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Abstract
The distribution and possible sources of particulate organic carbon (POC) and particulate nitrogen (PN) in seven mangroves 
ecosystems along the east and west coast of India were examined, to understand their contribution to coastal biogeochemistry. 
Suspended particulate matter (SPM) concentration in mangrove waters were about ~ 1.6-fold higher in west coast (Gulf of 
Kachchh (GOK), Mandovi-Zuari (MA-ZU) and Karwar-Kumta (KR-KU)], whereas the mean POC content in SPM along 
east coast [Sundarbans (SUN), Bhitarkanika (BHK), Coringa (COR) and Pichavaram-Muthupet (PI-MU)] was nearly two 
times higher than the west coast (1.97 ± 0.91% and 1.06 ± 0.29%), respectively. The results indicated that the influence of 
the land-based contaminants on the water quality parameters (dissolved oxygen, pH, salinity, nutrients and chlorophyll-a, 
etc.), which primarily regulated the distribution and transformation of organic carbon in these mangrove waters. Among the 
studied systems, an extremely high DOC/POC ratio (5.72 ± 1.64) with low pH and DO in COR waters clearly indicated the 
labile nature of the organic matter influenced by anthropogenic stress. Strong correlation between POC and PN indicated a 
similar origin in particulate organic matter. The ratios of POC/PN and POC/Chl-a showed significant spatial variation ranging 
from 5.5 to 18.7 and 126 to 1057, respectively. The results indicated that significant fraction of in-situ primary production 
contributed to particulate organic matter (POM) pool in all Indian mangrove waters except the GOK and the SUN waters, 
where sediment resuspension and mangrove derived organic matter were the dominant POM sources.

Keywords Suspended particulate matter · Particulate organic carbon · Dissolved organic carbon · Elemental stoichiometry · 
Mangrove waters · India

Introduction

Coastal vegetation including mangroves, marshes and sea-
grasses are well known for their concurrent contribution 
to the regional nutrient cycle, water column productiv-
ity and to the global carbon sink (Macreadie et al. 2019). 
Among these, mangroves are one of the most productive 
ecosystems in the world with a mean global primary pro-
duction of 218 ± 72 Tg C  year−1 (Bouillon et al. 2008). In 

tropical and sub-tropical conditions, mangroves are very 
important links between land and ocean and contribute 
to a large quantity of sediments and particulate organic 
matter (POM) to the ocean. For instance, the worldwide 
extent of total mangrove surface area is only 0.5%, yet they 
account for 10–15% to coastal sediment organic carbon 
and export to 10–11% of particulate carbon to the oceans 
(Alongi 2014). POM contributes to organic carbon burial 
in marine sediments (Duarte et al. 2005), and it can act as 
a significant source of nutrients for the primary produc-
ers in the coastal waters (Patra et al. 2016). Mangrove 
detritus are often correlated with total litter production 
(Mfilinge et al. 2005) which partially gets trapped within 
the shallow inter-tidal creeks. The other fraction of man-
grove litters (~ 51%) is exported during ebb tide to the 
adjacent coastal waters and can significantly modify the 
carbon and nitrogen budgets and associated trophic status 
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of coastal ecosystems (Adame and Lovelock 2011; David 
et al. 2018). However, urbanization and excess import of 
anthropogenic pollutants with high lability could substan-
tially increase the fraction of available food material to 
fuel microbial respiration (McCabe et al. 2021) and  CO2 
fluxes from coastal waters (Abril et al. 2002). Earlier stud-
ies revealed that globally 28 ± 21 Tg of particulate organic 
carbon (POC) and 1.5 Tg of particulate nitrogen (PN), 
derived from dead mangrove biomass materials (mangrove 
detritus) are transported per annum to the adjacent coastal 
waters (Alongi 2013, 2014). Understanding the spatial 
variations in POC, PON and their ratios, and the in-situ 
processes, those regulate their distributions, could explain 
the regional biogeochemical cycles of carbon and nitrogen 
in the coastal environment. The molar ratio of particu-
late organic carbon and particulate organic nitrogen ratio 
(POC/PN) has been used for the discrimination of POM 
sources in coastal ocean waters (Balakrishna and Probst 
2005). Particulate organic carbon to chlorophyll-a ratio 
(POC/Chl-a) revealed that water column chlorophyll-a is 
the dominant source of organic matter in coastal ocean 
waters (Cifuentes et al. 1988).

Indian mangroves with total cover of 5403  km2 represent 
3.3% of global mangroves and about 56% of global 
mangrove species (Ragavan et al. 2019). The east and west 
coast of India cover 56% and 32% of the total mangrove 
area of the country, whereas Island mangroves cover rest 
of the 12% (Purvaja et al. 2018). It is estimated that Indian 
mangroves transport about 0.58 Tg C as POC and 0.04 Tg 
N as PN per annum into the northern Indian Ocean (Ray 
et al. 2018).

A considerable number of studies on the carbon seques-
tration and storage by different mangrove ecosystems have 
been conducted along the Indian coast (Ray et al. 2018; 
Dutta et al. 2019). Higher seasonal fluxes of freshwater dur-
ing the lean period from the submarine groundwater sources, 
causing relatively higher dissolved nutrient concentrations in 
the coastal waters, have already been reported (Rengarajan 
and Sarma 2015), from various mangrove ecosystems. How-
ever, no qualitative information on the elemental composi-
tion of SPM from Indian mangroves is available. Further, 
the number of studies on elemental stoichiometry in the sus-
pended particles of inland waters including mangrove sys-
tems are scanty (Sterner 2011). Here, it is hypothesized that 
the changes in the C and N stoichiometry of suspended parti-
cles during the lean period are significantly influenced by the 
plant litter in Indian mangrove waters. This study aimed to 
characterize the SPM distributed along the salinity gradient 
of seven major Indian mangrove ecosystems, 4 along the east 
[Sundarbans (SUN) Bhitarkanika (BHK), Coringa (COR), 
Pichavaram-Muthupet (PI-MU)] and 3 along the west coast 
[Mandovi-Zuari (MA-ZU), Karwar-Kumta (KR-KU), Gulf 
of Kachchh (GOK)] of India during dry period. Further, the 

possible interactions of SPM with primary production in 
these coastal waters were also determined.

Material and methods

Study area

The Indian peninsula intersects the north Indian Ocean into 
the Bay of Bengal (east coast) and the Arabian Sea (west 
coast). The west coast has a steep continental shelf and lacks 
major deltas and rivers and is dominated by sandy and rocky 
substratum (Purvaja et al. 2018), whereas the shallower east 
coast is characterised by major deltas and large estuarine 
systems. Major mangrove ecosystems from four coastal 
states along east coast and three coastal states along west 
coast were identified to understand the particulate organic 
matter dynamics (Fig. 1). Along the east coast SUN, BHK 
and COR witness meso-macro to meso tidal environment 
with moderate to high anthropogenic stresses linked to aqua-
culture and agricultural waste products (Reddy et al. 2021), 
whereas, PI-MU (Tamil Nadu) mangroves are microtidal 
(~ 1 m mean tidal range) in nature and mostly influenced 
by allochthonous materials generated from multiple land-
based sources (Gupta et al. 2008). The mangroves situated 
in the west coast (MA-ZU, Goa and KA-KU, Karnataka) 
are mostly river dominated micro-tidal estuarine systems 
characterised with rapid deposition of terrigenous material 
(Hegde and Akshaya 2015) and activities such as illegal sand 
mining, unplanned tourism and other industrial accomplish-
ments (Reddy et al. 2021). Whereas, peculiarly bedrock val-
ley of GOK, Gujarat, characterised with pronounced tidal 
influence (macro-tidal regime), predominantly drains the 
black soil to the adjacent coastal waters. The important envi-
ronmental features of the studied mangrove ecosystems are 
presented in Table 1.

Sampling

Surface water samples were collected from seven major 
mangrove ecosystems of India, during the dry period (from 
December 2016 to March 2017) (Fig. 1). Based on the areal 
extent and accessibility, duplicate water samples along the 
salinity gradient were collected from the mangrove waters 
along the east [SUN, West Bengal (21 locations); BHK, Odi-
sha (17 locations); COR, Andhra Pradesh (11 locations); 
PI-MU, Tamil Nadu (11 locations)], and west [MA-ZU, 
Goa (17 locations), KR-KU, Karnataka (14 locations); and 
selected locations of GOK, Gujarat (7 locations)] coast of 
India. Samples for DOC were collected in amber coloured 
glass bottles, whereas POC samples were collected in tarson 
bottles and preserved in dark at 4 °C. In-situ measurements 
of water quality (temperature, salinity, pH and chlorophyll-a 
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(Chl-a) were carried out using a pre-calibrated water quality 
probe (HYDROLAB sonde).

Laboratory analysis

Filtered water samples were analysed for nutrients follow-
ing the standard spectrophotometric procedures (Grasshoff 
et al. 1999). The analytical precision of nitrate + nitrite 
 (NO3 +  NO2), ammonium and phosphate were ± 0.02, ± 0.02 
and ± 0.01 μM, respectively. SPM was measured as the 
weight of material retained on 0.2 µm polycarbonate filter 
(Millipore) after passing 250 ml of water followed by wash-
ing with double-distilled and oven drying for 24 h (60 °C). 
Concentrations of DOC were measured after the water 
samples were filtered through pre-combusted (at 450 °C) 
0.7 µm GF/F filters, using TOC analyser (Elementar Vario 
TOC Cube) following high temperature catalytic oxidation 
method. Potassium hydrogen phthalate solution (4 mM, 
KHP; EMSURE, Sigma-Aldrich, Germany, purity ≥ 99.95%) 
in carbon-free Milli-Q water was used to prepare the calibra-
tion standards for DOC analysis (Intergovernmental Oceano-
graphic Commission 1994). Reference seawater and total 
blanks associated with DOC analysis were checked regu-
larly. Total blanks associated with DOC analyses was about 
10 µM and the analytical precision on triplicate injections 
was usually 3%. About 250 ml of water samples was filtered 
through a pre-combusted (4 h at 450 °C) GF/F filter (nomi-
nal pore size: 0.7 µm) at low vacuum and dried at 60 °C for 
at least 24 h. Filters were acid fumigated for 12 h in a desic-
cator to remove any trace of the inorganic carbon. Content of 
POC and PN on the filters were measured using an elemental 
analyser (Flash EA Thermo). The analytical precision for the 

estimation of C and N content were ± 0.03% and ± 0.02% 
(relative standard deviation), respectively. Both POC and 
PON concentrations in suspended matter were expressed in 
mg  L−1.

Statistical analysis

ANOVA was performed separately for the samples collected 
along the east and west coast, to analyse the spatial varia-
tions in dissolved nutrients, SPM, POC, PON and POC/PON 
among the selected mangrove waters. Tukey post hoc multi-
ple comparison test was performed to identify the difference 
among sample groups. Stepwise multiple regression analy-
sis with the backward elimination technique was applied to 
explain the variability and to identify the major predictors of 
DOC/POC ratios for each of the studied mangrove ecosys-
tems along the Indian coast. ANOVA and stepwise multiple 
regression analysis were performed using the MiniTab 16 
software, and all plots were created using Grapher (version 
5.0), and Microsoft excel.

Results and discussion

Hydrological characteristics of the Indian 
mangroves

Indian mangrove systems displayed a wide range of hydro-
logical conditions during the non-monsoon season. During 
the study, surface water temperature varied between 25.52 
and 33.76 °C (mean, 30.04 ± 2.31 °C) (Table 2). In the 
entire study, salinity in the mangrove waters ranged from 9 

Fig. 1  Map of the studied 
mangrove ecosystems along the 
east coast [(Sundarbans (SUN), 
Bhitarkanika (BHK), Coringa 
(COR) and Pichavaram and 
Muthupet (PI-MU)]. and west 
coast [(Gulf of Kachchh (GOK), 
Mandovi and Zuari (MA-
ZU), and Karwar and Kumta 
(KR-KU)] of India. Blue circle 
indicates the studied ecosystems
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to 41.0. The lowest mean salinity was recorded in Sundar-
ban waters with a range of 10.78. The highest salinity range 
(33.07) from upstream to the downstream was recorded in 
the KR-KU waters. Consistently high salinity was recorded 
with very small spatial variation (range 1.43) in the GOK 
waters (Fig. 2a). The lower mean salinity in the mangrove 
waters of east coast could be attributed to the consistent lean 
discharge from the monsoonal rivers of east coast (includ-
ing the eastern part of Indian Sundarbans), even in non-
monsoonal periods (Rudra 2014).

The concentrations of the DIN ranged from 5.54 to 
318 μM and the mean concentration (94.4 ± 82.5 μM) was 
higher than the concentrations reported earlier from the 
Indian mangroves (55.7 ± 107 μM; Rao et al. 2018). This 
concentration range of DIN was consistent with global range 
reported from mangrove waters (27.3–339.2 μM; Alongi 
2013).

Significantly higher DIN concentrations from COR waters 
along the east coast and Mandovi-Zuari and GOK water 
along the west coast indicated a likely influence from vari-
ous anthropogenic DIN sources to these mangrove waters. 
The range of DIP varied from 0.36 to 35.9 μM (3.4 ± 7.8) in 
Indian mangroves and was lower than previously reported 
values from Indian mangrove waters (8.57 ± 6.13 μM, Rao 
et al. 2018).

The mean N/P in these mangrove waters showed a very 
wide range from 7.2 (PI-MU) to 194.4 (COR). Similar to 
the earlier reports from Indian mangrove waters (Yuan et al. 
2018; Maurya and Kumari 2021), limitation of bioavailable 
inorganic P (with respect to the Redfield ratio; N/P > 16) was Ta
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Fig. 2  Variations in a salinity and SPM (mg  L−1) and b Chl-a (µg/l) 
and  O2 saturation in the Indian mangroves. The light and dark shaded 
circles indicate east and west coast mangroves, respectively
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evident in SUN, BHK, COR, KR KU and MA ZU waters. 
Rapid removal of inorganic P from the mangrove water col-
umn could be attributed to the absorption by fine-grained 
particles and subsequent flocculation in the coastal environ-
ment (Singh et al. 2015). However, higher enrichment of 
bioavailable P in PI-MU and GOK waters resulted in limita-
tion of dissolved N (Redfield ratio < 16). Compared to other 
Indian mangrove waters, exceptionally higher concentrations 
(p < 0.001) of dissolved ammonium  (NH4+) (203 ± 6.9 μM) 
and DIP (29.8 ± 5.5 μM) were recorded from GOK man-
groves. In addition to the industrial influence and local char-
acteristics of the parent rock, the higher concentrations of 
dissolved phosphates during non-monsoon season in GOK 
is largely attributed to transfer and diffusion of phosphorous 
from the sediment to surface water (Panseriyaa et al. 2021).

Suspended particulate matter (SPM) is a key com-
ponent of coastal food web and a key variable of nutri-
ent budgets (David et  al. 2019). It varied from 44.4 to 
290 mg  L−1 (122 ± 55.5 mg  L−1) in the Indian mangrove 
waters during the study period (Fig. 2a). These values were 
higher than those reported earlier from Indian mangroves 
(88.6 ± 12.4 mg  L−1; Rao et al. 2018) and lower than Ira-
nian mangroves (344 ± 180  mg   L−1; Ray and Shahraki 
2016). Mean SPM concentrations were about ~ 1.6-fold 
higher in west coast than east coast of India. Further, the 
SPM concentrations of GOK (162 ± 24 mg/L) were highest 
compared to other mangrove systems and were attributed 
to sediment resuspension caused by high tidal amplitude 
at GOK region. The phytoplankton biomass, in terms of 
Chl-a, varied between 1.1 and 28.0 mg  m−3 in Indian man-
groves and it was consistent with earlier reports (Dutta et al. 
2015). The mean of Chl-a concentration did not show any 
significant variation between west coast (6.5 ± 2.1 mg  m−3) 
and the east coast (6.1 ± 0.8 mg  m−3) during study period 
(Fig. 2b). Dissolved oxygen saturation, often regulated by 
in situ metabolic activities, varied between 61.9 and 131%, 
with the mean saturation of 85.1 ± 12.5% (east coast) and 
94.2 ± 16.7% (west coast) in the mangrove waters (Fig. 2b). 
Chl-a showed significant positive correlation with dissolved 
oxygen saturation along the salinity gradients of BHK 
 (R2 = 0.46), KR-KU  (R2 = 0.30) and MA-ZU  (R2 = 0.39). 
However, in the rest of the systems, no clear relationship 
between Chl-a and DO saturation was recorded.

Coastal acidification and deoxygenation, inextricably 
associated through the process of heterotrophic respira-
tion, could occur at extreme levels when the coastal zone 
receives a large quantity of natural/anthropogenic nutrient 
and organic matters (Gobler and Baumann 2016). Dissolved 
nutrients (dissolved inorganic nitrogen in particular) were 
reported considerably high in the COR waters in east coast 
of India and in mangrove waters of MA–ZU and GOK of 
west coast of India (Maurya and Kumari 2021). These results 
clearly indicated the influence of intense anthropogenic 

activities in these mangrove waters compared to the other 
mangroves. Low mean pH (pH < 7.7; except SUN waters) 
and persistence of DO under-saturation (except KA-KU 
waters) in most of these mangroves revealed the dominance 
of heterotrophic respiration and depletion of dissolved  O2 in 
the water column. Among all the studied systems, moderate 
to strong negative correlations between DOC and DO satura-
tion were recorded for COR (r2 = 0.33, p < 0.001) (Fig. 3a) 
and GOK (r2 = 0.61, p < 0.001) (Fig. 3b). These results fur-
ther indicated the likely influence of labile contaminants in 
reducing DO saturation of mangrove waters. Intensification 
of land-based sources of contaminants and organic matter 
could further deteriorate the mangrove water quality and 
reduce the growth and survival of early-life stage aquatic 
organisms (Baumann et al. 2012) in this unique intertidal 
environment.

Variations in particulate organic carbon 
and nitrogen during dry period

The dynamics of POM are likely to influence the whole 
food web in the mangrove ecosystem (Bouillon et al. 2002). 
Concentrations of particulate organic carbon and nitrogen 
(POC, PN), suspended in the surface waters of the man-
grove ecosystems along the Indian coast ranged from 0.74 

Fig. 3  Correlations between DOC and  O2 saturation for a Coringa, b 
Gulf of Kachchh mangroves waters along the Indian coast
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to 3.55 mg  L−1 (1.67 ± 0.55 mg  L−1; Fig. 4a) and 0.04 to 
0.42 mg  L−1 (0.18 ± 0.08 mg  L−1; Fig. 4b), respectively. 
These POC and PN concentrations were higher than the ear-
lier reports from Indian mangrove waters (0.2 to 1.21 mg  L−1, 
0.02 to 0.21 mg  L−1, respectively, Ray and Shahraki 2016; 
Ray et  al. 2018) and Iriomote Island mangrove, Japan 
(0.76 ± 1.32 mg  L−1 and 0.08 ± 0.12 mg  L−1; Akhand et al. 
2021). Relatively higher concentrations of mean POC were 
recorded in the east coast (1.74 ± 0.57 mg  L−1) than the west 
coast (1.55 ± 0.49 mg  L−1) mangroves (Table 2, Fig. 4a). 
The mean concentration of PN in the west coast mangrove 
waters (0.21 ± 0.08  mg   L−1) was relatively higher than 
the east coast (0.17 ± 0.08 mg  L−1). However, the spatial 
variations of both in POC and PN concentrations between 
the east and west coast mangrove waters were statistically 
insignificant (p > 0.05). The %OC and %ON [measured as 
% OC = (POC/SPM)*100 and % ON = (PN/SPM)*100] indi-
cated the percentage of organic carbon and organic nitrogen 
present in suspended particulate matter (Sarma et al. 2014). 
%OC and %ON of the Indian mangrove waters varied from 
0.57 to 5.26% (1.61 ± 0.86%; Fig. 4a) and 0.02 to 0.44% 
(0.17 ± 0.08%; Fig. 4b), respectively during the study period. 
The percent of POC in SPM of east coast (1.97 ± 0.91%) 
was almost twice the value of west coast (1.06 ± 0.29%) 
(p < 0.001). Among the studied mangrove ecosystems, the 
lowest POC content (1.25 ± 0.25%) in SPM was found in 
the MA-ZU mangrove waters along the west coast of India. 
This could be attributed to limited fresh water flow from the 
upstream and occurrence of lower amount of finer particles 
(clay and silt) in the mangrove sediments along this coast 

(Reddy et al. 2021). Further large variability of land use in 
the catchment areas (17 to 2207  km2, Table 1) and relatively 
limited cover of mangrove vegetation along SW coast could 
explain the low POC and PN content in SPM. Predicted 
intensification of precipitation, one of the major regulat-
ing factor of mangrove POC export (Adame and Lovelock 
2011), of about 7% per 1 °C of warming from sub-daily up to 
seasonal time scales, could significantly (Arias et al. 2021) 
modify the existing carbon export and the net budget from 
these mangrove systems along the Indian coast.

Ratios of particulate and dissolved matter

Concentrations of dissolved organic carbon (DOC) in the 
studied mangrove waters ranged between 1.9 and 13.7 
(4.59 ± 2.28) mg  L−1 with the highest mean DOC concen-
trations observed in COR (9.75 ± 2.46 mg  L−1, p < 0.001) 
waters, followed by GOK (4.80 ± 1.0 mg  L−1). The mean 
DOC concentrations recorded from different systems in the 
present study were relatively higher than those reported 
from Indian Sundarbans (2.57–3.94 mg  L−1; Ray et al. 2015) 
and were comparable with those reported from Sinnamary 
estuarine mangrove of French Guiana, South America 
(8.50 ± 1.01 mg  L−1; Ray et al. 2020).

Organic carbon (OC) produced within mangrove ecosys-
tems are subjected to seaward export during the ebb tide 
either in the form of dissolved organic carbon (DOC) or as 
particulate organic carbon (POC). The DOC/POC ratio in 
coastal waters often indicates the degree of partitioning of 
organic carbon between the dissolved and particulate frac-
tions. The DOC/POC ratios for Indian mangrove waters 
ranged between 0.83 and 8.20 (3.05 ± 1.56) (Fig. 5a) and 
was higher than those values reported earlier from Sundar-
ban mangrove waters (0.50 to 3.39; Dutta et al. 2019) during 
the non-monsoon season. Between DOC and POC, the later 
plays a bigger role in the export and gravitational settling of 
phytoplankton derived OC into deep sea and associated car-
bon cycle (Kharbush et al. 2020). A higher DOC/POC ratio 
in the coastal waters indicates the higher availability of labile 
organic carbon. Even though the DOC/POC ratios of most of 
the studies systems were found similar, exceptionally higher 
DOC in COR waters resulted five folds higher DOC/POC 
(5.72 ± 1.64) ratio than the mean ratio of 0.9 for the Asian 
rivers (Ludwig et al. 1996). These results suggested that a 
significant fraction of the POC gets modified through micro-
bial activities to DOC (9.75 ± 2.46 mg  L−1) (Table 2, Fig. 5a) 
in COR (Robin et al. 2016; Krishna et al. 2018). Addition-
ally, the mangrove waters of COR showed low mean pH 
(6.998 ± 0.274) and DO saturation (55.3 ± 19.2%) (Table 2) 
and the suspended matter was characterised with the high-
est mean OC content (2.31 ± 0.38%). Enhanced transport of 
terrestrial inputs from agriculture and aquaculture sectors to 
the COR mangrove ecosystem (Reddy et al. 2021) has the 

Fig. 4  Variations in a POC (mg   L−1) and %OC b PN (mg   L−1) and 
%ON in the Indian mangroves. The light and dark shaded circles indi-
cate east and west coast mangroves, respectively
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potentials to stimulate the microbial degradation of DOC 
within the estuarine zone and decrease regional export of 
DOC to the ocean (Lønborg et al. 2020). Terrestrial DOC 
could also substantially dampen the primary production and 
result in high  CO2 supersaturated waters in the nearshore 
areas by inducing rapid remineralization and strong light 
attenuation (Fransner et al. 2019). With the increase in 
basin population and alteration in reservoir water capacity, 
an exponential increase in total DOC fluxes and decreasing 
total POC fluxes to the marginal seas have been reported 
in the last few decades from the Chinese rivers (Liu et al. 
2020). However, no such information on the temporal vari-
ability in DOC and POC transport to coastal waters has been 
reported from Indian water.

Sources of POC and PN along the Indian coast using 
POC/PN and POC/Chl‑a ratios

Elemental ratios of C and N (or POC/PN) in suspended mat-
ter has been widely used in conjugation with other environ-
mental proxies to trace the predominant source of organic 
matter in aquatic system (Tamooh et al. 2020). POC and 
PN were strongly correlated in all mangrove waters along 
the salinity gradient, indicating their identical origin (Sup-
plementary Information; Fig S1) within the individual eco-
systems, during non-monsoon period. The elemental POC/
PN molar ratios in the SPM of the studied mangrove waters 
ranged between 4.6 and 28.2 (10.7 ± 5.5), which was similar 
to those reported from Sinnamary mangroves (2.8 to 28.5; 
Ray et al. 2018). The POC/PN ratio was highest at SUN 

(14.3 ± 5.4) followed by BHK (11.8 ± 2.83). The POC/PN 
ratios in the suspended particles of PI-MU, MA-ZU and 
GOK mangrove waters were close to the marine phyto-
plankton (6–9.; Redfield 1958), whereas higher values in 
the other studied systems indicated likely influences of 
mangrove litters. Further, the relationship between POC and 
Chl-a has been used to understand the role of phytoplankton 
in POM production (Hung et al. 2013; Liu et al. 2019) in 
these mangrove waters. The contribution of live biomass to 
the POC pool (represented as POC/Chl-a) varied between 
42 and 1554 (mean 446 ± 42.5) in Indian mangrove waters. 
Among all the systems, an exceptionally higher mean POC/
Chl-a ratio was recorded at SUN waters (1056 ± 344). On the 
contrary, lower mean POC/Chl-a values (< 200; Cifuentes 
et al. 1988) along the PI-MU mangroves could be attrib-
uted to moderately high contribution of Chl-a (9.87 ± 7.81 
and 8.46 ± 4.95 mg  m−3, respectively) in POC pool indicat-
ing the significance of live phytoplankton biomass in these 
regions. Significantly higher mean elemental POC/PN ratios 
in the suspended particles, recorded during the non-mon-
soon season, from SUN and BHK mangrove waters were 
consistent with those of the mangrove plant derived materi-
als (POC/PN = 27.1 ± 10.4; Tue et al. 2012). These values 
were further supported by the high POC/Chl-a ratios. This 
study revealed the high potentials of suspended particles of 
these two mangrove systems, in coastal carbon burial and 
restricting mangrove derived refractory POC within a few 
kilometres offshore owing to local geomorphology (Alongi 
2014). The POC/PN and POC/Chl-a ratios, particularly from 
PI-MU (5.52 ± 0.3 and 195 ± 41, respectively) and MA-ZU 
(6.73 ± 0.26 and 126 ± 12, respectively), indicate that marine 
plankton predominantly contributed to the  POC pool of 
mangrove ecosystems (Savoye et al. 2003). On the contrary, 
the ratios of POC/Chl-a observed from GOK (308 ± 72) and 
KA-KU (454 ± 36) was significantly higher (Fig. 5b). High 
POC/Chl-a ratios indicated faster degradation of Chl-a than 
the whole POC pool by the heterotrophic bacteria (Cifuentes 
et al. 1988; Bueno et al. 2020). In addition to that, Fig. 6a, b, 
c indicate likely contribution from both phyto-detritus and 
sediment resuspension to the POM pool in macro-tidal GOK 
mangrove ecosystem. Overall, the relationship between 
POC/PN and POC/Chl-a ratios indicates that POM con-
centrations in SUN, BHK and KR-KU waters are strongly 
influenced by terrestrial inputs and mangrove litter (Fig. 7). 
Whereas, in COR waters, contributions from mixed sources 
(mangrove litter and other degraded aquatic particles) were 
dominant in the available POM. Along the west coast, the 
POM in the MA-ZU waters are characterised by phytoplank-
ton, present in the water column.

Particularly, in GOK region, relatively higher SPM 
(162 ± 24 mg/L) and POC/Chl-a ratios were associated 
with low Chl-a (3.8 ± 0.6) compared to other mangrove 
waters. The positive relationship between POC and SPM 

Fig. 5  Variations of mean a DOC (mg  L−1) and DOC/POC, b POC/
PN and POC/Chl-a in the Indian mangrove waters. The light and dark 
shaded circles represents the  mangroves of  east and west coasts of 
India, respectively
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concentrations (r2 = 0.72, p < 0.001, Fig. 6a) and POC and 
PN (r2 = 0.47, p < 0.001, Fig. 6b) indicating particulate pool 
of organic C and N are coupled by identical biogeochemical 
mechanism (Kaiser et al. 2014) in these mangrove waters. 
Further, high concentrations of dissolved  NH4

+ and DIP and 
the positive relationship between them (r2 = 0.64, p < 0.001, 
Fig. 6c) in these waters suggested that these nutrients may 
be originated from common sources and possibly influenced 
by nutrient adsorption–desorption by suspended particulate 
under high tidal influence (Clavero et al. 2000). Macro-tidal 

mangrove waters of this region (GOK) experiences periodic 
re-suspension of surface sediments (Table 1). Strong tidal 
circulation, shallow bathymetry and presence of fine-grained 
sediments control the extent of resuspension (Ramaswamy 
et al. 2007) and trapping of suspended matter and POC (both 
passive and active accumulation) within these mangrove for-
est and adjacent waterways (Alongi 2014).

Factors influencing transformation of POC

Between DOC and POC, the latter is considered as a key 
component of the biological pump and associated C cycle, 
due to its major transformation pathway by which OC pro-
duced from various autochthonous origins is exported from 
the surface waters to the marine sediments (primarily by 
gravitational settling) (Cavan et al. 2015). The relationship 
between DOC and POC is often being used as a potential 
indicator for the in-situ transformation of POM (Alvarez-
Cobelas et al. 2012) along the salinity gradient of coastal 
waters. In mangrove waters, where POC can be generated 
from multiple origins including mangrove litter, activity of 
plankton, sediment resuspension and other allochthonous 
sources, the biogeochemical transformation pathway could 
be depended on the in-situ environmental factors. In the 
stepwise multiple regression analysis with backward elimi-
nation technique, the predictor variables used were tempera-
ture, salinity, pH, Chl-a, SPM, DO saturation and the results 
are given in Table 3.

The variability of DOC/POC ratio for Sundarban waters 
was explained (43.8%) by water temperature, salinity and 
SPM concentration. This result indicated the significance of 
mangrove litter contributing to the SPM, and its resistance 
to transformation into the more labile form. A total of 48.2% 
variability of the DOC/POC ratio in Bhitarkanika waters 
was explained by salinity and pH, which often determine 
the distribution of phytoplankton in the water column. In 

Fig. 6  Correlations between a SPM and POC; b POC and PN; c DIP and  NH4
+; d Chl-a and SPM for GOK, mangroves

Fig. 7  Relationship between POC/PN ratios and POC/Chl-a ratios 
for a Sundarbans (SUN), b Bhitarkanika (BHK), c Coringa (COR), 
d Pichavaram and Muthupeet (PI-MU), e Gulf of Kachchh (GOK), 
f Mandovi and Zuari (MA-ZU), and g Karwar and Kumta (KR-KU) 
along the estuarine gradient of the Indian mangrove waters
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COR and PI-MU mangrove waters, variability of the DOC/
POC ratio was primarily determined (69.6%) by water pH 
and dissolved oxygen in the water column. Along the West 
coast, the DOC/POC ratio showed a strong dependence on 
dissolved oxygen saturation, which was closely connected 
with anthropogenic stresses in the mangrove waters. Overall, 
the result indicated that higher production/lower consump-
tion of DOC (Calleja et al. 2019) relative to available POC is 
favoured under the oxygen depleted conditions in these man-
grove water columns. These results further support the ear-
lier observations linked to the increase in POC lability and 
intensity of mineralization with pollution from nine contrast-
ing European estuaries (Abril et al. 2002). Deoxygenation of 
mangrove waters by increase either in surface temperature or 
in land-based pollutants could therefore increase the DOC 
flux or decrease the POC fluxes to the coastal waters. These 
alterations in the carbon fluxes to the marginal seas can have 
substantial impacts (Liu et al. 2020) on the aquatic environ-
ment and ecology and regional climate.

Conclusions

Mangrove ecosystems along the Indian coast substantially 
contribute to the organic carbon pool across the intertidal 
landscape, and are regularly influenced by various anthro-
pogenic activities. The present study on the distribution of 
particulate organic matter in the mangrove waters of India 
revealed that the relative concentrations of %OC and %ON 
present in SPM along the east coast were higher than those 
on the west coast of India. POC and PN were strongly cor-
related in all mangrove waters along the salinity gradient, 
indicating their identical origin (i.e., particulate organic mat-
ter) in the individual ecosystems, during the non-monsoon 
period. Preliminary results from the major mangrove eco-
systems of India indicated that mangrove litter, marine phy-
toplankton and marine sediment likely form the dominant 
POC pool for these unique ecosystems. Isotopic signatures 
of carbon (δ13C) and nitrogen (δ15N) in mangrove POM 
are necessary to confirm their origins and transformation 
through biogeochemical processes.

Slow bacterial hydrolysis of structurally complex organic 
matter and prevailing reducing conditions influences the 
anaerobic decomposition rates and primarily determines 
the stability of particulate organic matter in the mangrove 
water columns (Kristensen et al. 1995). In particular, high 
DOC concentrations and DOC/POC ratios in the mangrove 
waters of COR indicated rapid transformation of organic 
carbon from particulate to more labile dissolved forms. Any 
alteration in local geomorphic settings in the coastal areas or 
changes in particle transport from the upstream areas may 
affect the production, storage and fluxes of carbon within the 
mangrove ecosystems and the subsequent export to the adjacent 
coastal waters. Further, ecological changes (crab burrowing 
activity, primary production litter fall etc.) caused by various 
environmental factors (temperature, rainfall, detrital outwelling, 
coastal currents etc.) are likely to have significant impacts 
on the transformation and export of to the adjacent coastal 
waters. Conservation and restoration of intertidal landscape, 
characterised by healthy mangrove vegetation, are therefore 
critical to sustain ecological balance in coastal environments. 
Detailed studies on the origin and fate of different forms of 
carbon together with quantification of anthropogenic inputs 
and tidal fluxes will help to elucidate their functional role in 
mangrove carbon cycle along the Indian coast.
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Table 3  The results of the stepwise multiple regression model for different mangrove ecosystems of India

System r2 p F N Regression equation

Sundarban 43.8 0.019 4.38 20 DOC/POC =—11.7 + 0.524 T—0.0034 S—0.00483 SPM
Bhitarkanika 48.2 0.007 6.97 18 DOC/POC = 14.1—0.0934 S—1.35 pH
Coringa 69.6 0.027 5.58 12 DOC/POC = 17.4—1.27 pH—0.0490 DO Sat
Pichavaram-Muthupet 63.9 0.01 7.97 12 DOC/POC =—17.8 + 3.48 pH—0.0716 DO Sat
Karwar and Kumta 64.3 0.008 6.6 15 DOC/POC = -6.23—0.422Chl a + 0.904 pH + 0.0300 DO Sat
Mandovi and Zuari 43.4 0.014 5.73 18 DOC/POC = 7.33—0.0179 SPM—0.0276 DO Sat
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