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Abstract
River water quality is a function of various bio-physicochemical parameters which can be aggregated for calculating the 
Water Quality Index (WQI). However, it is challenging to model the nonlinearity and uncertain behavior of these parameters. 
When data is deficient and noisy, it creates missing and conflicting parameters within their complex inter-relationships. It is 
also essential to model how climatic variations and river discharge affect water quality. The present study proposes a cloud-
based efficient and resourceful machine learning (ML) modeling framework using an artificial neural network (ANN), adap-
tive neuro-fuzzy inference system (ANFIS), and advanced particle swarm optimization (PSO). The framework assesses the 
sensitivity of five critical water quality parameters namely biochemical oxygen demand (BOD), dissolved oxygen (DO), pH, 
temperature, and total coliform toward WQI of the River Ganges in India. Monthly datasets of these parameters, river flow, 
and climate components (rainfall and temperature) for a nine-year (2011–2019) period have been used to build the models. 
We also propose collecting the data by placing various monitoring sensors in the river and sending the data to the cloud for 
analysis. This helps in continuous monitoring and analysis. Results indicate that ANN and ANFIS capture the nonlinear-
ity in the relationship among water quality parameters with a root mean square error (RMSE) of 7.5 × 10−7 (0.002%) and 
1.02 × 10−5 (0.029%), respectively, while the combined ANN-PSO model gives normalized mean square error (NMSE) of 
0.0024. The study demonstrates the role of cloud-based machine learning in developing watershed protection and restoration 
strategies by analyzing the sensitivity of individual water quality parameters while predicting water quality under changing 
climate and river discharge.
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Introduction

Unscientific utilization of water resources has resulted 
in its scarcity and contamination across different parts of 
the globe (Srinivas et al. 2018), especially in developing 
nations. Recent statistics indicate that riverine ecosystems 
of the largest rivers of the world such as Ganges (India), 

Mississippi (USA), Jordan (Israel), Sarno (Italy), and Yel-
low (China) are severely affected due to agricultural and 
domestic sewages, multi-purpose projects, dams, and indus-
trial manufacturing processes (Srinivas et al. 2017; Dwivedi 
et al. 2018). Hence, planners and scientific bodies need a 
robust approach to evaluate the water quality (Tripathi and 
Singal 2019; Srinivas et al. 2020b).

Water Quality Index (WQI) has been extensively used to 
determine the appropriateness of water for various beneficial 
purposes (Shah and Joshi 2017; Shil et al. 2019). Zotou et al. 
(2020) applied 7 different WQI methods to examine their 
application in water bodies of the Mediterranean region. 
Conventional WQI tools and other techniques such as mul-
tiple linear and nonlinear regression and auto-regressive 
aggregated moving average are unable to (i) capture the non-
linear and non-stationary aspects of water quality; (ii) ana-
lyze the sensitivity of individual water quality parameters; 
(iii) assess uncertain and subjective behavior of parameters; 
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(iv) consider complex inter-relationships among parameters; 
and (v) develop a relationship with climatic parameters 
(Melesse et al. 2011; Oladipo et al. 2021). To overcome 
these shortcomings, researchers have also used artificial 
intelligence (AI)-based approaches such as fuzzy logic (Jha 
et al. 2020; Srinivas et al. 2017; Srinivas and Singh 2018a), 
neural networks (García-Alba et al. 2019; Ucun Ozel et al. 
2020), neuro-fuzzy models (Aghaarabi et al. 2017; Azad 
et al. 2019), genetic programming (Sotomayor et al. 2018), 
and different hybrid models (Yaseen et al. 2018; Lu and 
Ma 2020). Several models such as PTMApp, ACPF, and 
HSPF-SAM have been coupled with AI techniques to assess 
the impact of various pollutant sources on impaired waters 
of watersheds in the USA (Srinivas et al. 2020a). Machine 
learning (ML) models such as adaptive neuro-fuzzy infer-
ence system (ANFIS) and hybrid ANN models can capture 
the nonlinear patterns of water quality by considering each 
parameter’s sensitivity and subjective behavior to develop a 
robust WQI forecasting model (Tabbussum and Dar 2021). 
In addition, these models can also tackle problems such as 
high errors, outliers, noise, and missing data.

Kadam et al. (2019) projected the suitability of ground-
water from the river basin Shivaganga to fulfill drinking 
purposes. Matta et al. (2020) classified spatio-temporal 
variation of water quality of the River Ganges (India) using 
WQI, multivariate statistical models, and principal com-
ponent analysis (PCA). Azad et al. (2019) improved water 
quality classification and prediction by integrating artifi-
cial neural networks with nature-inspired algorithms like 
Cuckoo search, particle swarm optimization (PSO), and 
genetic algorithm. Juan et al. (2017) used ANN to simulate 
and forecast the variation of runoff in the Three-River Head-
water Region (TRHR), Qinghai-Tibet Plateau. Al-Mukhtar 
and Al-Yaseen (2019) used ANN, ANFIS, and MLR to ana-
lyze electrical conductivity (EC) and total dissolved solids 
(TDS) in southern Iraq. Results established the supremacy 
of ANFIS among the three techniques. Fu et al. (2020) pro-
posed an optimized wavelet de-noising ANFIS for estimat-
ing the water quality of wastewater. Pramanik and Panda 
(2009) compared ANN and ANFIS using daily data released 
from the Hirakud Reservoir, India. Sahu et al. (2011) dem-
onstrated the capabilities of ANFIS to model actual and pre-
dicted water quality. They dealt with the data uncertainty 
and impreciseness by fuzzifying the parameter values.

Alizamir and Sobhanardakani (2018) used the ANN-
PSO approach to predict heavy metals such as arsenic, cop-
per, lead, and zinc in the groundwater of Toyserkan Plain 
(Hamedan Province, Iran). Chen and Liu (2015) simulated 
DO, phosphorus, chlorophyll ‘a’, and Secchi depth using 
ANFIS, radial basis function network, and a multiple linear 
regression model for Mingder reservoir (Taiwan). Aghel 
et al. (2019) modeled and predicted water quality param-
eters and achieved high computational speed and accuracy 

to predict unknown parameters using a hybrid PSO–neural-
fuzzy technique. Azad et al. (2019) enhanced the perfor-
mance of ANFIS using GA, differential evolution, and ant 
colony optimization for continuous domains and determined 
water quality parameters of river Gorganroud along with 
sensitivity analysis. Zanganeh (2020) employed PSO algo-
rithms to address some of the limitations of ANFIS and 
enhanced its accuracy.

Rivers are the most vulnerable of all ecosystems to climate 
change’s effects. Hence, it is imperative to evaluate the role 
of climate variability on water quality (Avand and Moradi 
2020). Variations in air temperature and rainfall are expected 
to have a significant impact on river flows, and as a result, 
they impact the mobility and dilution of pollutants as well 
(Srinivas et al. 2020c). Increased water temperatures can 
have an impact on chemical kinetics, which would impair 
the freshwater ecology and overall water quality (Mujere and 
Moyce 2018; Laanaya et al. 2017). Precipitation affects river 
flows, and as a result, sediment loads would vary, potentially 
altering river morphology and sediment transfer to water 
bodies, affecting freshwater ecosystems (Stryker et al. 2018). 
Avand and Moradi (2020) used integrated machine learning 
models with remote sensing to explore the impact of climate 
change and land use on water quality and flood probability. 
Hence, studying the uncertain behavior of climate parameters 
on river water quality is essential.

Recently, cloud computing is increasingly becoming pop-
ular to perform water quality analysis due to the increase in 
the computational requirements of analytical models such as 
machine learning (Geetha and Gouthami 2016; Sagan et al. 
2020). The computational requirements may not necessar-
ily be satisfied by locally available compute resources. To 
overcome the computational constraints, cloud computing 
platforms such as Amazon Web Services, Google Cloud 
Platform, and Microsoft Azure Cloud can be utilized for 
large-scale water quality analysis. The users can request for 
the required amount and type of computational resources on 
these cloud platforms. They will be charged with a monetary 
fee in turn for utilizing the cloud platform.

There are very few artificial intelligence-based mod-
els which simultaneously deal with water quality, climate 
change, and river flow along with sensitivity analysis of 
water quality parameters. Considering this, the present study 
proposes a cloud-based optimized hydro-climatic ML-based 
modeling framework using ANN, ANFIS, and ANN coupled 
with advanced PSO. Five critical water quality parameters 
namely BOD, DO, temperature, pH, and total coliform are 
used for predicting the WQI of the River Ganges (India) 
under changing climate. This study is aimed at.

	 (i).	 analyzing the sensitivity of water quality parameters 
toward predicting WQI using ANN, ANFIS, and 
ANN-PSO;
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	 (ii).	 assessing the performance of proposed models using 
R2, RMSE, and NMSE;

	(iii).	 incorporating uncertain behavior of climate parame-
ters (air temperature and precipitation) and river flow 
as well as their impact on water quality parameters 
using ANN and ANFIS;

	(iv).	 comparing the modeling efficiency of ANN and 
ANFIS to predict WQI and assess the impact of 
hydro-climatology; and

	 (v).	 enabling all the above-mentioned analyses in the 
cloud by sending the data from the monitoring sen-
sors placed in the river to the cloud.

Overall, the proposed advanced machine learning-based 
models would enable the watershed managers and decision-
makers to predict water quality accurately in a continuous 
manner while incorporating uncertainties concerning cli-
mate change, water quality parameters, and river flow.

Methodology

Study area and data

The Ganges basin occupies around one-fourth (26.3%) of 
India’s total area. River Ganges originates as Bhagirathi in 
the Garhwal Himalaya (30 55′ N, 79 7′ E). The catchment 
area of the Ganges basin is 8.6 × 105 km2 (26.4% of India’s 
area) (CPCB 2013). In Uttarakhand, the river traverses a 
length of 450 km. Raiwala is situated at an altitude of 356 m 
(above sea level) with an average rainfall of 2136.7 mm. 
Minimum and maximum summer temperatures are 29 ℃ 
and 40 ℃, respectively. In winters, the temperature drops 

lowest to 5 ℃ and goes up to 20 ℃. The following lists the 
characteristics of the River Ganges in the study area (Rai-
wala district of Uttarakhand) (Fig. 1):

1)	 The downstream stretch of the River Ganges at Raiwala 
and Rishikesh is not suitable for bathing with respect to 
the BOD criteria.

2)	 Total coliform does not meet the primary water criteria 
based on the designated best use for category ‘C’ at d/s 
Raiwala and d/s Haridwar (CPCB 2013).

3)	 Drains in Rishikesh discharge 178.5 MLD directly to 
the Ganges River. Open defecation and discharge of 
untreated sewage (CPCB 2016) leads to higher concen-
trations of coliform bacteria and organic pollution.

The interaction of rising temperatures and changing dis-
charge patterns due to climate change and the discharge of 
heavy chemicals and sewage into the river imbalances its 
ecosystem. Water quality has its unique relationship with 
climate variables (e.g., precipitation, temperature, daylight 
hours, wind speed). On the other hand, river discharge 
also plays a key role in regulating riverine ecosystems 
and overall self-purifying capacity (Srinivas et al. 2018b). 
Limited research has been performed to explore the rela-
tionships among climate change, river discharge, and water 
quality (Mimikou et al. 2000; Zhang et al. 2015). In this 
study, monthly datasets of water quality, climate param-
eters, and river discharge are collected for the time period 
of nine years, i.e., 2011–2019. Water quality parameters 
data (pH, BOD, DO, water temperature, and total coli-
form) at the Raiwala station are obtained from the Central 
Pollution Control Board (CPCB 2019). River discharge 
data is provided by Central Water Commission (CWC 

Fig. 1   Map of Ganges River 
basin highlighting the study 
area

RRaiwala

65261Environmental Science and Pollution Research (2022) 29:65259–65275



1 3

2019), while the climate data (rainfall and river tempera-
ture) is procured from Indian Meteorological Department 
(IMD 2019). For illustration purposes, water quality, cli-
mate parameters, and river discharge values only for the 
year 2011 are presented (Fig. 2). On analyzing WQI values 
for the study period (2011–2019), it is clear that the water 
quality of the river has significantly degraded from 2011 
to 2019 primarily due to increased concentrations of total 
coliform and BOD.

Optimized artificial intelligence models

The overall goal of the study is to accurately assess the 
impact of variation in hydro-climatic conditions and 
river discharge on water quality using ANN, ANFIS, and 
ANN-PSO. The methodology used in this study has been 
described in Fig. 3. We also propose collecting all the 
data from the monitoring sensors in the river and send-
ing them to the cloud where the aforementioned analysis 

Fig. 2   Observed data of water 
quality, climate parameters, 
river discharge, and WQI at 
Raiwala (2011)
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will be carried out; this is represented in Fig. 4. Firstly, a 
sensitivity analysis of five water quality parameters with 
respect to WQI of River Ganges has been performed. 
These results are analyzed on the basis of root mean square 
errors (RMSE), normalized mean square error (NMSE), 
and the determination coefficient (R2) for every combina-
tion of data using equations. Based on sensitivity analy-
sis, critical parameters are obtained. Then, the impact of 
hydro-climatology on water quality is accessed using ANN 
and ANFIS. The models are applied to the case study on 
River Ganges in the following manner:

WQI calculation: Firstly, monthly WQI values are cal-
culated using the weighted arithmetic mean method for 
the 9-year monthly data (Sutadian et al. 2016) using 
Eqs. (1)–(3).

Fig. 3   Methodology adopted in 
this study

Fig. 4   Utilizing the cloud for continuous monitoring and analysis
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where n is the number of water quality parameters, qn 
is the qualitative rating of the nth parameter, Xn is the 
observed value of the nth parameter at the sampling sta-
tion, Pn is the standard prescribed value of the nth param-
eter, Vio is the ideal value of the nth parameter in pure 
water, i.e., zero for all other parameters except pH and DO 
(7.0 mg/L and 14.6 mg/L, respectively), K is the constant 
for proportionality, and Wn is the unit weight of the nth 
parameter. Table 1 provides the drinking water standards 
and unit weights of parameters provided by the Bureau of 
Indian Standards (BIS) and the World Health Organiza-
tion (WHO).

Normalization: The entire input datasets (water quality 
parameters) are normalized on a scale of 0 to 1 (Srini-
vas et al. 2017).where f is the output of the model, i.e., 
WQI and important water quality parameters in our study, 
p = 1,2,3…….N and N is the number of data samples.
Identifying sensitive water quality parameters: The nor-
malized values of five water quality parameters and WQI 
are considered as input and output, respectively, to each 
of the ANN, ANFIS, and ANN-PSO models. Models 
are trained using different combinations of four water 
quality parameters at a time. Additionally, models are 
also trained by feeding all five water quality parameters 
as input. By using statistical methods (R2, RMSE, and 
NMSE) [Eqs. (4)–(6)], sensitive parameters are obtained 
for further analysis.where f is the output of the model, i.e., 
WQI and important water quality parameters in our study, 
p = 1,2,3…….N and N is the number of data samples.

(1)qn =
100(Xn − Xio)

(Pn − Xio)

(2)Wn =
K
/

Pn

(3)WQI =

∑

qnWn
∑

Wn

Assessing hydro-climatic impact: Another set of ANN 
and ANFIS models are trained for identifying the impact 
of climate and river discharge on water quality. A separate 
ANN and ANFIS models are built for each of the sen-
sitive water quality parameters. Each model consists of 
flow rate of the River Ganges, air temperature, and rain-
fall at Raiwala as inputs while the water quality param-
eters as outputs. The trained ANN and ANFIS models are 
analyzed to assess the level of impact of climate and river 
flow on water quality using R2 and RMSE.

ANN and ANFIS models

In artificial neural networks (ANNs), an activation func-
tion (which is generally nonlinear) is applied to inputs 
(either water quality parameters or climate and discharge 
data) arriving at each neuron for generating an output sig-
nal (either WQI or water quality parameters). An additional 
bias input is added to the weighted sum of inputs to increase/
decrease the overall input to the activation function. Such 
synthesized functions depend on the network architecture 
and interconnections between the processing units. Most 
ANN algorithms are feedforward networks which use error 
backpropagation algorithms for training. The input and out-
put nodes represent independent and dependent variables, 
respectively. Hidden layers are added to perform nonlinear 
transformations (such as sigmoid functions) on the input 
space. Detailed information on ANN can be found in (Rajaee 
et al., 2020).

An adaptive neuro-fuzzy inference system (ANFIS) uses a 
fuzzy inference system (FIS) to express the uncertainty associ-
ated with water quality, river discharge, and climate parame-
ters. FIS uses a nonlinear mapping from the input to the output 
space using a set of ‘IF–THEN’ fuzzy laws, each defining the 
mapping’s local behavior. In general, backpropagation alone or 
backpropagation along with the least square approach is used 
to optimize the fuzzy membership parameters. ANFIS model 
is a stronger model than ANN and independent fuzzy logic 
models in terms of its flexibility, adaptivity, learning speed, 

(4)R2
=

∑N

k=1
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f (p) − f (p)

��

f
�

p̂
�

− f (p)

��

�

∑N

k=1
(f (p) − f (p))
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(f
�
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�
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(5)RMSE =

√

√

√

√

N
∑

K=1

1

N − 1
[f (p) − f

(

p̂
)

]
2

(6)NMSE =

∑N

k=1
[f (p) − f

�

p̂
�

]
2

∑N

k=1
[f (p)−

−

f (p)]
2

Table 1   Drinking water standards recommending agencies and unit 
weights

Parameter Standard value Unit weight

pH 6.5–8.5 0.2190
DO (mg/l) 5 0.3723
BOD (mg/l) 5 0.3723
Temp. (℃) 25–50 0.0372
Total coliform (/100 ml) 10 0.1861
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and memorization accuracy (Srisaeng et al., 2015). It is also 
able to better capture the nonlinearity, uncertainty, and inac-
curacy in the data.

Sugeno-type FIS has been used in this study as it models 
the real-world data more accurately and is more computation-
ally efficient than Mamdani (Wang and Chen 2014; Şahin and 
Erol 2017). The Sugeno system has either linear or constant 
output membership functions, whereas the Mamdani system 
can have triangular, Gaussian output membership functions. 
The Mamdani type is more reliant on expert knowledge and 
requires fuzzy rules. On the other hand, the Sugeno-type FIS 
utilizes real data for training, and it develops the rules itself 
while training according to the input and output data. In gen-
eral, Sugeno FIS is used for one output and Mamdani FIS is 
used if the number of outputs is more than one. In this study, 
there is only one output, i.e., WQI, and the model needs to be 
trained based on real-time data; hence, Sugeno FIS is chosen. 
Figure 5 shows the architecture of an ANFIS model, where 
Oj,i represents the output of the ith node and jth layer, x is the 
input (water quality parameters) to the ith node, and Ai is the 
linguistic label of inputs denoted by membership functions 
(triangular, trapezoidal, and Gaussian).

The fuzzy IF–THEN rules for a first-order Sugeno fuzzy 
model are given below:

where x and y are inputs, Ai and Bi are membership func-
tions, fi is the output, and ai, bi, and ci are determined during 
the training process (Şahin and Erol 2017). The layers of the 
ANFIS model are explained below.

Layer 1: Nodes are represented through the following 
functions:

Rule 1 ∶ If x is A1 and y is B1, then f1 = a1x + b1y + c1,

Rule 2 ∶ If x is A2 and y is B2, then f2 = c2x + b2y + c2,

O1,i = �Ai (x) for i = 1, 2

Layer 2: Firing strength of a rule is computed as follows:

Layer 3: Normalized firing strengths are calculated as

Layer 4: The node function of this layer calculates the 
contribution of the ith rule to the total output

where wi is the output of layer 3 and {ai, bi, ci} is the param-
eter set.

Layer 5: Single output node computes the overall output 
of the ANFIS as

In this study, a backpropagation learning algorithm is 
used to reduce the error between observed and expected 
data. A well-designed ANFIS has been developed to address 
the nonlinearity or complexity associated with inputs and 
outputs with high precision.

ANN training and architecture

Feedforward backpropagation neural network: A total of 
108 normalized (on a scale of 0–1) input and output val-
ues are fed into the hidden layer, and desired weights are 
assigned. The number of hidden layers affects the error esti-
mation. The weights connect each link between an input and 
a hidden layer, as well as a bias value. The output layer then 
connects to the hidden layer, which gives the output. All the 

O1,i = �Bi−2 (y) for i = 3, 4

O2,i = wi = �Ai(x) × �Bi(y) wherei = 1, 2

O3,i = w1 =
wi

/

w1+w2
i = 1, 2

O4,i = w1 × fi = w1(ai × x + bi × y + ci)

O5,i =

�

i

w1 × fi =
∑

i wi×fi

�

∑

i wi

Fig. 5   Architecture of ANFIS 
model having two inputs, two 
rules, and one output
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neural network models generated in this study are analyzed 
using R2 and RMSE.

Training the neural network  Training achieves highly effi-
cient and accurate modeling of a given dataset. For sensitiv-
ity analysis, input data includes five water quality parameters 
and output includes the WQI of the river. For assessing the 
impact of hydro-climatic changes, river discharge, rainfall, 
and air temperature are considered as inputs; and the out-
put dataset includes pH, DO, BOD, temperature, and total 
coliform. The backpropagation algorithm is used for the 
training. Using the fitnet function in MATLAB 2020a, Lev-
enberg–Marquardt (LM) function has been chosen as the 
training algorithm and tansig as the activation function for 
hidden as well as output layers.

Neural network architecture  The structural attributes 
of a feedforward neural network such as the number of 
hidden layers, hidden neurons, and training, testing, and 
validation datasets directly affect the performance of the 
model and are important for adequate mapping. The trial-
and-error process has been used extensively to arrive at 
a perceptron with three layers consisting of a number of 
functional nodes and connection weights. Input and out-
put values are randomly partitioned into 70%, 15%, and 
15% as training, testing, and validation sets, respectively. 
Figure 6 represents the architecture of the ANN model 
for analyzing the impact of variation in hydro-climatol-
ogy on water quality. Because of the lack of availability 
of a huge dataset, overfitting in the ANN model is dealt 
with by changing the network complexity. The network 

structure was changed in a manner that the parameters 
(weights) of the model remain small. Small parameters 
suggest a less complex and, in turn, more stable model 
that is less sensitive to statistical fluctuations in the input 
data. A trial-and-error process was undertaken till the 
model achieved a suitable performance on a validation 
dataset, and the corresponding network structure was 
finalized.

Following the above-mentioned concept, while train-
ing an ANN model with five water quality parameters as 
input and Water Quality Index (WQI) as the output, tak-
ing one hidden layer between the input and output layer 
was the basic starting point so that number of weights 
in the model could be optimized to a minimum level. 
The model was developed with 15% of the dataset as a 
validation dataset. For deciding the number of hidden 
neurons in that layer, trial and error was done with 5, 6, 
and 7 neurons. The values of the regression coefficient 
for all the three models with 5, 6, and 7 hidden neurons 
were similar (around 0.99). This indicated that all these 
three models were able to train well. However, the pre-
dictive error on the validation dataset was the least for 
the model with 5 neurons with also the training error 
being the least (7.5 × 10−7). For 6 and 7 neurons, the 
predictive error of the validation dataset was very high 
as compared to the low training error. Therefore, with 
5 input parameters, 5 hidden neurons in 1 hidden layer 
and 1 output node (WQI) in the output layer, the neural 
network model was developed to achieve, if any, the least 
amount of overfitting.

Fig. 6   Architecture of ANN 
model for climate change 
analysis
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ANFIS training and architecture

Both sensitivity and hydro-climatic analysis use a combina-
tion of input and output values similar to that of the feedfor-
ward backpropagation of ANN, as described earlier. Also, 
R2 and RMSE are calculated.

Sugeno‑FIS architecture  The ANFIS model’s ability to meet 
the output target is determined by internal ANFIS param-
eters including the number and shape of membership func-
tions. Each input parameter’s contribution to the regression 
parameter and the desired output is determined by the type 
and number of membership functions used. Optimization 
of internal parameters is therefore a necessary step during 
ANFIS modeling. If the target RMSE can be met, the trial-
and-error method is considered to be efficient for such opti-
mization. The trial-and-error method also has the benefit of 
producing an information rule base with a lower likelihood 
of overfitting the training data collection. Hence, internal 
ANFIS learning parameters are tuned to render the opti-
mal parameters capable of mimicking the given data pattern 
sequences after a comprehensive trial-and-error process. For 
every input, three Gaussian membership functions are used. 
For illustration, Fig. 7 shows the membership functions used 
for pH in this study. The Gaussian membership function ( �A ) 
is generally represented as Gaussian (x: b, s), where b and 
s represent the mean and standard deviation, respectively 
(Eq. (7)).

where n represents the fuzzification factor.

The output membership function of the ANFIS model is 
linear. The number of inputs, their types, and the number of 
fuzzy membership functions used in the model are used to 
determine the number of fuzzy rules and the optimum num-
ber of parameters required for describing the FIS to obtain 
the best results.

(7)�A(x, b, s, n) = exp[−
1

2

|

|

|

|

x − b

n

|

|

|

|

n

Training the ANFIS  Training is done with the aid of a neu-
ral-fuzzy designer in MATLAB 2020a. For illustration, the 
architecture of the ANFIS model for sensitivity analysis 
has been shown in Fig. 8. The data space is divided into 
rectangular subspaces using grid partition and axis-parallel 
partition on the basis of a predetermined number of mem-
bership functions (MFs) and their types in the dimensions. 
Backpropagation along with the least-squares algorithm 
(hybrid) adjusts the parameters of the membership functions. 
The parameters of input membership functions are adjusted 
using backpropagation, while those of output membership 
functions are adjusted using least-squares estimation in this 
hybrid optimization process. In this study, the training stops 
after 50 epochs as there is no change in error after 50 epochs.

Hybridized particle swarm optimization (PSO)‑ANN model

Meta-heuristic optimization algorithms are used to train 
ANNs instead of classic algorithms (backpropagation algo-
rithm) to tackle the disadvantages associated with the latter 
like getting stuck in local minima/maxima and plateaus of 
the error function landscapes (Chatterjee et al. 2017). In a 
hybrid ANN-PSO model, PSO is used to reduce the ANN’s 
errors by selecting the best values for the model’s weights 
and biases. As a result, the weights and biases are variables 
in this problem, and the problem’s feasible space is deter-
mined by the interval at which these variables differ.

In ANN-PSO, each particle contains one set of weights 
and the value of weights corresponding to a particle is 
termed as the particle’s position. A particle’s fitness function 
can be expressed in terms of NMSE. Firstly, a number of 
hidden layers of neurons are chosen, and a neural network is 
developed with initial weights and biases. The initial weights 
and biases are then improved in order to be able to locate 
the particle in the D-dimensional, where D refers to the total 
number of weights and biases. In every iteration, each parti-
cle’s output values are predicted, followed by the calculation 
of normal mean squared error (cost function in this study). 
The location of particles is updated for a specified num-
ber of populations and iterations until the cost function is 

Fig. 7   Gaussian membership 
function plot for an input vari-
able pH
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minimized (Poli et al. 2007). For this study, the weights refer 
to the weights of the ANN model with water parameters as 
input and WQI as output for sensitivity analyses. A total of 
50 particles (population) have been considered in the PSO 
algorithm. Out of these 50 particles, the most optimum one 
whose position when fixed as the weights in the ANN model 
gives the least NMSE after training.

In the proposed work, PSO along with controlled parame-
ters has been proposed to improve the ANN model. To inves-
tigate particle movement patterns in PSO with controlled 
parameters, base frequency (F) and variance ( Mc ) are used 
to estimate particle position coefficients. The term ‘base 
frequency’ is used to describe the movement as a measure 
of positional correlation. The range of movement patterns 
is characterized by variance ( Mc ). The frequency and vari-
ance are measured theoretically, and the inertial weight (w) 
is calculated using Eqs. (8)–(10).

For a given frequency and variance, values of coefficients 
are calculated as

(8)f (w) =
−48Vcw

2 + 48Mc

28Mc + w − 20Mcw + 1
− 1 − w + 2 cos (2�F)

√

w ; f (w) = 0

(9)c1 = 1 + w − 2cos(2�F)
√

w

(10)c2=
−48Vcw

2 + 48Mc

28Mc + w − 20Mcw + 1

In comparison to a long-run problem, the number of itera-
tions for a short-run problem is lower. If a short run and a 
long run are conducted, the experimental values of Mc and 
F are given as 25.6 and 0.2, respectively, for a short run, 6.4 
and 0.2, respectively, for a long run (Bonyadi and Michale-
wicz, 2016).

ANN‑PSO architecture

Particle swarm optimization has been used to improve the 
ANN modeling of water quality parameters and WQI while 
performing sensitivity analysis. R2 and NMSE are used to 
compare the models and evaluate the sensitivity of each 
water quality parameter.

Neural network architecture  A feedforward perceptron with 
one hidden layer is improved using advanced PSO. The 

training algorithm and activation functions are the same as 
in the ‘ANN training and architecture’ section. Input (pH, 
DO, BOD, temperature, and total coliform) and output 
(WQI) values are randomly divided into 70%, 15%, and 15% 
as training, testing, and validation sets, respectively.

Optimization of weights  Obtaining suitable weights 
between ‘input and hidden layers’ and ‘hidden and output 

Fig. 8   Architecture of ANFIS 
model in Neuro-Fuzzy Designer 
for sensitivity analysis
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layers’ using a meta-heuristic nature-inspired algorithm has 
proven to be extremely efficient as compared to classical 
methods. The number of weights to be optimized is calcu-
lated using Eq. (11).

where n is the number of hidden nodes.

In the PSO algorithm, values of these weights are con-
sidered as positions corresponding to each particle. Par-
ticle size is known as population. The velocity of each 
particle is also generated, and after each iteration, both 
the position and velocity of the particle are updated based 
on global best values. Following a trial-and-error method 
to get the best performance, iterations are fixed to a maxi-
mum of 200, the population is 50, and the damping coeffi-
cient is set to be 0.99. In order to enhance PSO, controlled 
parameters are used (Bonyadi and Michalewicz, 2016) as 
given below:

Fitness function  The fitness (cost) function in the PSO algo-
rithm equals NMSE. After being trained with PSO updated 
weights, ANN gives the error for a specific input and output 
dataset used for modeling the trained neural network. These 
error and output values are used to calculate the NMSE of 
those combinations of weights. The weights that produce 

(11)
No. of weights = (No. of input nodes ∗ n) + n + n + 1

Inertial weight (w) = 0.836

Acceleration constants (c1 and c2) = 1.271

the least value of the fitness function (NMSE) are chosen 
for modeling the ANN. Figure 9 shows how error decreases 
as the iterations progress to finally reach the least NMSE.

Results and discussion

The AI models described in the previous sections have been 
applied using the nine-year (2011–2019) datasets of water 
quality and climate parameters, and discharge at the Raiwala 
sampling station of the River Ganges. This section presents 
the results for each of the ANN, ANFIS, and ANN-PSO 
models.

Sensitivity analysis of water quality parameters

ANN, ANFIS, and ANN-PSO have been applied to carry out 
a sensitivity analysis to identify the water quality parameters 
which affect the WQI of the Ganges River in a significant 
manner. Table 4 presents the results of the ANN models. 
Based on the results, the combination of one hidden layer 
with five hidden neurons is selected, as it yields minimum 
RMSE (7.50 × 10−7). However, on selecting six or seven 
hidden neurons, RMSE increases. Therefore, five hidden 
neurons are selected for water quality parameters sensitiv-
ity analysis. Five models are trained, each time leaving one 
parameter out, using the fitnet function (nnstart toolbox) in 
MATLAB 2020a. On removing any parameter from the anal-
ysis, the RMSE and R2 values of the neural models increase 
or decrease, signifying their importance accordingly. ‘ANN-
WQI-ALL’ is taken as the reference model. When all five 
parameters are taken as input, a correlation coefficient of 

Fig. 9   Relation between itera-
tions and NMSE for ANN-PSO 
model with five water quality 
inputs
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0.999 is obtained. On the other hand, if BOD is not taken 
as input, a correlation coefficient of 0.856 and RMSE of 
0.0659 is obtained. Hence, comparing the values of statisti-
cal measures, it is observed that pH, BOD, and total coli-
form have the largest influence on the WQI. DO (R2 = 0.965 
and RMSE = 0.044) and water temperature (R2 = 0.999 and 
RMSE = 5.53 × 10−6) have comparatively lesser impact on 
WQI (Table 2).

Table 3 presents the results of the ANFIS models. The 
ANFIS-WQI-ALL model has the lowest RMSE value 
(1.02 × 10−5) and shows good accuracy as well as little 
residual errors when compared to other models. Hence, it 
is taken as the reference model. RMSE increases greatly 
(0.000131) when total coliform is not taken into considera-
tion. This reveals that total coliform can be considered as 
the most crucial parameter for WQI prediction. Low errors 
corresponding to ‘ANFIS-WQI-BOD’ and ‘ANN-WQI-pH’ 
also indicate the importance of BOD and pH as inputs when 
compared to temperature and DO. The R2 values do not vary 
significantly from 0.99 indicates that ANFIS has been able 
to achieve very good training accuracy on the provided data.

Table 4 gives the results of sensitivity analysis for ANN-
PSO models. On taking 7 hidden neurons, all parameters 
when considered into the model yield an R2 value of 0.998 
and NMSE of 0.0024. Optimized weights through PSO gave 
the best results when the ANN architecture had one hid-
den layer and 7 hidden nodes. The highest dip in R2 value 
(0.7196) is seen in the case of ANN PSO-WQI-COLIFORM. 
Consequently, the NMSE value of 0.3103 proves that total 
coliform is the most significant input parameter. The remain-
ing models are statistically close with one another.

Because of their ability to yield more accurate results, 
ANFIS and ANN-PSO are considered more reliable com-
pared to ANN models. The observations obtained from the 
results of these models can be easily verified based on the 
works performed by governmental bodies and other sec-
ondary sources (CPCB 2016; Srinivas et al. 2017; UPCB 
2020). In Rishikesh, a total of 187.92 MLD of wastewater 

sewage and 1.27 tonnes/day of BOD is discharged into the 
River Ganges (CPCB 2016). On major religious days, the 
discharge of municipal sewage increases significantly as 
more than 1.5 million people gather near the River Ganges. 
In addition, Uttarakhand is the home of 71 grossly polluting 
industries discharging 94,992 KLD of industrial waste and 
2150 kg/day of BOD into the River Ganges and its tribu-
taries (ENVIS 2016). These industries include paper pulp, 
sugar, distilleries, and pesticides. Since most of them dis-
charge BOD, pH at high temperatures, a strong correlation 
is obtained using ANN, ANFIS, and ANN-PSO models due 
to the presence of a common source. BOD, pH, and coli-
form are also present in sewage water; thus, coliform is also 
closely related to other parameters.

Due to constant discharge from sewage treatment plants, 
untreated drains, and industries across the Dehradun-Rishi-
kesh stretch, BOD and coliform exceed the water quality 
criteria (CPCB 2019). pH levels increase tremendously, par-
ticularly in the monsoon seasons. Haritash and Gaur (2016) 
conclude that Rishikesh’s water cannot be advised for drink-
ing or other domestic needs unless it is treated.

This study would enable governmental bodies such as 
CPCB to take necessary precautions against the discharge 
of sewage, human, and animal waste into the waters of 
the River Ganges and devise suitable measures to assess 
the climatic impact on aquatic life. It would also help the 

Table 2   Overall results of eight ANN-WQI models developed for 
sensitivity analysis

Models ↓ Hidden 
neurons

R2 RMSE

ANN-WQI-ALL 5 0.999 7.50 × 10−7

6 0.999 2.03 × 10−5

7 0.999 1.75 × 10−5

ANN-WQI-TEMP 5 0.999 5.53 × 10−6

ANN-WQI-PH 5 0.844 0.066
ANN-WQI-DO 5 0.966 0.044
ANN-WQI-BOD 5 0.856 0.065
ANN-WQI-COLIFORM 5 0.827 0.056

Table 3   Overall results of six ANFIS-WQI models developed for sen-
sitivity analysis

Models ↓ R2 RMSE

ANFIS-WQI-ALL 0.999 1.02 × 10−5

ANFIS-WQI-TEMP 0.985 2.43 × 10−5

ANFIS-WQI-PH 0.973 3.23 × 10−5

ANFIS-WQI-DO 0.989 2.26 × 10−5

ANFIS-WQI-BOD 0.998 3.31 × 10−5

ANFIS-WQI-COLIFORM 0.997 0.000131

Table 4   Overall result of eight ANN PSO-WQI models developed for 
sensitivity analysis

Model ↓ Hidden 
neurons

R2 NMSE

ANN PSO-WQI-ALL 7 0.9987 0.0024
6 0.9882 0.0121
5 0.9961 0.0039

ANN PSO-WQI-TEMP 7 0.9934 0.0068
ANN PSO-WQI-PH 7 0.9948 0.0052
ANN PSO-WQI-DO 7 0.9955 0.0045
ANN PSO-WQI-BOD 7 0.9934 0.0067
ANN PSO-WQI-COLIFORM 7 0.7196 0.3103

65270 Environmental Science and Pollution Research (2022) 29:65259–65275



1 3

concerned authorities to plan and manage big pilgrimages 
and the establishment of industries and factories in a safe 
and efficient manner.

Suitable models for WQI forecasting

ANN, ANFIS, and ANN-PSO show great capability during 
the training stage when used for the numerical modeling of 
WQI, considering pH, BOD, water temperature, and total 
coliform as inputs. However, ANFIS models are the most 
robust and accurate, with no major fluctuations in the values 
of R2 and lesser residual errors (Table 3). ANFIS models are 
observed to be superior over ANN and hybrid ANN mod-
els (Kisi 2015). They have proven to efficiently deal with 
areas that are ill-defined and ambiguous, such as water qual-
ity projections (Aghaarabi et al. 2017; Tiwari et al. 2018) 
and suitable for onsite water quality evaluation (Khadr and 
Elshemy 2017).

Figure 10 depicts the deviation of the water quality indi-
ces predicted using six ANFIS models from the calculated 
WQI values. %parameter_name indicates the graph of the 
model in which that particular parameter was not consid-
ered as one of the inputs. The most evident deviations from 
WQI values are observed for blue, orange, and yellow lines 
with one or two spikes of red and green lines. This sug-
gests the importance of BOD, pH, and total coliform as input 
parameters as compared to water temperature and DO. As 
BOD, pH, and coliform are associated with the River Ganges 

locale, utilizing them as three input parameters for WQI pre-
diction via ANFIS may result in good model reproducibility. 
The less significant inputs could be removed because it con-
tributes less variance to the WQI forecast.

Impact of hydro‑climatic variations

Although BOD, pH, and coliform turn out to be the most 
sensitive parameters based on the ANFIS model, all param-
eters are considered for studying the effects of hydro-clima-
tology on water quality. This is due to all parameters being 
somewhat sensitive toward WQI. Discharge of the Ganges, 
air temperature, and rainfall are taken as input, and one by 
one, all water quality parameters are taken as output for 
modeling the unknown and uncertain relationship among cli-
mate change and water quality using ANN and ANFIS. ANN 
models with six hidden neurons show that water temperature 
is significantly affected by rainfall, air temperature, and flow 
rate of the river with an R2 value of 0.47 (Fig. 11). Although 
the error of ANN-COLIFORM is the lowest (0.0942), and 
its R2 value is also very low. Similarly, other ANN models 
have not achieved good accuracy in the training stage. This 
indicates ANN’s inability to efficiently capture nonlinear 
relationships and map ambiguous data with time variations.

On the other hand, ANFIS emerges successful in pro-
viding better clarity on how water quality depends on 
flow and climate parameters (Fig. 11) with relatively 
good R2 values. The highest correlation is found for total 

Fig. 10   Deviation of all ANFIS models in comparison to actual WQI values

65271Environmental Science and Pollution Research (2022) 29:65259–65275



1 3

coliform (0.927) and the least for DO (0.587). Models 
with DO and BOD as outputs have the least R2 and maxi-
mum error values. ‘ANFIS-WATER.TEMP’ and ‘ANFIS-
PH’ are also comparable based on their RMSE values. 
Results of ANFIS modeling can be employed for under-
standing time-dependent uncertain relationships among 
water quality parameters and climate. In addition, the 
watershed modelers would also get clarity on framing 
seasonal policies and planning treatment practices to 
enhance the water quality under varying climates.

Both the water quality measures and river flow are highly 
dependent on cumulative antecedent precipitation (Srinivas 
et al. 2020c). At the Raiwala sampling station, during the 
rainy season, individual household septic tanks get over-
crowded, allowing untreated wastes to spill into drainage 
ditches and neighboring water bodies, which results in 
increased coliform concentration. When rain falls on a water 
source that is not well buffered, runoff can lower the pH 
of neighboring water. Global warming (increased levels of 
CO2 in the air) affects the atmospheric temperature and river 
flows which in turn is responsible for changing pH and DO 
levels in surface water (Nepal 2016). River water flow has an 
impact on both low DO and high BOD concentrations. The 
heavier the rainfall, the more diluted the river water will be, 
lowering the BOD value (Srinivas et al. 2017). Therefore, 
studying the impact of climate variations on the water qual-
ity of the Ganges is essential.

Future work

The outcomes of the cloud-based neuro-fuzzy hydro-cli-
matic model proposed in this study have the capability to 
enhance the existing conventionally available software such 
as PTMApp (BWSR 2021) and ACPF (ACPF 2021) by 

incorporating the uncertainty associated with water quality 
parameters (Srinivas et al. 2020a). Authors have discussed 
in detail about how these software would help in developing 
a decision support system in their previous work (Srinivas 
et al. 2020b). Some of the prescribed changes in these soft-
ware are given below.

PTMApp

•	 Individual practices: PTMApp now has over 20 individ-
ual practices based on USDA NRCS practice types (such 
as farm ponds, saturated buffers, denitrifying bioreactors, 
and multi-stage ditch) as compared to the 6 treatment 
groups of practices (source reduction, protection, etc.) 
in the earlier versions.

•	 Economics: In the original PTMApp, the only upfront 
cost of installation of the practice was considered. But 
now, PTMApp outputs that number as well as the total 
life cycle costs of a practice. Life cycle costs look at the 
long-term costs for the effective life of the practice and 
then annualized to get a different perspective on costs. 
This is helpful when looking at practices like cover crops 
that have low installation costs but over the long term 
may cost just as much or more than a structural practice 
that has high upfront installation costs.

ACPF

The new version of ACPF (version 4) would be released in 
Spring 2022. Some of the expected changes include.

•	 inclusion of economics similar to PTMApp
•	 addition of pollution reduction benefits and potentially 

hydrology and carbon benefits as well, and

Fig. 11   Comparison of R2 and 
RMSE values for ANN and 
ANFIS models for hydro-cli-
matic impact assessment
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•	 also, it would be compatible with the latest versions of 
ArcGIS.

Looking at the future enhancements of PTMApp and 
ACPF, there is a great scope to integrate a cloud-based 
neuro-fuzzy hydro-climatic model to deal with uncer-
tainty and sensitivity associated with costs, locations and 
sizes of practices, water quality benefits, and stakeholder 
preferences.

Conclusions

The study presents various running AI-based models in 
the cloud to identify sensitive water quality parameters 
and assess the impact of hydro-climatic conditions on 
water quality. The collection of data from the monitoring 
sensors in the river and sending this data to the cloud can 
enable continuous analysis and assessment. Relationships 
among water quality and climate change derived using the 
proposed models would guide the hydro-climatologists 
to plan advanced treatments based on predicted climatic 
changes. The results demonstrate that artificial intelligence 
has been proven effectively equipped for forecasting the 
future health of the rivers in a real-time network, espe-
cially when data is scarce and lacks proper detail. Machine 
learning models (ANN, ANFIS, ANN-PSO) generate the 
desired results in a fast, accurate, and inexpensive manner, 
even with small and imperfect datasets. ANFIS could very 
well handle the uncertainties associated with water quality 
parameters. Overall, this study proposes a framework to 
develop machine learning models (ANN, ANN-PSO, and 
ANFIS) for predicting the Water Quality Index (WQI) of 
River Ganges and to assess the impact of climate change on 
water quality. The novelty of this work lies in evaluating the 
sensitivity of water parameters with respect to WQI which 
enhances the model development for WQI prediction. In 
addition, ANN has been modified using fuzzy logic and 
PSO algorithms. A unique meta-heuristic method of linking 
flow rate and climate change parameters with water quality 
characteristics has been developed using ANN and ANFIS, 
where ANFIS provided accurate results. ANN, hybrid ANN 
(weights optimized by advanced PSO), and ANFIS capture 
the linear relationship between parameters and numerically 
computed WQI with satisfactory R2 values of 0.999, 0.998, 
and 0.999, respectively. Sensitivity analysis shows the sig-
nificance of ‘BOD, pH, and total coliform’ as inputs for 
WQI forecasting as compared to water temperature and DO. 
Moreover, ANFIS is revealed to be a more reliable tool than 
ANN for assessing the impact of hydro-climatic change on 
a river’s water quality, with a maximum R2 of 0.927 and 
least NMSE of 0.027 in the case of total coliform. Uncer-
tainty in our study is dealt with by amalgamating fuzzy 

inference systems in the ANN model (ANFIS). Results 
clearly indicate that ANFIS achieves pattern recognition 
for unknown nonlinear and linear relationships better than 
ANN and hybrid ANN algorithms. The proposed machine 
learning framework is flexible and replicable for any num-
ber of water quality and climate parameters in any water 
body in the world. The future scope includes the coupling of 
classical and probabilistic ways with AI and Geographical 
Information Systems (GIS) to incorporate uncertainty for 
large datasets in a more satisfactory manner.
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