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Abstract
Floods are among the most devastating environmental hazards that directly and indirectly affect people’s lives and activities. 
In many countries, sustainable environmental management requires the assessment of floods and the likely flood-prone areas 
to avoid potential hazards. In this study, the performance and capabilities of seven machine learning algorithms (MLAs) 
for flood susceptibility mapping were tested, evaluated, and compared. These MLAs, including support vector machine 
(SVM), random forest (RF), multivariate adaptive regression spline (MARS), boosted regression tree (BRT), functional 
data analysis (FDA), general linear model (GLM), and multivariate discriminant analysis (MDA), were tested for the area 
between Safaga and Ras Gharib cities, Red Sea, Egypt. A geospatial database was developed with eleven flood-related fac-
tors, namely altitude, slope aspect, lithology, land use/land cover (LULC), slope length (LS), topographic wetness index 
(TWI), slope angle, profile curvature, plan curvature, stream power index (SPI), and hydrolithology units. In addition, 420 
actual flooded areas were recorded from the study area to create a flood inventory map. The inventory data were randomly 
divided into training group with 70% and validation group with 30%. The flood-related factors were tested with a multicol-
linearity test, the variance inflation factor (VIF) was less than 2.135, the tolerance (TOL) was more than 0.468, and their 
importance was evaluated with a partial least squares (PLS) method. The results show that RF performed the best with the 
highest AUC (area under curve) value of 0.813, followed by GLM with 0.802, MARS with 0.801, BRT with 0.777, MDA 
with 0.768%, FDA with 0.763, and SVM with 0.733. The results of this study and the flood susceptibility maps could be 
useful for environmental mitigation, future development activities in the area, and flood control areas.
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Introduction

In recent times, many urban areas, infrastructure and life-
lines (bridges, railways, highways, power, and gas lines), 
and agricultural lands in all countries have been affected 
by flood hazards, which are considered the most common 
catastrophic natural hazards (Vojtek and Vojteková 2019; 
Mishra and Sinha 2020; Sarkar and Mondal 2020; Ahmad 
and Afzal 2020, 2022; Li et al. 2022). The rapid increase 
in population is forcing people to settle the low-lying areas 
that intersect or are close to the wadis/rivers. These areas 
are becoming more vulnerable to flooding due to current 
and future predicted climate changes and extreme mete-
orological events (Bubeck and Thieken 2018; Alexander 
et al. 2019; Ali et al. 2019; Huang et al. 2019; Xu et al., 
2019; Khan et al. 2021). Floods are often the most danger-
ous natural hazards (more dangerous than landslides, earth-
quakes, and volcanoes), causing enormous loss of life and 
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injury, massive economic disruption, and contamination of 
areas with disease (Ceola et al. 2014; Dandapat and Panda 
2017). According to the statistical data from the United 
Nations Office for Disaster Risk Reduction (UNISDR), 
between 1995 and 2015, approximately 150,061 flood 
events occurred globally, and about 157,000 fatalities due 
to floods, accounting for about 11% of global disaster vic-
tims (Wahlstrom and Guha-Sapir 2015). In 2019, EM-DAT 
recorded 396 natural disasters with 11,755 fatalities, 95 mil-
lion people affected, and $103 billion in economic losses 
around the world. The impacr was not evenly distributed, as 
Asia was the hardest hit. Floods were the deadliest disaster 
type, accounting for 43.5% of fatalities (CRED 2020). Sev-
eral studies have reported that floods affect approximately 
200 million people annually and cause economic losses of 
US$95 billion worldwide (Ceola et al. 2014; Mabuku et al. 
2018).

Most flash floods occur with sever intensity, in a short 
period of time, and with high flow velocity occurring sud-
denly and with little or no time to react, posing a great dan-
ger to human and property (Sene 2013). Precipitation in 
arid areas is limited by cloud size (Laity 2008). In the last 
two decades, arid regions have faced many extreme rain-
fall events that caused immense devastation and loss of life, 
including Morocco 2008 2014; Algeria 2007, 2008, and 
2013; and Saudi Arabia 2009, 2001, 2015, 2017, and 2018 
(Kenyon 2007; Yamani et al. 2016; Echogdali et al. 2018; 
Abu-Abdullah et al. 2020).

Accordingly, flood vulnerability mapping is an extremely 
important step for predicting flood probability and mitigat-
ing and controlling future floods (Kourgialas and Karatzas 
2011). Recently, various techniques and models have been 
applied to delineate flood-prone areas using remote sensing 
data and GIS (Mandal and Chakrabarty 2016; Siahkamari 
et al. 2018; Dano et al. 2019; Kanani-Sadata et al. 2019; 
Liu et al. 2019; Mahmood and Rahman 2019; Wang et al. 
2019; Sahana et al. 2020). One approach that deals with 
the concept of flood inundation is depending mainly on the 
hydrological characteristics of a given watershed to esti-
mate the peak discharge during a given return period. The 
high-resolution digital elevation model of urban regions is 
used to apply the inundation model and produce inundation 
maps with water depth and flood velocity using hydrologi-
cal models such as the Soil Water Assessment Tool (SWAT) 
and Hydraulic Engineering Center-River Analysis System 
(HEC-RAS) (Getahun and Gebre 2015; Pal and Pani 2016; 
Prasad and Pani 2017; Youssef et al. 2021). Additionally, 
other studies are mainly based on flood-related factors that 
have a significant impact on flood hazard assessment (e.g., 
lithology, slope, aspect, curvature, elevation, distance from 
streams, drain type, slope length (LS), topographic wet-
ness index (TWI), and land use/land cover pattern). Several 
authors have applied various techniques and approaches to 

assess the flood susceptibility of a region, such as (1) heu-
ristic (multicriteria analysis), (2) statistical techniques, and 
(3) machine learning techniques. Flood susceptibility maps 
(FSMs) could play an extremely important role in estab-
lishing early warning systems, contingency plans, reduc-
ing and preventing future inundations, and implementing 
flood management policies and regulations (Mandal and 
Chakrabarty 2016; Tehrany et al. 2019). Each approach has 
its own advantages and disadvantages. For example, heu-
ristic models are highly subjective and largely depend on 
human perception, judgment, and experience to determine 
the weighting of each flood-related factor (Bathrellos et al. 
2017; Dandapat and Panda 2017; Souissi et al. 2019; Vojtek 
and Vojteková 2019; Nachappa et al. 2020). On the other 
hand, bivariate and multivariate models have recently been 
used to overcome human judgment and enhance the accu-
racy of flood vulnerability by using various computational 
methods (e.g., weights-of-evidence, frequency ratio (FR), 
information value (IV), Shannon entropy (SE), statistical 
index (SI), weighting factor, logistic regression (LR), fuzzy 
logic (FL), and neuro-fuzzy logic) (Kourgialas and Karatzas 
2011; Kia et al. 2012; Feng et al. 2015; Park et al. 2019; Paul 
et al. 2019; Sahana and Patel 2019; Ali et al. 2020; Sahana 
et al. 2020). Recently, the most machine learning techniques 
(MLTs) were developed and used in different hazard sus-
ceptibility assessment (identifing and predicting flood-prone 
areas) among them artificial neural networks (ANNs), gen-
eral linear models (GLMs), adaptive neuro-fuzzy inter-
face systems (ANFIS), decision trees (DT), random forest 
(RF), support vector regression (SVR), boosted regression 
tree (BRT), GLMs, and classification and regression trees 
(CART) (Feng et al. 2015; Albers et al. 2016; Gizaw and 
Gan 2016; Muñoz et al. 2018; Zhao et al. 2018; Park et al. 
2019; Dodangeh et al. 2020; Nhu et al. 2020; Tabbussum 
and Dar 2021; Sellami et al. 2022).

Egypt is located in an arid climate characterized by 
sparse rainfall, except for the northern and eastern parts, 
which are characterized by intense rainfall (El-Ghani 
et al. 2017). Many areas in Egypt have been increasingly 
affected by flooding in recent decades, resulting in eco-
nomic collapses, deaths and injuries, and infrastructure 
disruptions. These areas that experienced dangerous 
flooding include Drunka village in November 1994, Wadi 
Al-Arish in January 2010, Alexandria and Beheira gover-
norate in 2015, the northwestern region of Egypt in 2016, 
and New Cairo district in April 2018 and October 2019 
(Elkhrachy et al. 2021). To the best of our knowledge, 
few documents have been found that specifically relate to 
these flood events in the study area and its vicinity. For 
example, in October 2016, severe flooding occurred in 
Ras Gharib aea, damaging thousands of homes, destroy-
ing much of the infrastructure, and claiming the lives of 
22 people (Youssef and Hegab 2019; Hermas et al. 2021). 

66769Environmental Science and Pollution Research  (2022) 29:66768–66792

1 3



Accordingly, f lood disasters have greatly increased, 
mainly due to increasing urbanization (residential areas 
and buildings) and infrastructure (highways, railways, 
and roads) in flood-prone areas (Moawad 2013; Moawad 
et al. 2016; Youssef and Hegab 2019; El-Haddad et al. 
2021). Therefore, it is crucial to manage floods and mini-
mize or avoid their risk, which requires flood forecasting 
programs and inundation modeling. Bubeck et al. (2012) 
pointed out that flood forecasting minimizes flood-related 
hazards (fatalities and associated economic losses). The 
core concept of the flood control strategy is the ability to 
delineate flood-prone areas (Sarhadi et al. 2012).

The objective of the current study is to compare the 
performances of seven advanced MLTs to determine the 
most optimal flood susceptibility model using remote 
sensing and GIS approaches. These models include BRT, 
functional data analysis (FDA), GLM, multivariate adap-
tive regression spline (MARS), multivariate discriminant 
analysis (MDA), RF, and support vector machine (SVM). 
They were applied based on several characteristics. Flood 
modeling analysis using MLTs is new to Egypt; they are 
suitable for small and medium applications, they have an 
objective statistical basis, they can quantitatively analyze 
the contribution of factors to flood development, and they 
are mainly based on RS data rather than detailed field 
work. The results of our study can make important scien-
tific contributions, and the optimal flood susceptibility 
map can be suitable for disaster management analysis to 
identify and outline flood-prone areas so that decision 
makers and land use planners can select favorable loca-
tions for future urban development.

Study area

The study area extends from Safaga to Ras Gharib, with an 
area of approximately 10,537  km2. It is situated between lati-
tudes 26°40′00″ and 28°20′00″ N and longitudes 32°50′00″ 
and 34°0′00″ E (Fig. 1). The watershed is characterized by 
various physiographic features, including mountains, hills, 
main wadis, and streams. The elevation ranges from 0 m 
(Red Sea coast in the east) to 2068 m (mountainous areas in 
the west) above the mean sea level. The slope angle varied 
between 0 and 72° (with an average of 8.2° and a standard 
deviation of 10.4°). Approximately 16.1% of the total area 
has a slope greater than 30°, 16.4% of the area has a slope 
between 15 and 30°, 61.7% of the area has a slope between 
5 and 15°, and 5.8% of the area has a slope of less than 5°. 
The study area is characterized by various rock units includ-
ing bedrock complex in the west (40.8% of the study area), 
sedimentary rocks, and alluvial soils (wadi deposits), which 
occupy approximately 40.8%, 15.1%, and 44.1% of the study 
area, respectively.

Egypt is located in an arid and semiarid climate with 
low rainfall in the south and west and intense rainfall in 
the north and east. Desert areas account for more than 
90% of the land area (El-Ghani et al. 2017). Flash floods 
are the worst meteorologically induced disasters in Egypt. 
They are dangerous, occur suddenly and unpredictably 
(with high intensity and in short duration), and cause 
economic collapses (Ezz 2017). In the study area, pre-
cipitation is typically infrequent and occurs in the form 
of heavy thunderstorms from November to April. Unfor-
tunately, there are no records of precipitation, as there 
are few precipitation stations in the area. The area under 

Fig. 1  a Location map of the 
study area along the Red Sea 
and the Gulf of Suez coast; 
b close-up of the study area 
showing cities, road networks, 
holiday areas, flood detection 
points (training and validation 
points), and comparison sites (1, 
2, 3, and 4)
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study has been largely developed due to floods in 2014 
and 2016, where the study area experienced heavy and 
short-duration rainfall that caused devastating destruc-
tion for Hurghada-Safaga and Qena-Safaga highways, the 
Hurghada airport, and inundated Hurghada urban area 
(Fig. 2) In addition, rockfall along highways are affected 
the area due to heavy rainfall (Fig. 2). Consequently, the 
future planning and development in the study area will 
be affected by flood hazards. The area is characterized by 
numerous main streams that cut through the area, making 
it a flood-prone area (e.g., Wadi Abu Naakhra, Bali, Aish, 
Milaha, Abu Had, and Gharib). The eastern part of the 

study area, the low-lying areas, are particularly vulner-
able to flooding from the western part. The area, which is 
constantly subject to flood damage, undergoes cascading 
changes over time. This presents a constraint for the spa-
tial flood assessment. If the site information is erroneous, 
it can cause significant problems in the spatial analysis. 
However, drainage structures and water supply systems 
may have an impact on flood vulnerability assessments. 
The change in land use in the eastern portion of the study 
area from desert to residential and infrastructure and the 
lack of action plans or inadequate engineering solutions 
to prevent flood events.

Fig. 2  Various photographs 
taken and collected during 
different flood events in the 
study area (by authors and from 
social media). Impact of the 
flood in 2014: a, b The flooding 
of Hurghada-Safaga Highway; 
c, d the impact of the flood on 
Hurghada airport. Impact of 
flood in 2016: e flooding of 
Qena-Safaga highway; f rockfall 
along highways due to heavy 
rainfall; g, h the inundation of 
the Hurghada City
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Data and methodology

This study demonstrates the use of different datasets that 
can be used in flood susceptibility mapping. Several critical 

steps of the methodology were followed in this study to 
ensure the reliability of the yield models. These critical 
steps are shown in Fig. 3 and are explained in the following 
sections.

Fig. 3  A diagram showing data used and modeling steps applied to provide an accurate FSMs
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Data used

Table 1 describes the various datasets that were collected 
and extracted for this study. Field surveys were conducted 
to collect various features and evidence related to the 
consequences of flood events that affected the study area. 
Questionnaires with residents of the area (local people and 
Badwins) and historical documents (from the Civil Defense 
Agency and the Department for Transport) were collected 
and used to understand previous flood events. Photographs 
were taken and maintained documenting various flood events 
that affected different parts of the study area. Remote sens-
ing data were acquired for the study area, including Land-
sat 8 and OLI sensor (Operational Land Imager) (acquired 
in 2019, 30-m spatial resolution) from the Earth Explorer 
website (https:// earth explo rer. usgs. gov). The image mosaic 
(30-m resolution) was created by overlaying the bands (1–7) 
and then fused with the panchromatic band (15-m resolu-
tion) to generate the final image mosaic (15-m resolution). 
Additional high-resolution images were obtained using an 
astro digital 2.5-m resolution and Professional Google Earth. 
Remote sensing imagery was used to create land use/land 
cover, flood inventory, lithology, and hydrolithology unit 
layers. In addition, a 30-m resolution DEM was obtained 
from ALOS World 3D-30m. DEM was used to generate vari-
ous datasets (for example, elevation, slope aspect, lithology, 
LULC, LS, TWI, slope angle, plan and profile curvatures, 
stream power index (SPI), and hydrolithology units). Finally, 
a 1:100,000-scale geologic map was prepared and digitized 
to delineate different lithological units and hydrolithological 

units. The data of this study with different resolutions due 
to different sources, as previously described, were converted 
into themes with a grid size of 30-m resolution and stored 
in a digital database with a uniform projection (UTM zone 
36 and WGS84 datum).

Flood inventory map

Based on historical data and previous flood events, flooded 
areas were extracted to construct an inventory map. The 
inventory map is an extremely crucial element in flood 
susceptibility modeling (Sarkar and Mondal 2020). 
Several authors have pointed out that areas that have been 
exposed to past flood events under the same conditions 
are most likely to be vulnerable to current flood events 
(Fotovatikhah et al. 2018). To prepare susceptibility maps, 
it is necessary to determine the relationship between the 
inventory map (existing problems) and various factors that 
are relevant to susceptibility (Petley 2008). Different types 
of data (e.g., historical records, field visits, and satellite 
imagery interpretation) were used to generate an inundated 
inventory layer (Fig. 2b). Previously flooded areas (in the 
form of points) were extracted by comparing the study area 
before and after the flood events (2014 and 2016) using 
visual inspection of (1) high-resolution imagery (Google 
Earth and astrodigital imagery) and (2) medium-resolution 
imagery (Landsat 8 OLI). Flooded site data were examined 
and identified during field investigations following the 2014 
and 2016 flood events (Fig. 2). Additional inundation data 
in the form of coordinated locations were collected from 

Table 1  Data utilized and applied in the current work

Dataset no. Dataset source Dataset year and character-
istics

Data style Resolution and scale Generated layers

1 Remote sensing data
Earth explorer website 

(https:// earth explo rer. usgs. 
gov)

Landsat 8 (OLI-11 bands) 
2014, 2016, 2019

Astro digital (2014 and 
2016)

Google Earth (various years)

Grid
Grid
Grid

30, 15 m - LULC layer
- Flooded areas after 2014 and 

2016 events
2.5 m
<1 m

- Inundating areas after flood 
events in 2016

- Verify the flood locations 
after the events 2014 and 
2016

- Verify and update hydroli-
thology units

2 Geologic map (Conoco 1987)
Topographic map (Egyptian 
Survey Authority)

Quadrangle 1985
Sheets 1975

Polygon
Lines

1:100,000
1:100,000

- Lithology units
- Soil drain
- Verifying wadis and streams

3 Digital elevation model
(ALOS World 3D-30m)

DEM Grid 30 m - Altitude, slope aspect, slope 
angle, TWI, LS, SPI, plan 
and profile curvatures

4 Field investigation; field 
questionnaires, historical 
data, and photographs

Information on the flooded 
and destructed areas by 
2014 and 2016 flood 
events

Points/polygon Field trips - Inundated and damaged areas 
in 2014 and 2016 events

- Verify lithology and hydroli-
thology unit maps
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the Civil Defense Agency and past news over the past three 
decades. To isolate the exact flooded areas using medium- 
and high-resolution remote sensing images, Landsat 8 
(2014) imagery with a spatial resolution of 15 m and Astro 
digital (2016) imagery with a spatial resolution of 2.5 m 
were used in two time periods. Cloud-free images were 
acquired before and after the flood events in 2014 and 
2016. Visual inspection of the true color images (bands 
1, 2, and 3 in RGB) using ArcGIS 10.8 software was used 
to extract the flooded areas (Fig. 4). The inundated areas 
identified using satellite imagery were verified using field 
investigations and civil defense data. Finally, a point feature 
layer (420 flooded locations) of the inundated locations was 
created to produce the flood inventory layer (Fig. 1b). In 
flood susceptibility maps (FSM), spatial prediction consists 
of a binary classification of the data into two groups: flood 
and non-flood. In this study, a total of 420 flooded locations 
and an equal number of non-flooded locations (areas with 
a slope angle greater than 10°) were identified. Based on 
Tehrany et al. (2019), the non-flooded locations in the study 
area can enhance the accuracy of the results. The data points 
were randomly partitioned using R statistical software to 
divide the data into training and validation datasets (Naimi 
and Araújo 2016). The training datasets (70% of floods (295 
locations) and non-floods (295 locations)) were used to build 
the flood susceptibility models, and the remaining (30% of 
floods (125 locations) and non-floods (125 locations)) were 
used as the validation dataset for model evaluation. The 
training and validation datasets were converted to a raster 
format. Flood and non-flood locations were coded as 1 and 
0, respectively (Wang et al. 2019).

FRFs

The determination of key flood-related factors (FRFs) is 
essential for flood susceptibility modeling (Sanyal and Lu 
2004), and they vary according to catchment characteristics 
(Waqas et al. 2021). Rainfall is considered the most influ-
ential factor in the occurrence of floods. Lawal et al. (2012) 
pointed out that there are several other flood-related factors 
that contribute significantly to flood hazards. Runoff along 
the catchment depends on the characteristics of the catch-
ment (e.g., catchment area, topography, and LULC types) 
(Hölting and Coldewey 2019). In the current study, eleven 
flood-related factors (FRFs) were selected as thematic lay-
ers based on the sound information from different types of 
literature (the most commonly used factors in flood vulner-
ability assessment literature), data availability related to the 
current study area, and field investigation (Al-Juaidi et al. 
2018; Kanani-Sadata et al. 2019; Liu et al. 2019; Paul et al. 
2019; Wang et al. 2019; Vojtek and Vojteková 2019). These 
FRFs include altitude, slope aspect, lithology, land use/land 
cover (LULC), slope length (LS), topographic wetness index 

(TWI), slope angle, profile curvature, plan curvature, stream 
power index (SPI), and hydrolithology units (Fig. 5). They 
were generated and stored in spatial database themes with 
a grid cell size of 30 × 30 m in an ArcGIS environment for 
data processing. A digital elevation model (DEM) of the 
study area with a spatial resolution of 30-m was obtained 
from ALOS World 3D-30m), from which eight layers were 
generated. Of these, five factors, slope aspect, slope angle, 
altitude, plan curvature, and profile curvature were extracted 
using ArcGIS 10.8 software. The other three themes, includ-
ing TWI, LS, and SPI, were generated using the SAGA soft-
ware. Other factors such as lithology, land use/land cover 
(LULC), and hydrolithology unit maps were extracted using 
remote sensing images (Landsat 8-OLI and Google Earth), 
geological maps, and field surveys. Different types of FRFs 
were used in the present study, such as nominal (lithology, 
slope aspect, land use/land cover, and hydrolithology unit 
layers) and ordinal (altitude, TWI, slope angle, LS, profile 
curvature, plan curvature, and SPI).

Altitude

According to several authors, altitude is influenced by vari-
ous factors (e.g., lithologic unit, wind action, precipitation, 
and erosion) (Waqas et al. 2021). The occurrence of flooding 
is likely to be influenced by elevation, which is considered 
an influential factor in flooding. Low-elevation regions (flat 
areas) are more susceptible to flooding than higher-elevation 
areas because water flows from high altitudes to lower-ele-
vation areas (Kia et al. 2012; Cao et al. 2016). The altitude 
layer was extracted from the DEM using ArcGIS and ranged 
from 0 to 2173 m (Fig. 5a).

Slope aspect

The slope aspect is the direction of the maximum inclina-
tion of the Earth’s surface. It affects the direction of runoff, 
which maintains the soil moisture (Chu et al. 2020). The 
slope aspect may indirectly affect flooding, as the inclined 
shaded regions are characterized by relatively high soil 
moisture, indicating high runoff (Islam et al. 2021). The 
slope-aspect theme was created from the DEM map of the 
ArcGIS platform. The slope aspect map was divided into 
nine categories (Fig. 5b).

Lithology

Because of the varying permeability of rocks and sediments 
in a watershed, lithological units play a crucial role in hydro-
logical processes (variations in the quantity and rate of water 
flow and sediment production) (Ward and Robinson 2000). 
The drainage density depends on the type of material used. 
Çelik et al. (2012) and Srivastava et al. (2014) indicated 
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Fig. 4  Close-up medium-reso-
lution Landsat 8 images at sites 
1 and 2 (as shown in Fig. 1b) 
before (a, c) and after (b, d) the 
2014 flash flood event; high-
resolution astro-digital images 
at sites 3 and 4 (as shown in 
Fig. 1b) before (e, g) and after 
(f, h) the 2016 flash flood event
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Fig. 5  FRF maps applied in 
the current study: a altitude, 
b slope aspect, c lithology, d 
landuse/landcover (LULC), e 
slope length (LS), f topographic 
witness index (TWI), g slope 
angle, h profile curvature, i 
plan curvature, j stream power 
index (SPI), and k hydrolithol-
ogy units
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Fig. 5  (continued)
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that a low drainage density is associated with highly resist-
ant rock or highly permeable subsoil material. Stefanidis 
and Stathis (2013) concluded that flood hazard zones are 
influenced by geological units, especially torrential forma-
tions characterized by erodibility and permeability. In the 
current study, lithological units were generated from litho-
logical maps (1:100,000-scale). Four main geological units 
were identified: (1) wadi deposits (alluvum), (2) sandstone, 
(3) limestone, (4) evaporates, (5) shales, and (6) basement 
rocks (Fig. 5c).

LULC

Land use/land cover type (LULC) plays a critical role in 
runoff velocity, interception, infiltration, and evaporative 
transport (Yalcin et al. 2011). Various LULC features can 
affect the infiltration and surface flow generation in a catch-
ment (Rahmati et al. 2015). Tehrany et al. (2019) indicated 
that forested areas can infiltrate more water into the sub-
surface than other LU/LC types. Many studies have shown 
that LULC types have a significant impact on distinguish-
ing flood-vulnerable areas (Karlsson et al. 2017; Komolafe 
et al. 2018). The LULC layer was generated based on 2018 
Landsat 8 satellite imagery (OLI) and classified into five 
categories using supervised classification in ENVI 5.4 soft-
ware: wetlands, bare rock, bare soil, built-up area, and sandy 
soil with trees (Fig. 5d).

LS

The slope length (LS) is one of the influential factors deter-
mining soil erosion, where soil erosion accelerates with 
increasing slope length owing to the effects of higher accu-
mulation of surface runoff (Bera 2017). LS shows the com-
bined impacts of gradient length and steepness and affects 
particle transport “soil loss” and upland (mountainous) 
hydrological processes (Park et al. 2019). In this study, LS 
was calculated from the DEM layer according to the slope 
gradient and specific basin area using SAGA software based 
on the universal soil loss equation (USLE) (Eq. 1) (Moore 
and Burch, 1986):

As  (m2) is the specific area of the catchment, and β is the 
slope angle in degrees. In this study, the slope length (LS) 
ranged from 0 to 59.1 (Fig. 5e).

TWI

The TWI reflects the variation in the quantity of water 
gathered in a basin (wetness values) and is the relationship 

(1)LS =

(

As

22.13

)0.4(
Sin�

0.0896

)1.3

between the specific basin area and the gradient (Beven 
2011; Gokceoglu et al. 2005). TWI can be strongly cor-
related with locations within a catchment that have a high 
potential for flooding (Chen and Yu 2011; Manfreda et al. 
2011; Abdel Hamid et  al. 2020). Tehrany et  al. (2019) 
pointed out that flat areas can absorb more water than steep 
terrain. Accordingly, areas near drainage networks and flat 
lands (flood-prone areas) have higher TWI values than those 
in areas with slopes (Meles et al. 2020; Zhang et al. 2020). 
The TWI index value was extracted based on Eq. (2) (Beven 
and Kirkby 1979):

where A is the cumulative basin area  (m2), and β is the slope 
angle (in degrees) at a point. In this work, the TWI was cre-
ated using SAGA-GIS software ranging from 1.5 to 22.8 
(Fig. 5f).

Slope angle

The slope angle is a crucial physiographic element for flood 
behavior and occurrence (Meraj et al. 2015). High-gradient 
areas have less time for perculation, which leads to the accel-
eration of runoff velocity, resulting in the accumulation of 
immense runoff in the lower lying areas (around the river or 
in flat areas) and are more vulnerable to flooding (Stevaux 
et al. 2020). The slope-angle layer was generated from a 
DEM map using ArcGIS. The slope angle ranged from 0 to 
72° (Fig. 5g).

Plan and profile curvatures

The curvature represents the slope shape and the terrain 
morphology. It is one of the key terrain elements used in 
several geomorphometric works (Rau et al. 2019; Torcivia 
and López 2020). Curvature is a major flood-controlling fac-
tor in flood vulnerability mapping (Ahmadlou et al. 2019). 
Cao et al. (2016) reported that the curvature has a significant 
impact on surface flow and infiltration. Shahabi et al. (2020) 
stated that areas with zero curvature values are more prone 
to flooding than areas with positive or negative curvatures. 
The curvature can be represented by the plan and profile 
curvatures. The plan curvature is directly correlated with 
the convergence and dispersion of surface runoff (Nasiri 
Aghdam et al. 2016). At the same time, Xiao et al. (2019) 
indicated that profile curvature impacts material deposition 
on the slope (by controlling the deposition increasing or 
decreasing of these materials). In the following study, plan 
and profile curvatures were generated from the DEM layer 
using ArcGIS software. The values of the plane and profile 
curvatures ranged from −0.0249 to 0.0233 and −0.0193 to 
0.0208, respectively (Fig. 4h, i).

(2)TWI = lin
A

tanB
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SPI

The SPI is a crucial hydrological factor that plays a vital 
role in assessing the spatial variation of flood-vulnerable 
areas (Deepak et al. 2020). SPI directly correlates with the 
erosive power of the catchment, soil water content status in 
a basin, and discharge relative to a specific area within the 
watershed (the power of flood water to flow downward) (Cao 
et al. 2016). High SPI values indicate high flood power, and 
lower values indicate that the terrain in the watershed has 
the potential for impound flow (Turoglu and Dolke 2011). 
The SPI of the catchment was calculated using Eq. (3) (Wu 
et al. 2020).

As is the specific basin area, and β is the local slope angle 
(in degrees). The SPI values in the current study range from 
0 to 3.24 (Fig. 5j).

Hydrolithology units

Some soil types have a decisive influence on rainfall runoff 
mechanisms. Hydrolithology impacts the rate of water infil-
tration and ultimately the accumulation potential at the soil 
surface (Norbiato et al. 2008). The higher the infiltration 
rate, the less likely is the occurrence of flooding (Phillips 
et al. 2019; Xie et al. 2019). In this study, a hydrolithol-
ogy unit map was created by integrating Landsat 8 satellite 
imagery (OLI), Google Earth imagery, geological data, and 
field investigations. According to the national soil classes 
and soil taxonomy, the hydrolithology unit map of the study 
area was classified into three categories: well-drained (cov-
ered 10.1% of the total area), semi-drained (covered 41.9% 
of the total area), and impervious (covered 48.0% of the total 
area) (Fig. 5k).

The FRF effectiveness and contribution

Multicollinearity analysis is a technique used to determine 
the effectiveness of independent variables in a model (Dor-
mann et al. 2012). It is a statistical method in which inde-
pendent parameters in a model are highly correlated using 
multiple regression techniques, and the parameters with high 
collinearity are deleted (Saha 2017). The multicollinearity 
technique uses two indicators, namely variance inflation fac-
tors (VIF) and tolerance (TOL) (Eqs. 4 and 5):

(3)SPI = As tan �

(4)TOL = 1 − R2
J

(5)VIF =

[

1

T

]

R2
J
 represents the regression coefficient of explanatory 

factor J for the rest of the descriptive factors. Previous stud-
ies have shown that a TOL < 0.10 and a VIF > 5 account for 
problems of multicollinearity (Menard 2001).

Evaluating the importance of independent factors is cru-
cial for flood susceptibility analysis. It can be applied to 
determine the contribution of various flood-related factors 
and accurately determine their role in modeling production. 
Several methods have been applied to evaluate relationships 
between related factors and events. These techniques have 
been used and received much attention, including random 
forest (RF) and partial least squares (PLS) (Wang et al. 
2016; Huang et al. 2018). PLS was used in this study. PLS 
is a strong multivariate regression technique that enables a 
broad spectrum of processes to be performed (Martens and 
Martens 2000). It has many advantages, such as it allows a 
quick understanding of the essential sequence of variations 
in the data; it is suitable for the analysis of noisy data, col-
linear, and even incomplete parameters, and it helps to detect 
errors in the input data (Wold et al. 2001). PLS was used for 
multivariate calibration of a dependent parameter against 
many independent parameters. Accordingly, it was suitable 
for the selected critical factors in the analysis. Details of PLS 
functions and applications have been explained in various 
studies (e.g., Lowry and Gaskin 2014). In the present study, 
the contribution and importance of all FRFs to flooding 
occurrence were evaluated using partial least squares (PLS).

Theoretical background of methods used

Problems related to natural hazards, such as floods, land-
slides, and ground subsidence, have been identified and 
solved using various machine learning techniques (MLTs) 
(Park et al. 2014; Shi et al. 2016; Ghorbanzadeh et al. 2019; 
Kavzoglu et al. 2019; Sevgen et al. 2019; Eini et al. 2020). 
Despite the continued advantages of MLTs as a powerful 
method, human expertise still plays an essential role in haz-
ard assessment (Marjanović et al. 2011). In the current study, 
seven MLTs were utilized to evaluate their effectiveness 
in flood susceptibility mapping. These include SVM, RF, 
MARS, BRT, FDA, GLM, and MDA, which are discussed 
in detail in the following sections.

SVM model

The key elements of the SVM model are the utilization 
of classification and regression, which relate to the learn-
ing control approach (Vapnik 2013). SVM is a supervised 
learning method that deals with binary classification models 
(Amiri et al. 2019). The results provided minimal clustering 
errors and determined the optimal response (Vapnik 2013). 
This provides a key advantage in effectively identifying and 
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analyzing factors (Micheletti et al. 2014). SVM has been 
used to create flood-prone areas (Yang and Cervone 2019). 
Many authors have provided detailed studies on SVM tech-
niques (e.g., Yao et al. 2008).

RF model

Random forest (RF) is an ensemble learning approach 
based on regression trees, where many classification trees 
are aggregated to quantify a classification (Calle and Urrea 
2010; Micheletti et al. 2014; Thanh Noi and Kappas 2018; 
Hawryło et al. 2018). The RF model is a robust ML model 
owing to several advantages, including a large number of 
trees in the analysis, insensitivity to noise, unbiased esti-
mation of generalization error, acceptance of most types of 
data, and determination of significant variables (Breiman 
2001; Rodrigues and De la Riva 2014; Kim et al. 2018). RF 
can overcome outliers in predictors, automatically deal with 
omitted data, and increase diversity among classification 
trees (Breiman and Cutler 2015). The model RF was run in 
R software version R 3.5.3, using the package “randomFor-
est” (Breiman and Cutler 2015).

MDA model

MDA, a supervised classification algorithm, is a linear dis-
criminant analysis (LDA) in which a cluster is suggested 
as part of the closest group (Fraley and Raftery 2002). The 
normal distribution of variables is utilized to calculate the 
distance to the nearest collection, assuming that the variabil-
ity and correlation between variables is uniform (Lombardo 
et al. 2006). MDA applies multiple normal distributions in 
every class. MDA can be derived from linear combinations 
using Eq. (6) (Hair et al. 1998).

Y represents the discriminant value, Wi (i = 1, 2, 3, …, 
n) are discriminant weights, and Xi (I = 1, 2, 3, …, n) are 
independent variables. The MDA analysis was run in R soft-
ware version R 3.5.3, using the package “mda” (Hastie et al. 
2017).

MARS model

MARS is a powerful regression algorithm owing to its 
flexibility in predicting events (Adnan et al. 2019). MARS 
considers both linear and non-linear relationships between 
independent and dependent factors and reflects these func-
tions as coefficients used to calculate the effects of these 
factors separately (Busto Serrano et al. 2020). MARS has 
been used in various uses to evaluate relationships between 
different disciplines (e.g., geophysics, climatology, ecol-
ogy, and geomorphology) (Deichmann et al. 2002; Hjort 

(6)Y = W1X1 +W2X2 +WnXn

and Luoto 2013; Abdulelah Al-Sudani et al. 2019). It also 
allows the determination of the relative importance of the 
independent variables in the predictions (Adnan et al. 2019). 
It is also used to split the datasets into multiple splines on 
an equivalent interval basis; each spline can be subdivided 
into subclasses by generating knots (Friedman 1991). The 
predictor MARS can be determined using Eq. 7, according 
to Hastie et al. (2001):

where x, f(x), P, and B are the input, output, predictor vari-
able, and basis function, respectively. Max (0, x − H) and 
Max (0, H − x) are BF and do not need to exist if their coef-
ficients are 0. The H values are referred to as the nodes.

There are three steps in applying the MARS algorithm: 
(1) applying a stepwise forward algorithm to select spline 
basis functions, (2) deleting BFs until the “best” set is found 
by applying a stepwise backward algorithm, and (3) pro-
viding the final MARS approximation with some degree of 
continuity by performing a smoothing method. Generalized 
cross-validation (GCV) criteria were applied to delete the 
BF in order of least contribution using Eq. 8 (Craven and 
Wahba 1979).

N stands for the number of data points, and C(B) stands 
for a complexity penalty escalated with the number of BFs 
in the technique and is determined by Eq. 9:

Here, d represents the penalty for every BF incorporated 
in the technique. This can also be considered a smoothing 
variable. The MARS technique was run in the software R 
3.5.3, using the package “MARS” (Deichmann et al. 2002).

GLM model

The generalized linear model (GLM) is a linear regression 
model that can quantify and incorporate specific and tempo-
ral variables (Ozdemir and Altural 2013). The use of GLM 
can increase the accuracy and quality of the results because 
it uses multiple regression to develop a clear relationship 
between the dependent and independent variables (Scott 
et al. 1991). Moreover, it can predict numerous events as it 
can identify the best regression model (Federici et al. 2007; 
Payne 2015). Several authors have applied GLM to different 
spatial models (e.g., Dumbser et al. 2020). The relationship 
between the response variable and explanatory variables can 

(7)

f (x) = �0

p
∑

j=1

B
∑

b=1

[

�jb(+)Max
(

0, xj − Hbj

)

+ �jb(−)Max
(

0,Hbj − xj
)]

(8)GCV =

1

N

∑N

i=1

�

yi − f
�
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��2

�

1 −
C(B)

N

�2

(9)C(B) = (B + 1) + dB
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be constructed using the GLM link function (Ahmedou et al. 
2016; Kéry and Royle 2016; Soch et al. 2017). The predic-
tions and variances of the response factors were estimated 
using Eqs. (10) and (11):

Yi denotes the vector of response parameters, Xij is the 
matrix of explanatory parameters, βj is the vector of float-
ing variables, εi is the interference terms, g(x) is the cor-
responding link function, V(x) is the variance function, ϕ is 
the dispersion parameter of V(x), and ωi is the weight of the 
ith observed value.

In this work, it is assumed that Y is the response param-
eter representing the flooded area in a grid, and Xi is the ith 
flood-related parameter. Thus, the occurrence probability of a 
flooding event Y is represented by Eq. (12): By logistic trans-
formation, the link function g(yi) is represented by Eq. (13).

where P is the probability of occurrence of event Y; c0, c1, 
…, ci are logistic regression coefficients; and εi is the resid-
ual error.

In the present study, R software was used to construct the 
GLM model. A simple Gaussian family is determined as a 
link function for normally distributed response data. The inde-
pendent factors were included in the model separately, using a 
smoothing spline with only two degrees of freedom in a poly-
nomial of degree 2 to avoid overfitting (Aertsen et al. 2009)

FDA model

Ramsay and Dalzell (1991) proposed the FDA model as a 
statistical method to analyze the effect factors. The crucial 
concept of FDA is to treat an observed object with func-
tional properties as an integral, regardless of the order of 
the observed values (Battista et al. 2016; Wagner-Muns 
et al. 2018). It can discriminate unsupervised work, where 
each class is divided into subcategories with a unique value 
(Chamroukhi et al. 2012; Zou et al. 2019). The FDA is a 
non-parametric method that is widely used in problem clas-
sification (Lu 2007; Seifi Majdar and Ghassemian 2017). 
Ray et  al. (2019) summarized that the FDA model is a 
combination of regression models that perform an unseen 

(10)�i = E
[

Yi
]

= g−1

(

∑

j

Xij�j + �i

)

(11)var
[

Yi
]

=
�V

(

�i

)

�i

(12)P =
exp

(

c0 + c1X2 + c2X2 +⋯ + ciXi

)

1 + exp
(

c0 + c1X2 + c2X2 +⋯ + ciXi

)

(13)g
(

yi
)

= c0 +
∑

cixi + �i

operation for each category in the modeling analysis when 
applying complex class models. The basic tasks in applying 
the FDA model include (1) implementing a functional data 
representation by selecting training and testing datasets, (2) 
using functional principal component analysis (FPCA) to 
extract functional data features, (3) using machine learning 
methods to classify data features, and (4) testing datasets to 
verify the validity of the classification method. In this study, 
the FDA model was used to generate a flood vulnerability 
map using the species distribution modeling (SDM) package 
in R software (Naimi and Araújo 2016).

BRT model

Friedman (2001) proposed BRT, which uses an integration 
of statistical and machine-learning techniques. The advan-
tages of the BRT model are as follows: (1) the ability to 
improve the model performance by fitting and combining 
several models, (2) no data transformation or outlier removal 
is required, (3) sophisticated non-linear relationships can 
be fitted, and (4) interaction influences between variables 
are automatically accounted for (Elith et al. 2008; Park and 
Kim 2019). The combined strength of the regression tree 
and boosting algorithms can improve model accuracy and 
minimize variance (Aertsen et al. 2010). Model accuracy 
is improved by boosting, a powerful learning method that 
iteratively fits new trees to the residual errors of the existing 
tree composition (Döpke et al. 2017). The BRT model was 
run in R software version R 3.5.3, using the package “brt” 
(Ridgeway et al. 2013).

Modelling prediction and performance

Evaluating the predictive and performance accuracy of the 
susceptibility models used was critical. The cross-validation 
approach using receiver operating characteristic (ROC) and 
area under the curve (AUC) has been applied quantitatively 
and graphically by various authors (Akgun et al. 2012; 
Ozdemir and Altural 2013;Youssef and Hegab 2019). The 
cross-validation approach offers many advantages, including 
quantitative evaluation of model prediction, determination of 
a better prediction approach, ability to compare the predic-
tive capabilities of different models, ability to distinguish the 
less and most vulnerable areas, identification of the influenc-
ing factors and their contribution to prediction, evaluation 
of the effectiveness of the input parameters to the models, 
and improvement of the quality of model prediction. The 
ROC method is a statistical indicator of model performance 
based on the rates of true and false positives (sensitivity 
and 1-specificity) (Chung and Fabbri 2003; Mathew et al. 
2009). The acceptable susceptibility model must have an 
AUC value between 0.5 and 1. The effectiveness, accuracy, 
and reliability of the model were improved by a higher AUC 
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value (equal to or close to 1.0). An AUC value of less than 
0.5 is considered a random model (Marzban 2004). Sajedi-
Hosseini et al. (2018) stated that the overall performance of 
the model can be identified by categorizing the AUC val-
ues as follows: incompetent model (AUC from 0.5 to 0.6), 
model with poor performance (AUC from 0.6 to 0.7), model 
with moderate performance (AUC between 0.7 and 0.8), and 
model with high fitness and performance (AUC 0.8).

Results and discussions

Multicollinearity test and variable importance

Multicollinearity analysis of the 11 flood-related factors 
utilized in this study is shown in Table 2. The tolerance 
ToL and VIF values indicated that flood-related variables 
selected in the current work were more than 0.1 (ToL = 
0.468) and less than 5 (VIF = 2.135), respectively. Con-
sequently, there is no multicollinearity among the selected 
FRFs so that they can contribute significantly to the model 
construction in this study.

Furthermore, a partial least squares (PLS) method was 
applied to evaluate the significance of influential flood-
related factors. Figure 6 presents the PLS results, which 
show that slope angle, altitude, LS, and TWI are the most 
important factors, followed by LULC, SPI, slope aspect, 
hydrolithology units, lithology, and plan curvature, which 
are moderately important flood-related factors. Thus, profile 
curvature was less critical.

FSMs

Due to exponential population growth, future sustainable 
development requires an accurate understanding of the 
spread of natural hazards in each area. Predictions made 

through the application of modeling and simulation tech-
niques are critical to natural resources and sustainable devel-
opment studies. This provides agencies, decision makers, 
planners, and engineers with practical, reliable, and accurate 
information about an area’s level of vulnerability to natu-
ral hazards. Seven MLT models (SVM, RF, MDA, MARS, 
GLM, FDA, and BRT) were successfully used for compara-
tive analysis. Using the training dataset, these MLT models 
were used to generate the flood susceptibility models using 
ArcGIS 10.8 software for the study area (Fig. 7a–g). The 
natural break classifier (Jenks) was used in this study (Nicu 
2018). These FSMs were then categorized into four groups: 
low, moderate, high, and very high susceptibility zones. The 
percentage of relative areas in each group was calculated 
for each model (Fig. 8). The results showed that the areas of 
low, moderate, high, and very high classes correspond to the 
flood susceptibility map (FSM): 38.0%, 17.3%, 10.8%, and 
33.9% of the total area for SVM; 36.2%, 19.5%, 27.4%, and 
16.9% of the total area for RF; 28.3%, 22.1%, 26.8%, and 
22.8% of the total area for MDA; 40.9%, 21.2%, 22.2%, and 
15.7% of the total area for MARS, 35.1%, 17.3%, 26.6%, and 
21.1% of the total area for GLM; 27.3%, 22.3%, 26.9%, and 
23.6% of the total area for FDA; and 35.1%, 4.7%, 10.4%, 
and 49.8% of the total area for BRT. The actual floodplains 
were extracted from the high-resolution imagery (Astro Dig-
ital and Google Earth imagery with spatial resolution of 2.5 
m and 1 m, respectively) subsequent to the 2016 flood event 
to verify the accuracy and performance of the models used. 
The comparison indicates that there is good agreement, and 
the flood-prone areas in these seven models mainly occupy 
the main wadis and low-lying areas. However, low-suscep-
tibility zones are located in highland regions.

Table 2  Multicollinearity 
results of flood-related factors

FRFs Collinearity 
statistics

Tol VIF

Hydrolithology 0.752 1.330
Slope angle 0.492 2.033
Profile curvature 0.745 1.342
Plan curvature 0.798 1.253
LULC 0.581 1.721
Lithology 0.780 1.282
Altitude 0.468 2.135
TWI 0.864 1.157
Slope aspect 0.936 1.069
SPI 0.925 1.081
LS 0.901 1.091

Fig. 6  The importance of flood-related factors using partial least 
squares (PLS)
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FSM validation

The predictive performance of the MLTs producing flood 
vulnerability maps was evaluated using the ROC–AUC 
method. This method plots the sensitivity (percentage 
of currently inundated pixels correctly predicted by the 
model) against the 1-specificity (percentage of predicted 
inundated pixels in the entire area) (Fig. 7). The extracted 
FSMs were validated using the prediction rate method. The 
validation datasets (30% of the total flood locations), which 
were not previously used in building the models, were run 
to test how well the model predicted flooding (see Fig. 9). 
According to the AUC classification (Sajedi-Hosseini et al. 

2018), as shown in Table 3, the AUC results of the current 
study indicated that the differences in model performance 
among MLTs were relatively moderate to high. Models 
with high performance were RF (AUC = 81.3%), GLM 
(AUC = 80.2%), and MARS (AUC = 80.1%). This was fol-
lowed by the models with moderate performance, including 
BRT (AUC = 77.7%), MDA (AUC = 76.8%), FDA (AUC 
= 76.3%), and SVM (AUC = 73.3%) (Fig. 9).

Discussion

Severe flood events, which are becoming more frequent 
in different areas as part of the effects of climate change, 

Fig. 7  Flood susceptibility 
models using MLTs models: a 
SVM, b RF, c MDA, d MARS, 
e GLM, f FDA, and g BRT
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require significant efforts through the analysis of flood haz-
ards, vulnerabilities, and risks. Therefore, flood management 
is the most important requirement for averting and reduc-
ing flood hazards. One such technique is flood vulnerability 
modeling, which is crucial for protecting people and devel-
oping viable and effective mitigation and management strat-
egies worldwide (Sahana et al. 2020; Wang et al. 2020). The 
MLTs used in the present work, such as SVM, RF, MARS, 
BRT, FDA, GLM, and MDA, to generate flood-susceptibility 
maps provide remarkable results. One of these models is 
BRT, which is used in this study and provides a prediction 
rate of 77.7%, which is considered a reclosable value, and 
is used by other authors, suggesting that BRT is one of the 
best approaches for accurately determining flood-vulnerable 

Fig. 7  (continued)

Fig. 8  FSM classes’ areas % for various MLTs in the current study
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areas (Darabi et al. 2020). Selecting 11 flood-related fac-
tors that were evaluated to determine the most flood-prone 
areas according to seven MLTs, the resulting map shows 
the statistical relationships between flood inventory data 
(real flooded areas) and flood-related factors. These eleven 
thematic layers were extracted and generated from various 
sources, including remote sensing data (high to medium 
resolution from 1 to 30 m), digital elevation models (30 m 
resolution), geological and topographic maps, and various 
field surveys. The inventory map (actual flooded areas) was 
created through various methods such as field visits (sur-
vey of flooded areas with GPS), historical documents (civil 
defense and local population), and high-resolution satellite 
imagery (1-m, 2.5-m, and 15-m resolutions). Potentially, 

flood-prone areas were mapped using seven MLTs in the 
current study. The results showed a significant correlation 
between model results. The validation of the resulting mod-
els was based on validation datasets not used in the training 
phase and provided relevant results ranging from 73.3 to 
81.3% (values above 70%). The Red Sea region (especially 
the section between Safaga-Ras Gharib), which includes 
many urban areas (Ras-Gharib, Hurghada, and Safaga), vari-
ous resorts, and attractive tourist sites, which are crossed by 
many lifelines (roads, power lines, railways, and highways), 
is crossed by many wadis that affect the area. For example, 
one of these events struck the area on October 18, 2016, in 
the proximity of Ras-Gharib City. This resulted in extensive 
flooding problems, 22 fatalities, many injuries, destruction 
of approximately 5000 houses, damage to many vehicles, 
erosion effects, and destruction of lifelines (main roads and 
streets) (Youssef and Hegab 2019).

The current work is new and innovative and, as expected, 
provides relevant mapping results, especially for preliminary 
planning management. The comparison of flood susceptibil-
ity maps produced by different machine learning models in 
the current study with flood hazard maps produced using 
LULC and DEM as the main parameters showed some dif-
ferences, possibly because of the different types of data used 
in each model (Asare-Kyei et al. 2015; Mousavi et al. 2019). 
Flood hazards generated using LULC and DEM data are 
based on the extraction of runoff coefficients from land use/
land cover (detection from remote sensing images), slope 
gradient layer and hydrological soil types, and precipitation 
intensity. Peak flows can be integrated with elevation data 
to generate a flood hazard map with a high performance rate 
of 87.83% (Mousavi et al. 2019).

In the current study, MLTs were used to identify flood-
susceptible areas. The model prediction shows a minimum 
value of prediction performance of 73.3% for the SVM 
method and a maximum value of 81.3% for the RF approach. 
Even so, the prediction values are not high enough, and the 
machine learning techniques to produce appropriate flood-
susceptibility maps are still high. In the current study, among 
the seven individual models applied in modeling flood sus-
ceptibility, the RF model showed better performance than 
the SVM, MARS, BRT, FDA, GLM, and MDA models. The 
main reason for this result may be the model’s ability to 
handle large databases and integrate large input variables 
without changing the variable. Also, RF uses high variance 
between trees accepting each tree for class membership. 
Then, it determines the class based on the highest number of 
votes. Similarly, RF can detect and predict non-linear inter-
actions and relationships between effective factors (Catani 
et al. 2013). In previous studies on modeling natural hazards 
such as landslides (Chen et al. 2017), earth fissures (Choubin 
et al. 2019), gully erosion (Avand et al. 2019), air quality 
(Choubin et al. 2020), and floods (Chen et al. 2020), the RF 

Fig. 9  Prediction rate curves for the FSMs generated in this study for 
different MLT models

Table 3  AUC results of MLT models in the current study

Models Area under 
curve (AUC)

Std.  errora Asymptotic 95% confidence 
interval

Lower bound Upper bound

SVM 0.733 0.034 0.667 0.800
RF 0.813 0.029 0.757 0.869
MDA 0.768 0.032 0.705 0.830
MARS 0.801 0.030 0.742 0.860
GLM 0.802 0.030 0.744 0.860
FDA 0.763 0.032 0.700 0.826
BRT 0.777 0.032 0.715 0.840

66785Environmental Science and Pollution Research  (2022) 29:66768–66792

1 3



model was also found to perform well. Our results for the 
prediction accuracy of RF (81.3%) and BRT (77.7%) are in 
agreement with the findings of Lee et al. (2017). They indi-
cated that the RF approach provides a higher performance 
than the boosted tree technique. In the current work, the 
prediction performance based on RF was 79.18%, whereas 
it was 77.26% for BRT. Additionally, Mosavi et al. (2020) 
applied GLM, FDA, MARS, and RF for flood susceptibility, 
indicating that the prediction values using AUC are AUC 
of 93%, 92%, 89%, and 96%, respectively. They indicate 
that RF provides high performance value than other mod-
els. Also, in Costache et al. (2021), using various MLTs for 
flood susceptibility analysis, their results showed that RF 
provides the highest AUC value (97.3%). Satarzadeh et al. 
(2021) show that RF (AUC = 91.1%) has higher perfor-
mance than SVM (AUC = 89.9%). Also, the strong capacity 
of FR to predict flood risk has also been demonstrated by 
Avand et al. (2020), Nachappa et al. (2020), and Norallahi 
and Kaboli (2021). Also, Rahmati et al. (2019) pointed out 
that when using SVM, BRT, and GAM for modelling mul-
tihazard delling, BRT has the highest validation and shows 
high accuracy for flood hazards (AUC = 94.2%). Various 
new and robust machine learning models have been applied 
by many researchers to achieve highly precise and accurate 
flood vulnerability mapping (Al-Abadi 2018; Paul et al. 
2019; Wang et al. 2019; Ali et al. 2020; Nachappa et al. 
2020; Wang et al. 2020; Islam et al. 2021). However, the 
prediction accuracy of these models is still difficult because 
of the different characteristics of the studied areas. The main 
advantages of MLTs are enormous, including their relative 
ease of use, which for reducing workload and time, and a 
variety of applications, it can handle different types of data. 
Their predictive accuracy usually outperforms some con-
ventional methods, and they help us find ways to modernize 
technology. However, there are some limitations and side 
effects, such as the possibility of a high error rate due to the 
large amount of data, the inconsistency of data due to the 
large amount of data for training and testing, and selection 
of an algorithm is still a manual task, so the process is very 
time consuming. This helps us find various innovative ways 
to reduce these problems. Finally, these MLTs can automati-
cally detect the relationships between flood-related factors 
and overcome uncertainties when reliable inventory maps 
(actual flooded areas) are acquired.

This work, using various MLTs, helped to understand the 
extent of flood hazard in the study area, which is crucial 
because many important facilities, critical highways, and 
tourist sites are located in this section of the area along the 
Red Sea and the Gulf of Suez. In addition, the MLTs pro-
vided deep insights into the importance of flood risk man-
agement. As millions of people visit these areas each year, 
they represent future income for the country, in addition to 
the residents of these areas. Therefore, a safe environment 

for this area is essential. This study has shown that many 
coastal areas are in worrisome areas. For this reason, we 
recommend that agencies, managers, and developers in the 
area study areas of high flood vulnerability and carefully 
consider the results of future development models to select 
the areas with the lowest risk. Areas with high or very high 
flood vulnerability should be studied in detail to determine 
flood protection measures.

Conclusions

In the context of climate change, floods are considered the 
most damaging natural disasters, causing socio-economic 
disruptions, loss of life, and property damage. Accordingly, 
low-lying areas surrounded by mountainous regions are at 
risk of flooding. These areas are prone to flooding. Effective 
and reliable techniques are required to delineate flood-prone 
areas. In this study, the spatial distribution of flood-prone 
areas in the coastal area of the Red Sea (between Safaga-
Ras Gharib) in Egypt was investigated using seven machine 
learning models (SVM, RF, MARS, BRT, FDA, GLM, and 
MDA). The identification of flood-prone areas is crucial for 
most planners, the private sector, and decision makers. The 
analysis was mainly based on the identification of 420 flood 
points (295 points were used as training and 125 points for 
validation). Eleven flood-related factors were used, including 
elevation, slope, lithology, LULC, LS, TWI, slope, profile 
curvature, plan curvature, SPI, and soil runoff. Multicollin-
earity diagnostic tests (VIF and TOL) were used to test the 
suitability of lood-related factors. The partial least squares 
(PLS) approach was applied to identify the significance 
of flood-related factors. The ROC curve was constructed 
to check the flood-vulnerability models based on the vali-
dation datasets. Accordingly, the ability of seven MLTs to 
map most flood-prone areas is presented in this paper. The 
evaluation of the reliability and predictive performance of 
the FSMs produced by the SVM, RF, MARS, BRT, FDA, 
GLM, and MDA models showed that RF performed the best, 
followed by GLM and MARS, which produced more than 
80%, indicating significantly better results. The BRT, MDA, 
and FDA algorithms provided moderately significant results. 
Finally, the SVM provides less significant results than the 
other models. The average results of all MLTs showed that 
34.4% of the study area had low flood susceptibility, 17.8% 
had moderate flood susceptibility, 21.6% had high flood 
susceptibility, and 26.3% had very high flood susceptibility 
(extremely flood prone). Our results show that MLTs provide 
prediction values greater than 0.7% (70%), indicating that 
the models are adequate for flood susceptibility mapping 
in the area under consideration. Furthermore, the results 
indicate that these techniques have moderate to high per-
formance in analyzing flood susceptibility, with such small 
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differences. Therefore, these results can be viewed with 
greater confidence and applied in future studies to investi-
gate the flood hazard distribution and provide helpful knowl-
edge for decision makers to be proactive in flood manage-
ment, hazard mitigation measures, and land use regulations. 
Recently, developers, planners, local governments, and other 
agencies have acquired flood susceptibility modeling as an 
important step in identifying flood-prone areas that need to 
be studied in more detail to prevent future flooding.
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