass and yield. Co-inoculating PSB with other PGPR shows better 
performance in plant growth promotion, and the mechanisms are more complicated. Here, we provide a comprehensive review 
of rhizospheric NF and phosphate solubilization by PGPR. Deeper genetic insights would provide a better understanding 
of the NF mechanisms of PGPR, and co-inoculation with rhizospheric diazotrophs and PSB strains would be a strategy in 
enhancing the sustainability of soil nutrients.
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Introduction

Microorganisms are the key components of soil biodiver-
sity. A unique symbiotic relationship exists between plant 
and soil microorganisms, including trophic interactions and 
spatial proximity (Berendsen et al., 2012). It is reported that 
grasses and crops translocate 33 and 21% of the carbon fixed 
by photosynthesis into the rhizosphere, respectively (Pausch 
and Kuzyakov 2018). For some plants, at their particular 

growth stage, 50% of the newly fixed carbon may be depos-
ited into the rhizosphere (Lambers 1987). The deposited 
carbon is rhizodeposits consisting of several compounds, 
such as amino acids, peptides, proteins, enzymes, vitamins, 
and phytohormones (Shi et al. 2012; Ludovic et al. 2020). 
The rhizodeposits could be absorbed and utilized by soil 
microorganisms, subsequently increasing the population 
of bacteria and fungi and soil bioactivities in the rhizos-
phere (Grayston et al. 1997; Khatoon et al. 2020), which can 
enhance nutrient availability and pathogen resistance in the 
rhizosphere as positive feedback for plants (Jones and Dar-
rah 1997). These bacteria, so-called plant growth-promoting 
rhizobacteria (PGPR) colonized the rhizosphere are capa-
ble of promoting plant growth and play important roles in 
the soil ecological environment (Lugtenberg and Kamilova 
2009; Khatoon et al. 2020).

In conventional agriculture, harvest and cropping take 
away large amounts of nutrients from seeds and plant tis-
sue from soil (Grand et al. 2014). To avoid yield reduction 
caused by the loss of soil nutrients, chemical fertilizers 
are widely used, which bring a large amount of available 
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nutrition into the soil quickly. However, this may result in 
many soil problems. For instance, the extensive applications 
of these fertilizers destroyed the soil structure and broke the 
micro-ecosystem leading to the loss of soil native fertility 
(Singh 2018). Leaching nitrate and phosphorus into ground-
water or running water into aquatic ecosystems results in 
eutrophication. For maintaining agricultural production, 
enhanced application of fertilizers has become an essen-
tial practice. Nevertheless, the cost of chemical fertilizer is 
increasing as the exhaustion of mineral sources, and sub-
stantial consumption of energy during production. Thus, 
manufacture and application of chemical fertilizer restrain 
the development of sustainable agriculture.

In soil, gaseous, organic, and insoluble nutrients must be 
fixed, mineralized, and released into the inorganic soil pool 
for plant accessibility (Chen et al. 2003). PGPR plays a vital 
role in the metabolism and circulation of soil nutrition, such 
as nitrogen and phosphorus (Ali et al. 2020). PGPR have the 
ability to improve the availability of nutrition and maintain 
nutrition equilibrium in soil (Vejan et al. 2016). In compari-
son to chemical fertilizer, the application of PGPR not only 
promotes plant growth and productivity but also does not 
elicit any environmental problems (Maksimov et al. 2011; 
Basu et al. 2021; Hamid et al. 2021). This review focuses 
on PGPR for promoting soil nutrient availabilities in terms 
of nitrogen and phosphorus, two of the most limited nutri-
ents in the soil. The mechanisms and features of nutrient 
activation and plant growth promotion by PGPR are also 
discussed.

Nitrogen‑fixing PGPR

Nitrogen and nitrogen fixation

Nitrogen is the most critical nutrient in the soil, giving crops 
a primary yield and growth response (Tomonori et al. 2002; 
Karceva et al. 2021). It is the most abundant natural system 
element, constituting approximately 78% of the atmosphere 
as a gaseous form  (N2). However, nitrogen is one of the most 
limiting nutrients for the optimal growth of plants (Kartseva 
et al. 2021) because plants utilize nitrogen in exclusive forms 
of ammonia or nitrate (more than 90%) (Barrett and Burke 
2000). The transformation of atmospheric nitrogen to bio-
logically available nitrogen is the main process for replen-
ishing the soil nitrogen source lost during plant harvest or 
denitrification (Dixon and Kahn 2004). Under natural condi-
tions, the triple-bonded N atoms comprising gaseous  N2 can 
be oxidized into nitric oxide (NO) or nitrogen dioxide  (NO2) 
with a large amount of energy provided by extreme natural 
phenomena—lightning subsequently falling to the ground 
with rain and becoming  NO3−. Each year, an estimated 3–10 

tera-grams (Tg) of nitrogen is fixed by lightning worldwide 
(Fields 2004). Similar nitrogen fixation (NF) process also 
occurs with energy provided by volcanic activity (Martin 
et al. 2012).

To satisfy global agriculture’s food security and devel-
opment, nitrogen fertilizer has widely been applied around 
the globe, contributing approximately 20% of annual global 
NF. From the beginning, Haber–Bosch’s process stimulated 
by lighting NF, chemical NF technology has made remark-
able progress. However, the industrial processes are still 
carried out under high temperatures or pressure that neces-
sitate a large amount of energy (Schroder 2014). Further-
more, excessive nitrogen fertilization upsets the balance 
of the nitrogen cycle in the ecosystem resulting in numer-
ous environmental problems (Galloway et al. 2004). For 
instance, excess nitrogen in the soil that cannot be utilized 
is released into the atmosphere and increases nitrous oxide 
 (N2O) (Flechard et al. 2007; Wang et al. 2020b). It leaches 
out into the water system and creates water pollution (Kye-
Han and Shibu 2005). Under natural conditions, the biologi-
cal nitrogen fixation (BNF) contributes to the predominant 
biologically available N for terrestrial ecosystems (Vitousek 
et al. 2013). Reports have demonstrated that 50–70 Tg of 
nitrogen is fixed biologically in agricultural systems every 
year (Herridge et al. 2008) and 52–130 Tg for all terrestrial 
ecosystems (Davies-Barnard and Friedlingstein 2020). Bio-
logical nitrogen fixation plays a predominant role in global 
NF, representing a sustainable way to replace chemical fer-
tilizer in modern agriculture.

Biological nitrogen fixation

Biological nitrogen fixation is ubiquitous in the terrestrial 
and aquatic ecosystem and plays an important role in the 
global nitrogen cycle. This process is carried out by bacteria 
and archaea, which display wide biodiversity, yet, BNF has 
not been found in eukaryotes. Many diazotrophs are isolated 
and characterized in agricultural and terrestrial natural eco-
systems, existing as symbiotic, associative, and free-living 
NF. A plethora of research focusing on symbiotic NF has 
offered profound insight from ecological, physiological, and 
molecular biological perspectives, among which legume 
symbiosis is the most noticeable. The Rhizobium infects the 
root of legumes and elicits the special symbiotic formation 
of the root, or occasionally stem, called “nodule,” in which 
the plants provide essential nutrients for the microorgan-
isms (Downie 2005; Heerden, et al. 2008). The symbiosis 
is of major ecological importance, dedicated to a dominant 
proportion of BNF in the agricultural system, reaching 
12–25 Tg of nitrogen for crop legume x Rhizobium symbi-
oses (Herridge et al. 2008). The legume-rhizobia symbionts 
are omnipresent in the most leguminous plant, including 
grain legumes, forage legumes, and leguminous trees ( Liu 
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et al. 2011; diCenzo et al. 2020). Nevertheless, the nod-
ule structure is rarely found on the non-legume plant. Only 
Parasponia is reported to form root nodules with rhizobium 
(van Velzen et al. 2018). There are also two other symbiosis 
systems, actinorhizal (Frankia) symbionts (Jin et al. 2021) 
and cyanobacterial symbionts (Cornejo-Castillo et al. 2016), 
which fix nitrogen in their way. In addition, rhizospheric 
diazotrophs and free-living bacteria contribute to the pre-
dominant nonsymbiotic NF (Solanki et al. 2019). It is hard 
to distinguish between free-living NF from associative NF 
as the ubiquitous influences of plants. In some research, 
free-living and associative NF are divided into one category 
(Smercina et al. 2019). It is well known that symbiotic NF 
contributes to dominant BNF, but some strong evidence 
indicates the nonsymbiotic NF overweigh symbiotic NF in 
some biomes ( Roley 2021).

Nitrogen fixation by rhizospheric diazotrophs

Rhizospheric diazotrophs are a special kind of PGPR, which 
have the ability of NF. In contrast to a defined host spectrum 
or association preference in symbiosis, rhizospheric diazo-
trophs display more flexible associative NF and a greater 
population than symbiotic NF bacteria (Sneha et al. 2021). 

In most ecosystems, the soil is the primary habitation for 
microorganisms, and the population of microorganisms in 
the rhizosphere is much higher than that in bulk soil, which 
is not under the influence of plant roots (Venturi and Keel, 
2016). The microbial NF activities are always closely asso-
ciated with plant roots, especially the rhizosphere (Jones 
et al. 2003; Nguyen et al. 2020). This closely relies on the 
abundant nutrients derived from root exudates (Li et al. 
2021b; Hu et al. 2021). Azospirillum species have drawn the 
maximum attention as rhizospheric diazotrophs and acted 
as reference strains (Pathak et al. 2002; Kumar et al. 2017). 
Large numbers of rhizospheric diazotrophs are isolated and 
characterized by different plants (Table 1).

There is no clear definition between rhizospheric diazo-
trophs and endophytic diazotrophs. Sugarcane is supposed 
to be a “pioneer” plant for endophytic NF (Baldani et al. 
2002). In cultivating sugarcane, endophytic diazotrophs, 
like Acetobacter, Gluconacetobacter, play an important 
role in providing nitrogen resources for plant growth (Reis 
and Teixeira 2015; dos Santos et al. 2017). Besides, forage 
grasses (Chalk et al. 2016), rice (Chaudhary et al. 2012), 
maize (Sheoran et al. 2021), and some other plants (Padda 
et al. 2019) are characterized as associated plants for endo-
phytic diazotrophs. Although the endophytic feature has 

Table 1  Species of rhizospheric diazotrophs and associated plants

Rhizospheric diazotrophs Associated plants References

Paenibacillus triticisoli Wheat (Li et al. 2021a)
Rhizobium, Pseudomonas, and Agrobacterium tume-

faciens
Native plant species of Kuwait (Rhanterium epap-

posum, Farsetia aegyptia, Haloxylon salicornicum, 
and Vachellia pachyceras)

(Khalil et al. 2019)

Beijerinckia, Azotobacter, and Klebsiella Sugarcane (Saccharum spp.), sweet potato (Ipomoea 
batatas L.), and paddy rice (Oryza sativa L.)

(Yoneyama et al. 2017)

Gluconoacetobacter diazotrophicus, P. stutzeri, 
Klebsiella sp. pneumonia, Sinorhizobium meliloti, 
Bacillus cereus, Enterobacter sp., and Lysinibacil-
lus sp.

Aromatic rice (Oryza sativa) (Kumar et al. 2017)

Aenibacillus, Pseudoxanthomonas, Burkholderia, and 
Staphylococcus

Lolium perenne (Castellano-Hinojosa et al. 2016)

Serratia sp. and K. pneumoniae Semi-arid tropical grasses (Sarathambal et al. 2015)
Klebsiella sp., K. pneumoniae, B. pumilus, and Acine-

tobacter sp.
Maize (Kuan 2015)

Rhodobacter and Rhodopseudomonas Maize (Zea mays) (Li et al. 2014)
Cellvibrio gandavensis Plantago winteri and Hordeum secalinum (meadow 

plants)
(Suarez et al 2013)

Rhizobium spp., Burkholderia, and Bradyrhizobium Caesalpiniaceae family (Eperua falcata and 
Dicorynia guianensis)

(Villadas et al. 2007)

Azospirillum lipoferum, Azospirillum brasilense, 
Azoarcus sp., Pseudomonas sp., Zoogloea sp.

Leptochloa fusca (L.) Kunth (kallar grass) (Malik et al. 1997)

Enterobacteriaceae, Vibrionaceae, Azotobacteraceae, 
Spirillaceae, Pseudomonadaceae, and Rhizobiaceae

Spartina alterniflora Loisel (Bagwell et al. 1998)

Klebsiella pneumoniae Poa pratensis (Haahtela and Kari 1986)
Azospirillum species Cynodon dactylon,  rice ( Khammas et al. 1989; Nur et al. 

1980)
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been indicated by GFP-label (Elbeltagy et al. 2001; Anand 
and Chanway 2013), most of the endophytic diazotrophs can 
be isolated from rhizosphere soil (Puri et al. 2016; Rosen-
blueth et al. 2018; Solanki et al. 2019). By exposing plants 
to 15 N enriched  N2, the labeled nitrogen can be fixed into 
rhizosphere soil (Parrotta et al. 1994; Henneron et al. 2020), 
demonstrating that NF occurs in the rhizosphere. Some 
researches reveal that the rhizospheric, endophytic, and 
symbiotic diazotrophs could exist in the same soil system 
(Solanki et al. 2019; Xie et al. 2021a, b).

The NF rate of diazotrophs is evaluated by acetylene 
reduction assay (Naqqash et al. 2020; Soper et al. 2021), 
which is an effective way to evaluate the NF ability of 
diazotrophs in in vitro conditions, usually on a combined 
carbon medium (CCM). However, this technique always 
overestimates the NF in symbiotic and free-living niches 
(Saiz et al. 2019). Contrary to acetylene reduction assay, 
15 N isotope dilution and 15 N natural abundance techniques 
provide a reliable NF evaluation by diazotrophs (Puri et al. 
2020). The rhizospheric diazotrophs, including Klebsiella 
sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1, 
and Acinetobacter sp. S3r2 are inoculated maize, and the 
nitrogen uptake increases in 58.6% and 69.6% in a glass-
house experiment with two harvests which is detected by 
using 15 N labeling technique (Kuan 2015). Same technique 
is used to evaluate the nitrogen uptake of tomato inoculated 
with rhizospheric diazotrophs, Bacillus amyloliquefaciens 
IN937a and B. pumilus T4 (Adesemoye et al. 2010).

Mechanisms of nitrogen fixation by rhizospheric 
diazotrophs

The mechanism of NF is not well researched in rhizospheric 
diazotrophs; however, they are well researched from physi-
ological and molecular biological perspectives in symbio-
sis diazotrophs. Based on the research on symbiosis diazo-
trophs and new findings on rhizospheric diazotrophs, we 
will try to take deep insights into the mechanisms of NF by 
rhizospheric diazotrophs. Biological NF is a complicated 
biological process that reduces inert  N2 into ammonia. The 
breakdown of stable  N2 triple bonds and reconstruction is 
an energy-consuming process catalyzed by the nitrogenase 
enzyme. Nitrogenases are complex metalloenzymes widely 
distributed in diazotrophs (Dixon and Kahn, 2004; Bel-
lenger et al. 2020). Mo-nitrogenase is the first nitrogenase 
to be found and widely distributed in symbiosis diazotrophs 
(Seefeldt et al. 2009). Two components constitute the Mo-
nitrogenase, MoFe protein and Fe protein. The larger hetero-
tetrameric MoFe protein consists of α2β2 units and contains 
the catalytic site (FeMo-cofactor) embedded in the α subu-
nits that account for  N2 binding and reduction. The FeMo-
cofactor electron needed in the reduction is donated by the 

other component, Fe protein, a dimer of identical subunits 
bridged by a single 4Fe–4S cluster (Figure S1).

The other nitrogenases, vanadium (V) and iron-only (Fe) 
nitrogenases, are regarded as alternative nitrogenases found 
in free-living soil bacteria and cyanobacteria, respectively 
(Bellenger et al. 2020). They have similar structures to Mo-
nitrogenase. FeV- and Fe only-cofactor are the counterparts 
to FeMo-cofactor in V- and Fe-nitrogenases (Benediktsson 
and Bjornsson 2020; Garci et al. 2020). Phylogenetic- and 
structure-based studies suggest that the alternative nitroge-
nases might be derived from Mo-nitrogenase, and environ-
mental factors, particularly metal availability, influence this 
kind of evolution (Mus et al. 2018). It is also found that 
the V-nitrogenase activity and NF rates in rhizospheric soil 
increase significantly in response to vanadium addition (Bel-
lenger et al. 2014).

Besides the structural and physiological studies, molec-
ular biological techniques have provided genetic perspec-
tives in understanding nitrogenases. Synthesis processing 
and assembly of Mo-nitrogenase involve a set of nif genes 
(Masson-Boivin et al. 2009; Kalam et al. 2020). This gene 
cluster presents significant diversity among different diazo-
trophs species, which range from 8 to 15, and the core nif 
genes at least contain the nifHDKENB. For alternative nitro-
genases, there have been found some counterpart genes, like 
vnfD, K, and vnfH for the V-nitrogenase and anfDK and anfH 
for the Fe-nitrogenase (Bellenger et al. 2020). However, In 
Paenibacillus sp. WLY78, a rhizospheric bacterium from 
bamboo, a minimal nif gene cluster consisting of nine nif 
genes (nifBHDKENXV and hesA), is identified (Wang et al. 
2013). Among the nif gene cluster, Fe protein gene nifH has 
species-conserved sequences (Singh et al. 2020) that is used 
to act as a target gene to detect diazotrophs or indicate the 
NF activity in the rhizosphere (Yu et al. 2019; Chen et al. 
2019). Genetic manipulation of transferring nif genes to het-
erologous hosts is achieved on Escherichia coli or Saccha-
romyces cerevisiae. The genes are provided by rhizospheric 
bacteria Pseudomonas stutzeri (Yang et al. 2018), Klebsiella 
oxytoca, and Paenibacillus polymyxa (Li and Chen 2020). It 
is also found that the heterologous nif island affects the gene 
expression of the host significantly and an NtrC-dependent 
regulatory system is established based on E. coli regula-
tion system (Dixon and Kahn 2004; Martinez-Argudo et al. 
2004).

In BNF, the Mo-nitrogenase shows extreme oxygen sensi-
tivity, conferred to the surface-exposed 4Fe–4S in Fe protein 
(Einsle et al. 2002). In addition, the transcriptional regu-
lator NifA encoded by nifA gene is also oxygen sensitive 
for the cysteine-rich domain (Rutten and Poole 2019). For 
nodule symbiosis, the special structure, the cortical diffusion 
barrier, effectively reduces the oxygen concentration in the 
central nitrogen-fixing zone (Drevon et al. 2015). Moreover, 
the respiration consumption and compartmentation of the 
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enzyme spatially also secure the process of BNF. The high 
concentration of leghemoglobin and high oxygen-affinity 
oxidase made an entire route for oxygen transport and utili-
zation in nodules (Maier 2004; Simranjit et al. 2019). In soil, 
lacking protection from host plants, how the nitrogenases 
of rhizospheric diazotrophs (or free-living diazotrophs) 
work under the threat of oxygen is still not clear. Gadkari 
et al. (1992) declare that an aerotolerant nitrogenase has 
been characterized in Streptomyces thermoautotrophicus 
UBT1. The structural components of this nitrogenase have 
no homology to the known nitrogenases (Ribbe et al. 1997). 
But a latter study on Streptomyces thermoautotrophicus 
UBT1 with 15 N labeling and genome sequencing techniques 
concludes that this strain is non-diazotrophic and oxygen-
tolerant nitrogenase is non-existent (MacKellar et al. 2016). 
Research points out that the subunits of alternative nitroge-
nases encoded by vnfHDK and anfHDK even show greater 
sensitivity to oxygen. However, an oxygen-tolerant NifA, 
the transcriptional activator of nif genes, has been found 
in rhizospheric diazotroph Azotobacter vinelandii (Oliveira 
et al. 2009). Furthermore, the oxygen concentration is lower 
in soil than in the air and is influenced by many parameters 
(Cook and Knight 2003). High moisture would cut the oxy-
gen concentration in the soil and is beneficial for rhizos-
pheric NF (Reed et al. 2007). The mechanisms of NF by 
rhizospheric diazotrophs still need further research.

Influential factors on nitrogen fixation of PGPR

Nitrogen fixation by PGPR is a metabolic process occur-
ring in the rhizosphere and influenced by abiotic and biotic 
factors. The application of fertilizers displays significant 
influences on NF. High rates of nitrogen fertilization always 
reduce the NF activity in the rhizosphere (Yu et al. 2019; 
Chen et al. 2021; Volkogon et al. 2021). When co-inocu-
lating PGPR strains Azospirillum brasilense with Pseu-
domonas fluoresceins, the nitrogenase activities in the rhizo-
sphere of rice are higher with lower nitrogen applications 
than that with higher nitrogen applications (Zhang et al. 
2021a, b). However, after 4 years of nitrogen fertilization 
in non-legume trees (Eucalyptus urophylla) plantation, the 
NF rates are significantly increased in rhizosphere soil but 
decreased in bulk soil (Zheng et al. 2016a). The rhizospheric 
diazotrophs contribute to balancing the nitrogen resources 
in the rhizosphere, and their functions are influenced by the 
relationship between nitrogen supply and demand locally. It 
is believed that even if the nitrogen availability is relatively 
high in the soil, the increased demand for plants, such as 
that in the rapid plant development stage, would also pro-
voke the high NF rates (Smercina et al. 2019). Besides, the 
other pathways in the nitrogen cycle, like denitrification, also 
balance nitrogen in the rhizosphere (Volkogon et al. 2021).

Unlike nitrogen, phosphorus provides stimulation to BNF 
in the rhizosphere (Smercina et al. 2019; Wang et al. 2020a). 
In the forest, the phosphorus concentration is closely related 
NF rates in rhizosphere soil, and higher phosphorus benefits 
BNF (Reed et al. 2008). Moreover, combined phosphorus 
and nitrogen addition can still significantly increase NF rates 
in the rhizosphere (Zheng et al. 2016b). The inhibitory effect 
of nitrogen fertilization on BNF can be alleviated by phos-
phorus applications (Wang et al. 2018). It is demonstrated 
that phosphorus increases the abundance and diversity of the 
diazotrophic community in the soil, subsequently underly-
ing the benefit of BNF (Reed et al. 2013; Tang et al. 2019; 
Wang et al. 2020a). Except for chemical fertilizers, green 
manure (Volkogon et al. 2021), organic manure (Shi et al. 
2021), and compost (Enebe and Babalola 2021) applications 
show positive effects on BNF in the rhizosphere. In addition, 
the NF rates change with the soil moisture variation. In the 
wet season, the NF rates by rhizospheric diazotrophs are 
relatively high of 2.71 kg/ha/yr and low at 0.26 kg/ha/yr in 
the dry season (Reed et al. 2007).

Biotic factors also have a notable influence on BNF in the 
rhizosphere. Baskaran and Prabavathy (2022) investigated 
the diazotrophs in the rhizosphere of different mangrove 
plants by amplifying nifH genes, and the diazotroph com-
munities are significantly different. The maize genotype also 
has been identified to influence the number and diversity 
of diazotrophs in the rhizosphere (Rodríguez-Blanco et al. 
2015). A consistent result is also found in wheat species 
(Jain and Rennie 2011). Moreover, physiological activity 
also has an effect on BNF in the rhizosphere. Plant photo-
synthesis enhances the carbon rhizodeposition and acceler-
ates the BNF in the rhizosphere (Henneron et al. 2020). As 
feedback, the improved nitrogen availability in the rhizos-
phere increases the nitrogen uptake by the plant and pro-
motes photosynthesis. This interesting relationship between 
BNF and photosynthesis creates a plant growth-rhizodeposi-
tion-BNF cycle, underlaid by the root’s exudation regulation 
(Wasaki and Dissanayaka 2021). As a member of the soil 
ecosystem, the diazotroph’s metabolic activities, especially 
NF, are influenced by the microbial community (Hsu and 
Buckley 2009; Yu et al. 2019), including the nitrogen-fixers 
community (Zehr et al. 2003), other PGPR(Ahmad et al. 
2006), and even pathogens (Knight and Langston-Unkefer 
1988; Romero et al. 2003).

Plant growth promotion by rhizospheric 
diazotrophs

As a characteristic PGPR, rhizospheric diazotrophs show 
impressive ability in plant growth promotion. In agricul-
ture practice, rhizospheric diazotrophs are applied to many 
crops. In a recent study, the yields of rhizospheric diazo-
troph Paenibacillus triticisoli BJ-18 inoculated wheat are 
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increased by 8.5% to 16.9% (Li et al. 2021a). Diazotrophs 
Serratia sp. (CB2) and K. pneumoniae (CR3) isolated 
from semi-arid tropical grasses treated plots increase the 
grain yields of rice by 31 and 28%, respectively (Sarath-
ambal et al. 2015). Achromobacter sp promoted the yield 
of Vigna radiata T44 along with other PGPR and showed 
good compatibility with Bradyrhizobium inoculation 
(Ahmad et al. 2006). Azospirillum bacteria significantly 
increased the dry weight of Zea mays and Setaria italic 
leaves as well as the total nitrogen content of these leaves 
(Nur et al. 1980). In addition, rhizospheric diazotrophs 
also display the plant growth-promotion ability to trees. 
With carriers of compost, Azospirillum increases the 
growth of sour orange trees (Citrus aurantium) (Rivera-
Cruz et al. 2010).

Inoculations of rhizospheric diazotrophs combined with 
other microorganisms always show better plant-growth 
effects. Co-inoculation of rhizospheric diazotroph Azos-
pirillum with symbiotic Rhizobia improves plant growth, 
crop yields, and nitrogen absorption and provides positive 
support to the nodulation (Vicario et al. 2015). Dually 
inoculated wheat plants with free-living diazotrophs 
and feremycorrhizal (FM) fungus Austroboletus occidenta-
lis display significantly greater shoot biomass and nutrient 
content than the control and single inoculums (Kariman 
et al. 2022). Fertilization combining rhizospheric diazo-
troph, phosphate-solubilizing bacterium, and organic sub-
strates yielded good plant-growth results (Rivera-Cruz 
et al. 2010).

The primary mechanism of plant growth promotion 
by rhizospheric diazotrophs is NF and promotes nitro-
gen absorption of plant, demonstrated by 15 N techniques 
(Wood et al. 2001; Bellenger et al. 2020). Apart from NF, 
diazotrophs synthesize and secrete plant growth promot-
ers, such as phytohormones indole-3-acetic acid (IAA), 
1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
and siderophore (Castellano-Hinojosa et al. 2016; Liu 
et al. 2019). Some diazotrophs can also promote plant 
growth by inhibiting plant ethylene synthesis (Hafeez et al. 
2008). Improving other nutrient uptake, like phosphorus, 
through solubilization of inorganic phosphate is another 
common way for diazotrophs (Dobbelaere et al. 2003).

Diazotrophs usually present indirect resistance to path-
ogenic microorganisms (Castellano-Hinojosa et al. 2016; 
X. Liu et al. 2019), which includes the synthesis of antibi-
otic substances, nutrient competition, or induction of plant 
systemic resistance to pathogens (Dobbelaere et al. 2003). 
Besides, rhizospheric diazotrophs can adjust the compo-
sition and function of the soil microbiome, providing a 
better microbial environment for the plant (Li et al. 2021a; 
Kariman et al. 2022), and stable colonization is also a base 
for their plant growth promotion (Piceno and Lovell 2000). 
A better understanding of the mechanism of plant growth 

promotion by rhizospheric diazotrophs would benefit uti-
lization in practice and the development of biofertilizers.

Phosphate‑solubilizing PGPR

Phosphorus is one of the three essential nutrients for 
plants, and phosphorus deficiency in soil restricts plant 
development in agricultural practices. Phosphorus is rich 
in soil and mostly exists in a precipitate form, which plants 
cannot absorb and utilize (Hinsinger 2001; Elser 2012). 
The poor availability of soil phosphorus is due to phos-
phate ion (P-ion) reaction with calcium, aluminum, and 
iron ions, which are presents in micromolar or lesser quan-
tities in soil (Porder and Hilley 2011). To improve the soil 
concentration of available phosphorus, soluble phosphate 
fertilizer has been applied to the soil in the past decade. 
Besides the common disadvantages of chemical fertilizer, 
rapid chelation with metal ions  (Ca2+,  Fe3+,  Al3+) as 
applied to the soil makes phosphate fertilizer inefficient.

On the way to finding green environmental substitution 
of phosphate fertilizer, a kind of PGPR called phosphate-
solubilizing bacteria (PSB) became a hot research topic. 
PSB could release soluble P-ion from insoluble phosphate, 
including mineral phosphate and insoluble organic phos-
phate. Up to now, the reported PSB strains consisted of 
lannaesis Aerococcus, Alteromonas, Arthrobacter, Asaia, 
Azotobacter, Bacillus, Burkholderia, Chryseobacterium, 
Curtobacterium, Delftia, Enterobacter, Erwinia, Gordo-
nia, Klebsiella, Lysinibacillus, Pantoea, Phyllobacterium, 
Pseudomonas, Rhizobium, Serratia, and Xanthomonas 
(Vazquez et al. 2000; Chung et al. 2005; Pandey et al. 
2006; Gulati et al. 2008; Liu et al. 2014; Bahena et al. 
2016; Magallon-Servínet al. 2020; Silva et  al. 2021; 
Özdoğan et  al. 2022). According to the differences in 
phosphorus substrate, PSB strains are divided into min-
eral (inorganic) PSB and organic phosphate-solubilizing 
bacteria (Kuhad et al. 2011; Berde et al. 2021).

Distribution of PSB

Phosphate-solubilizing bacteria are ubiquitously present 
in soil and show significant rhizosphere preference that 
exhibited a higher population in the rhizosphere than non-
rhizosphere (Reyes et al. 2006). The population and the 
microbial activity of PSB can be promoted by root exu-
dates of plants (Vazquez et al. 2000). Phosphate-solubiliz-
ing bacteria and plants display an apparent relationship of 
reciprocal symbiosis (Berde et al. 2021). The diversity of 
PSB from different plant species fluctuates in a wide range 
and the phosphate-solubilizing (PS) activity (Amy et al. 
2022). PSB strains are also found as hyphal colonizers on 
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arbuscular mycorrhizal fungi (AMF), and the mycorrhiza 
influences the bacterial communities in the rhizosphere via 
exudation (Wang et al. 2016; Sharma et al. 2020).

In addition to the influences of plants, the soil conditions 
also influence the distribution of PSB. The PSB population 
is positively correlated with soil pH, electrical conductivity, 
and nitrate (Alia et al. 2013), while the abundant organic 
matter and high ionic content appear harmful to the coloni-
zation of PSB in soil (Srinivasan et al. 2012). Moreover, soil 
phosphorus status is an important factor. PSB incidence and 
diversity in soil with a lower level of available phosphorus 
are significantly higher than that in soil with a high level of 
available phosphorus, no matter from rhizosphere or non-
rhizosphere (Mander et al. 2012). Continuous application of 
phosphate fertilizer could maintain a relatively higher avail-
able phosphorus level in soil, but the abundance of PSB and 
their phosphate solubilization ability are severely reduced, 
which is caused by the release of selection pressure from 
P-ion starvation for phosphate solubilization by PSB (Liu 
et al. 2014). Some research studies have shown that the PSB 
strains could colonize in plant root tissues or cells, but how 
they present their PS activity inner plant remains to be elu-
cidated (Li et al. 2013; Oteino et al. 2015).

Mechanisms of mineral phosphate solubilization

Phosphate solubilization by PSB is a complicated process 
(Fig. 1). For mineral PSB, low molecular organic acid secre-
tion is regarded as the principal mechanism of phosphate sol-
ubilization (Goldstein 1994). The organic acids are released 
into surroundings via the glucometabolic pathway, accom-
panied by the drop of pH value (Illmer and Schinner 1995). 
Various organic acids secreted by different PSB strains have 
been detected in earlier reports (Table 2). Among various 

acids, gluconic acid is considered the predominant organic 
acid in phosphate solubilization (Zeng et al. 2016; Xie et al. 
2021a, b), and its function has been demonstrated through 
genetic manipulation (quinoprotein glucose dehydrogenase 
gene, gcd, and synthetase gene of the coenzyme pyrroloqui-
noline quinone, pqq) (Krishnaraj and Goldstein 2001; Xie 
et al. 2021a, b). The gcd and pqq genes are recently used 
to detect PSB with sequencing technologies, like metagen-
omics (Liang et al. 2020; Silva et al. 2021). However, few 
studies show that the PSB strains could still dissolve the 
mineral phosphate without gluconic acid. The production 
of succinic acid is correlated with the PS activity of Bacil-
lus megaterium (Zheng et al. 2018), and oxalic and citric 
acids are the main organic acid exuded by Pseudomonas sp. 
(Saleemi et al. 2017). The kinds of organic acids secreted by 
PSB strains are correlated with the species and influenced by 
the unsoluble phosphorus sources (Li et al. 2019). Moreo-
ver, the nature of organic acids significantly affects the PS 
activity of PSB (Patel et al. 2008), and the total amount of 
organic acids is non-correlated with the PS activity (Zeng 
et al. 2017).

Observation in different PSB strains shows that the PS 
activity is negatively correlated with a change in pH value 
caused by organic acids (Liu et al. 2015; Zheng et al. 2018). 
Hydrion released from the organic acids could replace the 
metal ions from tricalcium phosphate, thereby releasing 
the soluble P-ion (Goldstein, 1994). However, PSB strain 
Pseudomonas sp. do not secrete organic acids but release 
hydration accompanied by respiration or  NH4

+ assimila-
tion (Illmer and Schinner 1995), but the organic acids could 
chelate metal ion, consequently releasing the soluble P-ion 
(Ghosh et al. 2016; Sarma et al. 2016).

Besides organic acid, PSB strains could dissolve mineral 
phosphate in other ways. For instance, the PS activity of 

Mechanisms of phosphate solubilization
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Fig. 1  Mechanisms of P-solubilization by phosphate solubilizing bacteria
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Nitrobacter and Thiobacillus strains accounts for hydrogen 
sulphide production (Shrivastava et al. 2018). Dyella gin-
sengisoli and Microbacterium phyllosphaerae solubilize 
rock phosphate through oxidation of thiosulfate to sulfuric 
acid (Anandham et al. 2008). Reports show that the proton 
involved in phosphate solubilization dissociates from acid 
 H2CO3, formed from  CO2 generated from biological respira-
tion (Hasegawa et al. 2016). Exopolysaccharides (EPS) pro-
duced by PSB greatly contribute to phosphate solubilization 
by holding free phosphorus and pushing homeostasis of sol-
ubilization towards phosphate dissolved (Yi et al. 2007). In 
conclusion, various mechanisms are involved in phosphate 
solubilization. It is worth noting that the PS activity of PSB 
is induced by low levels of P-ion and depressed by high lev-
els of P-ion. Insufficient P-ion leads to glucose shift towards 
the direct oxidative pathway of glucose catabolism (Buch 
et al. 2008). The P-ion regulates the transcription of the gcd 
gene and triggers the secretion of gluconic acid and the glu-
conic acid-mediated PS ability (Zeng et al. 2016). These 
results suggest a genetic manipulation strategy in reducing 
the P-ion sensitivity of PSB by modifying the glucose oxida-
tive pathway, which would improve the PS activity of PSB.

Mechanisms of organic phosphate solubilization

Phosphate-solubilizing bacteria solubilize phosphorus from 
mineral phosphate and release phosphorus from organic 
phosphate compounds (Ponmurugan and Gopi 2006; Jiang 
et al. 2021). It is well known that the organic phosphate com-
pounds need to be degenerated by a phosphatase, phytase, or 
carbon-phosphorus lyase before being absorbed by the plant 
(Zaidi et al. 2009; Quinn et al. 2020). Phosphate-solubilizing 
bacteria could dissolve the organic phosphate compounds 

making phosphorus available for plant growth by excreting 
microbial phosphatases ( Li et al. 2019). Ten PSB strains 
are isolated from soil, and their PS activity is found to be 
positively correlated with their activity of extracellular phos-
phatases (Ponmurugan and Gopi 2006). The role of phos-
phatases in organic phosphate solubilization has been dem-
onstrated by molecular biological manipulation. Expression 
of acid phosphatase gene phoC from Morganella morganii in 
E. coli through plasmid vector can achieve acid phosphatase 
activity (Fraga-Vidal et al. 2007). A P-ion starvation-induced 
phoA gene encodes alkaline phosphatase, and expression 
of the gene is mediated by a phoBR operon (Agrawal and 
Wanner 1990). A phn gene from Salmonella typhimurium 
accounted for both phosphonate transport and catalysis of 
C–P bond cleavage (Jiang et al. 1995).

Besides phosphatases, organic PSB Klebsiella variicola 
displays phytase activity (Kusale et al. 2021a). Rhizospheric 
bacteria Rahnella aquatilis and Pseudomonas fluorescens 
dissolve phytate and improve the available phosphate by 
excreting phytase, eventually promoting plant growth (Li 
et  al. 2013). Studies show a synergistic effect between 
organic PSB strain and AMF that Pseudomonas alcali-
genes and Rhizophagus irregularis achieve mineralization 
of phytate and phosphorus transferred to plant issues syner-
gistically (Artursson et al. 2006; Zhang et al. 2014). Phytase 
gene phyL has been cloned from Bacillus subtilis and Bacil-
lus licheniformis, and over-expressed in a B. subtilis recom-
binant constructed by a phage vector (Tye et al. 2002).

Plant growth promotion by PSB

Phosphate-solubilizing bacteria are important PGPR mem-
bers, and their plant growth-promoting ability to crops is 

Table 2  Organic acids involved in phosphate solubilization and produced by phosphate-solubilizing bacteria

Strains Organic acids References

Asaia lannaesis, Pseudomonas sp. Gluconic and 2-ketogluconic acids (Magallon-Servín et al. 2020)
Acinetobacter sp. Formic and oxalic acids (Li et al. 2019)
B. megaterium Succinic, oxalic, and citric acids (Zheng et al. 2018)
Pseudomonas frederiksbergensis Gluconic, 2-ketogluconic, pyruvic, maleic, malic, lactic, 

malonic, acetic, methanoic, tartaric, and oxalic acids
(Zeng et al. 2017)

Brevibacillus borstelensis Acetic, citric, formic, malic, and oxalic acids (Yadav et al. 2015)
Enterobacter ludwigii, Pantoea ananatis, Pseu-

domonas psychrotolerans, Gluconobacter frateurii
Gluconic acid (Han et al. 2012)

Bacillus sp. Propionic, oxalic, succinic, and malic acids (Panhwar et al. 2011)
Burkholderia cepacia Gluconic acid (Song et al. 2008)
Pseudomonas corrugata Gluconic and 2-ketoglutaramic acids (Trivedi and Sa 2008)
Citrobacter sp. Gluconic and acetic acids (Patel et al. 2008)
Enterobacter intermedium 2-ketoglutaramic acid (Hwangbo et al. 2003)
Pseudomonas cepacia Gluconic and 2-ketoglutaramic acids (Bar-Yosef et al. 1999)
B. polymyxa, B. licheniformis, B. spp. Oxalic and citric acids (Gupta et al. 1994)
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tested in both pot and field conditions. Inoculation of PSB 
strains Pantoea cypripedii (PSB-3) and Pseudomonas 
plecoglossicida significantly increases shoot height, shoot 
and root dry biomass, and grain yield in maize and wheat 
crops (Kaur and Reddy 2015). Rice (Oryza sativa L.) inocu-
lated PSB strains B. licheniformis, Pantoea dispersa, and 
Staphylococcus sp. are promoted in shoot length, dry weight, 
and yield (Rawat et al. 2021). The plant growth-promotion 
effects of PSB have also been demonstrated on Arabidop-
sis thaliana (Xie et al. 2021a, b), chickpea (Alemneh et al. 
2021), maize (Gong et al. 2022), peanuts (Wang et al. 2021), 
tomato (Sharma et al. 2020), and sorghum (Benbrik et al. 
2020). Similarly, PSB inoculations with R. aquatilis increase 
the grain yield, biological yield, and a total number of rice 
stems in field trials (Bakhshandeh et al. 2015). In addition, 
to improve crops’ growth and yield, PSB strains also show 
their plant growth-promoting ability to non-crop plants. The 
growth of elm (Ulmus chenmoui) increases as inoculated 
with four indigenous PSB (Song et al. 2021). PSB strain 
R. aquatilis and P. fluorescens promote poplar and Masson 
pine (Li et al. 2013). PSB strains also exhibit plant growth-
promoting ability on an apple tree (Mehta et al. 2013), 

Lycopodiaceae plant (Ghosh et al. 2016), and tea tree (Gong 
et al. 2022).

Some researches reveal that the over-dose application of 
chemical fertilizers significantly reduces the plant growth 
promotion by PSB (Bakhshandeh et al. 2015; Rawat et al. 
2021). On the other hand, the application of PSB as a bio-
fertilizer can reduce the use of chemical fertilizers and 
provide an economic strategy for agricultural production 
(Bargaz et al. 2021). On the contrary to chemical fertiliz-
ers, application accompanied with unsoluble phosphorus 
resources can support the performance of PSB as a bio-
fertilizer. Application of PSB Pseudomonas combined with 
tricalcium phosphate can significantly improve the biomass 
parameters and grain yield of rainfed wheat compared to 
single inoculations (Shirmohammadi et al. 2020). Similar 
results are obtained when the application of PSB is com-
bined with rock phosphate (Costa et al. 2015) or lecithin 
(Panda et al. 2021). In addition, co-inoculation of PSB with 
biochar (Jabborova et al. 2020) or compost (Wickramatilake 
et al. 2011) shows a better promotion of plant growth, which 
would be caused by the improvement of bacterial survival 
and population in the rhizosphere.

Fig. 2  Mechanism of plant 
growth promotion by phosphate 
solubilizing bacteria
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Facilitating soil phosphorus availability and promoting 
phosphorus uptake are regarded as the primary mechanisms 
of plant growth promotion by PSB (Shirmohammadi et al. 
2020) (Fig. 2). Inoculating PSB strains into rice increased 
110.37% of the plant phosphorus uptake (Rawat et al. 2021). 
Improvement of plant phosphorus uptake by PSB is also in 
other research (Panda et al. 2021; Kaur and Reddy 2015).

In addition, PSB can excrete other nutrients to benefit 
plant growth. PSB strains Pandoraea sp. and Leifsonia shin-
shuensis isolated from winter pea and faba bean rhizosphere 
can produce phytohormones IAA (Kaur and Reddy 2015). 
Phosphate-solubilizing Acinetobacter sp. secretes IAA and 
ammonia and increases plant chlorophyll content (Xie et al. 
2021a, b). Burkholderia sp. shows ACC deaminase produc-
tion ability (Alemneh et al. 2021). Phosphate-solubilizing 
bacteria Pseudomonas sp., Sphingobacterium suaedae, 
Bacillus pimilus, and Bacillus cereus produce indole acetic 
acid, siderophores, hydrogen cyanide (Benbrik et al. 2020). 
Investigation of PSB strains from the rhizosphere of apple 
trees shows that the IAA, siderophores, and hydrocyanic 
acid production is increased by 24.2%, 25.7%, and 19.4%, 
respectively (Mehta et al. 2013). It is also reported that PSB 
strains provide various amino acids, amino acid derivatives, 
and other plant growth-regulating molecules (Shen et al. 
2021).

Besides improving nutrition supplements, PSB strains 
play roles in the rhizosphere microbial community. Inocu-
lation of PSB strain influences the microbial community of 
indigenous soil bacteria and changes the diversity of soil 
microorganism, which help in selecting potentially benefi-
cial microorganisms for the plants ( Liu et al. 2020; Song 
et al. 2021). Part of PSB strains possesses soil pathogenic 
resistance ability, including bacteriostasis ability (Zhang 
et al. 2021a, b) and antifungal activity (Ghosh et al. 2016; 
Muhammad et al. 2017). An antifungal volatile dimethyl 
disulfide is identified from Serratia marcescens, and it can 
inhibit the germination of Aspergillus flavus (Gong et al. 
2022).

Phosphate-solubilizing bacteria also show other benefi-
cial characteristics for plant growth. Studies have reported 
that inoculation with PSB strains improved plant perfor-
mance under drought stress (Shirmohammadi et al. 2020) 
and salt stress (Kusale et al. 2021b). The mechanisms of 
increasing the plant tolerance to abiotic stresses by PGPR 
are complicated, mainly accounting for improving the root 
architecture and plant health status (Khan et al. 2021). It 
is reported that a higher population of PSB increases the 
available phosphorus in the soil and thereby improves the 
plant’s capability to cope with the impacts of drought-flood 
abrupt alternation, an extreme climate event (Bi et al. 2020). 
A study displays that PSB significantly upregulates the 
plant translocation factors of cuprum, improving phytore-
mediation efficiency in Wedelia trilobata (Lin et al. 2018). 

PSB-assisted phytoremediation presents a bright prospect 
in dealing with soil heavy metal pollution (Ahemad 2015). 
Recent research shows that PSB is important in enhancing 
phosphorus cycling in soil following soil restoration (Liang 
et al. 2020). PSB strains also display the ability to reuse 
phosphate sludge as supplementary in the application (Ben-
brik et al. 2020). This research reveals the potential of PSB 
in environmental protection.

Co‑inoculation of PSB with other PGPR

Co-inoculation of PSB strains with other plant-friendly 
microorganisms usually achieves good efficiency. Com-
pared to all other treatments, co-inoculation treatment of 
PGPR and PSB performs better in promoting crop growth 
and controlling disease (Saleemi et al. 2017). Synergistic 
cooperation between AMF and PSB strains presents a more 
beneficial effect on phosphorus uptake, plant growth, and 
production (Sharma et al. 2020; Cozzolino et al. 2021). 
In AMF-PSB synergistic activities, PSB positively affects 
AMF spore density and colonization rate to the host plant 
(Nacoon et al. 2021). Co-inoculation with ectomycorrhizal 
(EM) fungus, Pisolithus sp. on Pinus halepensis (Allepo 
pine) seedlings distinctly increases the counts of PSB P. 
fluorescens in the rhizosphere and subsequently improves 
the plant growth together with the EM fungus (Ouahmane 
et al. 2009). Co-inoculation with nitrogen-fixing Azospiril-
lum sp. and Azotobacter sp, PS Phosphobacteria sp. signifi-
cantly increases the plant growth and grain yield of wheat 
compared to single inoculation or control (Vafa et al. 2021). 
Similar formula application of nitrogen-fixing bacteria and 
PSB increases plant growth and yield of rice (Ikhwani et al. 
2022). Co-inoculation with diazotrophic bacterium and PSB 
results in a synergistic improvement in both NF and phos-
phate solubilization (Li et al. 2020). Phosphate-solubilizing 
strain B. megaterium is inoculated into pepper and cucumber 
rhizosphere, combining with potassium-solubilizing bacteria 
Bacillus mucilaginosus resulting in consistently higher P 
and K availability in soil. The greater N, P, and K uptakes 
are observed in shoot and root than in single inoculation and 
control (Han et al. 2006). Co-inoculation of PGPR strains 
with multiple plant growth-promoting traits would signifi-
cantly promote the ecosystem function in the rhizosphere 
(Singh et al. 2015), which would bring more benefits to the 
rhizosphere.

Conclusion and future perspectives

Soil sustainability refers to the sustainable development of 
agriculture, and the development and utilization of bioferti-
lizer are irresistible in the future. As two of the most impor-
tant nutrients, nitrogen and phosphorus, the revolution in 
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their application can make prodigious changes in agriculture 
and great progress in environmental protection. PGPR has 
several advances in plant growth promotion compared with 
other microorganisms, such as wide distribution in soil, easy 
isolation and cultivation, a wide range of host spectrum, and 
less association preference. A better understanding of the 
rhizospheric diazotrophs and PSB would help their bioferti-
lizers’ development and utilization. The rhizospheric micro-
bial diversity delivered by bacterial co-inoculation with the 
complementary relationship will improve plant growth by 
affecting ecosystem functioning. Rhizospheric diazotrophs 
and PSB can promote plant growth individually or co-inoc-
ulation with other PGPR. In soil, phosphorus benefits BNF, 
and nitrogen is also suitable for phosphate solubilization by 
PSB. Plants are inoculated with a combination of rhizos-
pheric diazotrophs and PSB, forming a complementarity 
degree, which would provide better microbial service to the 
plant. Therefore, the compatibility of certain rhizospheric 
diazotrophs and PSB strains and co-inoculation applications 
still needs specific studies and details of the soil condition.
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