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Abstract
Iron oxide nanoparticles (nano-Fe2O3) widely distribute in waters with low toxicity to aquatic organisms. But it is unclear for 
nano-Fe2O3 to affect the fate of coexisting arsenic (As) with its bioaccumulation and biotransformation. In this study, we thus 
mainly investigated arsenate (As(V)) toxicity, uptake kinetics, biotransformation and subcellular distribution in Microcystis 
aeruginosa influenced by nano-Fe2O3. The results showed that M. aeruginosa was more sensitive to As(V) associated with 
nano-Fe2O3. Due to the exaggerated increase of efflux rate constants of As compared with the uptake rate constants in algal 
cells affected by different levels of nano-Fe2O3, the As(V) bioconcentration factor decreased with nano-Fe2O3 increasing 
correspondingly, indicating that As bioaccumulation was diminished by nano-Fe2O3. The decreased As accumulation in M. 
aeruginosa could be supported by the evidential As(V) sequestration through high adsorption of nano-Fe2O3, which resulted 
in decreasing free As level for algae uptake in media. Meanwhile, As subcellular distribution was adjusted by nano-Fe2O3 
with decreasing in cell walls and rising in cytoplasmic organelles compared with nano-Fe2O3 free. As(V) reduction and 
methylation were enhanced with increasing nano-Fe2O3, stimulating by its sensitivity to the interaction of nano-Fe2O3 and 
As(V) as well as the rising level of As in cytoplasmic organelles of this algae. It is confirmed by the higher relative gene 
expression levels of arsC and arsM in elevated nano-Fe2O3. Accordingly, it is highlighted to be deserved more attention 
that the changing behavior of As(V) by nano-Fe2O3 that reduce As bioaccumulation and accelerate its biotransformation in 
algae in As contaminated water.
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Introduction

Arsenic (As), cited as the most hazardous chemical sub-
stance, is immensely concerned due to its ubiquitous con-
tamination with an exceedingly varying concentration in 
environments caused by anthropogenic and natural sources 

(Yan et al. 2015). Arsenic usually changes its forms bio-
chemically in the surroundings with four stable oxidation 
states, i.e. elemental As (As0), arsenate (As(V)), arsenite 
(As(III)) and arsine (As(-III)) (Miyashita et al. 2016). Inor-
ganic As, especially As(V), is more abundantly found in 
aerobic and aquatic environment as a major contaminant 
at global scale (Hasegawa et al. 2010). Inorganic As under-
goes methylation process and changes into organoarsenicals 
such as monomethylarsonic acid (MMA), dimethylarsinic 
acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) 
owing to microbial-mediated biotransformation (Li et al. 
2019; Roy et al. 2015).

Cyanobacteria can play critical roles in As biotransforma-
tion and biogeochemical processes in diverse environment 
including oceans, freshwater, soil and groundwater. (Duncan 
et al. 2015; Maeda et al. 1990, 1993; Roy et al. 2015; Wang 
et al. 2015; Zhang et al. 2014). They are able to adsorb and 
uptake As vastly using their large specific surface area and 
functional groups in cell membrane, alter its valence change, 
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and convert it into methylation As species (Thomas et al. 
2004; Yan et al. 2016). Microcystis aeruginosa (M. aerugi-
nosa), the main contributor to serious cyanobacterial bloom, 
found abundantly in eutrophic freshwater systems, is highly 
tolerant of As in both field and laboratory settings (Che et al. 
2018; Wang et al. 2013a, b; Zeng et al. 2019). Nowadays, 
cyanobacteria blooms, especially Microcystis, accompanied 
by As pollution are observed in many eutrophic freshwater 
lakes. M. aeruginosa rapidly increase their biomass in short 
periods combined with its high As toleration, making it pos-
sible to be used in As removal (Jia et al. 2018; Sulaymon 
et al. 2013; Wang et al. 2020).

Except for heavy metals, recent researches have shown 
the wide presence of various nanoparticles (NPs) in aquatic 
ecosystems. Iron oxide nanoparticles (nano-Fe2O3) are one 
of the most widely explored and utilized metal nanomate-
rials in catalysts, medical diagnostics, magnetic materials, 
cosmetics, coatings/paints/pigments and electronics due to 
their novel properties such as excellent finite-size effect, 
optical performance, super paramagnetism and inherent 
biocompatibility (Hu et al. 2017; Keller et al. 2013). The 
extensive application of nano-Fe2O3 has led to their inevita-
bly release into the aquatic environment during production, 
usage and disposal. Generally, nano-Fe2O3 are considered 
environmentally friendly, biocompatible, low toxicity, bio-
degradable and the most stable iron oxide (Bashiri Rezaie 
and Montazer 2020). Similarly, nano-Fe2O3 is recognized to 
be one of primary components in natural clay minerals in the 
environment (Braunschweig et al. 2013). Furthermore, many 
researches have reported that nano-Fe2O3 could enhance 
seed germination, chlorophyll content, root growth in some 
plants such as Vigna radiata L., Citrullus lanatus and Cit-
rus maxima (Alidoust and Isoda 2013; Hu et al. 2017; Li 
et al. 2013; Ren et al. 2011). However, nano-Fe2O3 was also 
considered toxic and obviously decreased the sizes of Nan-
nochloropsis sp. and Isochrysis sp. due to their agglomerates 
on the surface of algal cells (Demir et al. 2015).

The widespread occurrence of nano-Fe2O3 in diverse 
water systems may thus alter or affect the fate of coexisting 
pollutants such as As(V) prevailing in aerobic aquatic envi-
ronment and its biotransformation caused by microalgae, 
even their microcystins release. To date, few researches have 
investigated the impacts of nano-Fe2O3 on As bioaccumula-
tion and biotransformation caused by algae in aquatic sys-
tems as well as microcystins release. Therefore, the objec-
tives of this study were to explore the effects of nano-Fe2O3 
on the growth of M. aeruginosa, to investigate As(V) toxicity 
combined with nano-Fe2O3, and to analyze As uptake, spe-
cies, and its subcellular distribution as well as toxins release 
in M. aeruginosa impacted by nano-Fe2O3. The obtained 
findings on how nano-Fe2O3 influence As(V) metabolisms 
in freshwater algae can contribute to better understandings in 
biogeochemical behavior, aquatic ecosystem health involved 

As toxic effects, and remediation of As-contaminated waters, 
which potentially impacted by nano-Fe2O3.

Materials and Methods

Algal culture and nano‑Fe2O3 characterization

M. aeruginosa was obtained from the Freshwater Algae Cul-
ture Collection at the Institute of Hydrobiology (FACHB-
905), Chinese Academy of Sciences. And the obtained algae 
were maintained axenically in Erlenmeyer flasks contain-
ing BG11 medium under intermittent illumination (40 W, 
16 h light/8 h dark) at 25 ± 1 °C on an orbital incubation 
(125 rpm). In addition, commercially available nano-Fe2O3 
(99.5%, 30 nm) were purchased from Macklin Inc. (Shang-
hai, China). A stock solution of 100.0 g/L nano-Fe2O3 was 
prepared by dispersing nanoparticles in BG11 medium (Mil-
lipore, Billerica, MA, USA) and applying sonication for 
30 min (50 W/L at 40 kHz) to promote stable suspension. An 
extra 30-min application of sonication was conducted imme-
diately before dosing. The average hydrodynamic diameter 
and the zeta potential of nano-Fe2O3 were 164.5 ± 11.3 nm 
and -11.7 ± 0.1 mV, respectively, determined by a Zetasizer 
Nano ZS90 dynamic light scattering spectrometer (DLS, 
Malvern Instruments Ltd., UK). Furthermore, As(V) stock 
solution with concentration of 1.0 g/L was prepared using 
Na3AsO4·12H2O and stocked in dark at 4 °C until usage.

Tolerance of nano‑Fe2O3 to M. aeruginosa

The tested algae of M. aeruginosa with an initial cell den-
sity approx. 1.0 × 107 cells/mL were transferred to modified 
BG11 culture (Fe3+ free) with one of eight concentrations of 
nano-Fe2O3 (0, 0.1, 0.5, 1, 5, 10, 100 and 1000 mg/L) after 
centrifugation and twice sterile water washing. All treatments 
were cultured in the modified BG11 media for 96 h. The algal 
optical density (OD) at a wavelength of 680 nm, chlorophyll 
a (Chla) and the maximum photosynthetic quantum yield of 
PSII (Yield) were measured every 24 h. The algal specific 
growth rate calculated by OD, Chla and Yield were used to 
determine the stress effects impacted by nano-Fe2O3.

As(V) adsorption onto nano‑Fe2O3 in algal culture 
medium

It is vital to understand As(V) adsorption on nano-Fe2O3 dur-
ing the biokinetics process. To investigate As(V) adsorption 
on nano-Fe2O3, identical As(V) concentration of 100 µg/L in 
100 mL of BG11 with final concentrations of nano-Fe2O3 at 
0.1, 1 and 5 mg/L suspensions in Erlenmeyer flasks was pre-
pared, respectively. At the period of 3, 5, 7, 9, 11 and 24 h, 
5 mL nano-Fe2O3 suspensions were collected and filtered 
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with 0.45 µm syringe filter after centrifugation at 12 000 g for 
5 min. Both the supernatant and the original Fe2O3 suspension 
were collected to measure As concentrations, and the adsorp-
tion rate (%) of As(V) onto nano-Fe2O3 were calculated. Three 
parallels were set for each treatment.

As(V) toxicity, uptake kinetics 
and biotransformation

As(V) toxicity response to nano‑Fe2O3 as iron sources

Taking into account the tolerated data obtained from the above-
mentioned experiments of nano-Fe2O3 and a similar iron con-
centration in BG11, appropriate nano-Fe2O3 level (5 mg/L) 
was chosen to conduct As(V) toxicity experiments. A series 
of As(V) concentrations (from 0 to 100 mg/L) were prepared 
in the sterile modified media with 5mg/L nano-Fe2O3. After 
30-min bath ultrasonication, algal cells were then inoculated 
with initial cell density approx. 1.0 × 107 cells/mL and cultured 
for 96 h in 250-mL Erlenmeyer flasks. The toxicity of As(V) 
was expressed as 96 h EC50 (effective concentration for 50% of 
test algae) which were estimated by a sigmoidal dose–response 
curve equation based on OD, Chla, and Yield (Karadjova et al. 
2008). At the end of these experiments, all the amounts of 
intracellular total As (TAs) and Fe were measured separately 
from the survival groups that treated with As(V), together with 
microcystins release in media.

As(V) uptake kinetics and biotransformation affected 
by nano‑Fe2O3

M. aeruginosa with initial cell density approx. 1.0 × 107 cells/
mL were inoculated and cultured for 5 days, in which As(V) 
level was fixed at 100 μg/L, and nano-Fe2O3 concentration was 
set as 0, 0.1, 1 and 5 mg/L in modified BG11 media (iron free). 
After 2, 4, 8, 12, 18, 48, 72, 96 and 120 h of exposure, algal 
solutions (approx. 20 mL) were sampled to measure intracel-
lular TAs concentration by referring our previous pretreatment 
methods (Wang et al. 2018a, b). At the end of the experiments 
(120 h), As species in algal cells and media were all pretreated 
and detected separately, together with  As distribution at sub-
cellular levels for 0 and 5 mg/L nano-Fe2O3 treatments, in 
order to identify As(V) biotransformation and As subcellular 
distribution affected by nano-Fe2O3.

Regarding the simultaneous As uptake and release, a 
nonlinear one-compartment model was selected to describe 
the measured intracellular TAs for each treatment over time 
according to the following first-order kinetics:

Herein, As
int

 (μg/g dry weight) refers to the intracellular 
TAs; As

ext
 (μg/L) refers to the extracellular As concentration 

[Asint ] = k
u
∕k

e
×
[

As
ext

]

×
(

1 − e
k
e
t
)

and is assumed as a constant, and t (h) refers to the exposure 
time; ku (L/g/h and ke (/h) are the rate constants of As uptake 
and release, respectively (Wang et al. 2014).

According to the kinetic equilibrium of As uptake and 
release by M. aeruginosa, the selected model was applied if 
ke > 0. The modeling was operated with the program Graph-
Pad Prism 8.0. The bioconcentration factor (BCF) of As was 
calculated as BCF (L/g) = ku/ke (Bradac et al. 2009).

Analytical methods

The As subcellular distribution experiments of M. aerug-
inosa exposed at 100 μg/L As(V) under free and 5 mg/L 
nano-Fe2O3 were conducted according to the differential 
centrifugation procedure (Siebers et al., 2013). Four frac-
tions were acquired, namely cell walls, chloroplasts, cell 
organelles and cytoplasmic supernatant. Besides,TAs, As 
species including As(III), As(V), DMA and MMA in the 
media and algal cell as well as OD were all detected accord-
ing to our previous methods used for sample preparation 
and analysis (Wang et al. 2018a, b, 2014). In brief, the sam-
ples we obtained as per the above procedures were further 
diluted to measure As using inductively coupled plasma 
mass spectrometry (ICP-MS) and As speciation using high-
performance liquid chromatography coupled to inductively 
coupled plasma-mass spectrometry (HPLC-ICP-MS) (i.e., 
Agilent LC1100 series coupled with the Agilent ICP-MS 
7800a; Instrumental Analysis Center of Huaqiao Univer-
sity). In addition, algal Chla and yield were observed using 
an advanced phytoplankton fluorometer (Phyto-PAM, Walz, 
Germany) after 10 min of dark conditioning of the fresh 
algae solution (Chalifour and Juneau 2011). The concen-
trations of microcystins in media were measured using 
enzyme-linked immunosorbent assay kit (ELISA, purchased 
from Institute of Hydrobiology, Wuhan, China) according 
to manufacturer's instructions after membrane filtration. 
Furthermore, two As genes (arsC and arsM) are critically 
involved in As bioreduction and methylation processes in 
algae. Herein, the relative gene expression levels of arsC 
and arsM genes were also quantified in the tested algae at 
the first day by Real-Time PCR under different nano-Fe2O3 
treatments (Wang et al. 2019). The detailed quantifications 
were described in the Supplementary data.

Statistical analysis

All experiments were performed in triplicate, and the results 
were expressed as their means with corresponding stand-
ard deviations (SD). The one-way analysis of variance 
(ANOVA), t test and Pearson correlation analysis were con-
ducted using IBM SPSS Statistics 23. Significant differences 
were considered acceptable when P < 0.05. Graphics were 
generated using Origin Pro 2017 and GraphPad Prism 8.0.
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Results and Discussion

Algal growth under various nano‑Fe2O3 levels

The specific growth rate (µ) calculated by OD (µOD) ranged 
from 0.00 to 0.37 /d (Fig. 1). Except for the nano-Fe2O3 con-
centrations of 100 and 1000 mg/L, there were insignificant 
differences for µOD with an overall mean of 0.35 ± 0.01 /d 
and a coefficient of variation (CV) of 0.03 under the other 
given nano-Fe2O3 levels, while for µChla calculated by Chla, 
it ranged from 0.22 to 0.32 /d. Similar to µOD, no obvious 
differences of µChla were observed from 0 to 10 mg/L nano-
Fe2O3 treatments, with an overall mean of 0.30 ± 0.02 /d and 
CV of 0.05. The inhibition of Chla was found at 1000 mg/L 
nano-Fe2O3 concentrations. Nano-Fe2O3 concentration was 
found to be significantly correlated with µOD and µChla with 
the correlation coefficient of -0.801 and -0.723 (P < 0.01), 
respectively. Impliedly, µOD and µChla could greatly respond 
the effects of M. aeruginosa to nano-Fe2O3, and the induced 
potential algal toxicity was exhibited at more than 100 mg/L 
concentrations. It was similar to the results that FerMEG12 
(pristine flake-like milled Fe(0) nanoparticles (nZVI)) was 
toxic to Chlamydomonas sp. at concentration higher than 
50 mg/L (Nguyen et al. 2018). The high algal specific growth 
rate with paired little CV for µOD and µChla at the concentra-
tions less than 10 mg/L indicated that toxicity and variation in 
M. aeruginosa growth were relatively low affected by nano-
Fe2O3 with less than 10 mg/L.

Arsenate toxicity

The As(V) 96 h EC50 for M. aeruginosa under 5 mg/L nano-
Fe2O3 conditions obtained by OD, Chla and Yield correlated 
with As concentrations in media and algal cells was found 
to be well fitted by the sigmoidal dose–response curve with 

an R2 range from 0.831 to 0.979 (Fig. S1). M. aeruginosa 
was more sensitive to As(V) coexisting with nano-Fe2O3 as 
iron sources. The As(V) 96 h EC50 calculated from OD and 
Chla correlated with As concentrations in media and algal 
cells was less than four to five orders of magnitude com-
pared with nano-Fe2O3 free, but it was unobvious for Yield 
(Table 1). Yield as the sensitive indicator of M. aeruginosa 
to As(V) toxicity was changed slightly when iron ion sub-
stituted by nano-Fe2O3 in aquatic systems compared with 
OD and Chla. Nano-Fe2O3 as iron sources of M. aerugi-
nosa was considered to remarkably inhibit the algal OD and 
Chla under As(V) treatments. This is partly caused by iron 
deficiency decreasing photosynthetic efficiency due to the 
participation of iron in Chla synthesis (Osório et al. 2014). 
Similar tendency was found for As(V) 96 h EC50 with the 
order of Yield > OD > Chla under nano-Fe2O3 conditions 
obtained from As concentrations whether in media or in 
algal cells. In addition, the intracellular As concentration 
could reflect As(V) toxicity notably, which reduced the tox-
icity differences between OD, Chla and Yield when growth 
inhibition was plotted against it. Similar observation was 
reported for Chlamydomonas reinhardtii and Scenedesmus 
obliquus (Wang et al. 2013a, b). All 96 h EC50 of As(V) 
obtained from media or intracellular concentrations were 
more than that of Chlamydomonas reinhardtii and Scened-
esmus obliquus for 48 h EC50, which indicated the higher As 
tolerance of M. aeruginosa even impacted by nano-Fe2O3 
(Wang et al. 2013a, b).

As(V) concentration was found to be significant nega-
tively correlated with OD, Chla and Yield, showing the cor-
relation coefficient of -0.937, -0.880 and -0.852 (P < 0.01), 
respectively. Yield was positively correlated with OD and 
Chla, showing the correlation coefficient of 0.821 and 
0.831(P < 0.01). As the indicator of the ability to transform 
light energy into chemical energy, Yield could reflect As(V) 
toxicity well for M. aeruginosa, and it was obviously differ-
ent from the result that Yield could not be a robust indicator 
of algal growth rate and nutrient status (Kruskopf and Flynn 
2006). Meanwhile, Yield become less sensitive indicator 
compared with OD and Chla to reflect As(V) toxicity under 
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Fig. 1   Specific growth rate of M. aeruginosa based on OD and Chla 
under different nano-Fe2O3 conditions (The different lowercase and 
uppercase represent significant differences of OD and Chla at 0.05, 
respectively)

Table 1   D96 h EC50 obtained from OD, Chla and Yield of M. aerugi-
nosa under different nano-Fe2O3 conditions

Fe2O3 0 mg/L Fe2O3 5 mg/L

As in media (μg/L) As in media (μg/L) As in algae (μg/g)

OD 5.08 × 109 4.01 × 105 3.67 × 104

R2 0.974 0.954 0.908
Chla 1.60 × 109 2.43 × 105 2.36 × 104

R2 0.979 0.840 0831
Yield 3.11 × 106 1.10 × 106 7.01 × 104

R2 0.916 0.970 0.906
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nano-Fe2O3 as the iron sources conditions (Table 1), partly 
caused by its photosynthesis inhibition (Chen et al. 2005).

Intracellular TAs contents after 96 h As(V) exposure were 
increased with increasing As(V) levels in media, and the 
maximum iron contents was found at 0.5 mg/L As(V) con-
centrations and then showed a decline tendency (Fig. 2). The 
above-mentioned phenomenon confirmed As toxicity on M. 
aeruginosa. Kinetic constants for As uptake under 5 mg/L 
nano-Fe2O3 were calculated by fitting hyperbolic models 
to the data of As accumulation using the nonlinear regres-
sion module (Kahle and Zauke 2002). Arsenic influx can 
be well described by the Michaelis–Menten equation with 
R2 value of 0.995 (Fig. S2). The maximum uptake rate Vmax 
(mg/g/d) and the half saturation concentrations (Km (mg/L)) 
were 26.12 and 746.10, respectively, which was greater than 
that of nano-Fe2O3 free after 15 days exposure (Wang et al. 
2013a, b), but less than Vmax of Chlamydomonas reinhardtii 
(51.1 mg/g/d) and Scenedesmus obliquus (39.5 mg/g/d) 
from short-term (4 h) experiments under phosphate defi-
ciency conditions and more than that of Km not exceeding 
of 0.5 mg/L As(V), respectively (Wang et al. 2013a, b). This 
indicated that there was high As(V) tolerance of M. aerugi-
nosa even under 5 mg/L nano-Fe2O3 conditions. Although 
there was iron free in media, the residual iron in algal cells 
was still able to maintain its normal growth. Moderate iron 
supply derived from nano-Fe2O3 was found in our study. 
Furthermore, the depressed iron accumulation in algal cells 
could reflect As(V) toxicity indirectly (Fig. 2).

Microcystins in media

Microcystin in media under different As(V) concentrations 
was investigated at the end of the As(V) toxicity experiments 
(Fig. 3). The average concentration of microcystin in media 
was 7.26 ± 0.67 mg/L after 96 h algal culture under differ-
ent As(V) treatments. It was more than 150 times compared 

with previous results of 0.04 mg/L under 1.0 × 107 cells/mL 
without As(V) stress (Pei et al. 2014), and less than the peak 
concentration of 29 mg/L found in Lake Oubeira, Algeria 
(Nasri et al. 2008). These were different from the gener-
ally assumption that microcystin did not exceed 0.01 mg/L 
in cyanobacteria-contaminated water (Cao et al. 2018). In 
our experiments, microcystin in media was found positively 
correlated with As concentrations but negatively correlated 
with intracellular Fe content with the Pearson's correlation 
coefficient of 0.630 (P < 0.01) and -0.554 (P < 0.05), respec-
tively. The results were consistent with previous studies that 
the production of microcystin in M. aeruginosa could be 
accelerated by As(V) in media (Gong et al. 2011). How-
ever, it was different from the founding that the intracellular 
and extracellular quantity of microcystin could be promoted 
under iron-replete conditions (Wang et al. 2018a, b). Previ-
ous studies suggested that iron uptake in M. aeruginosa was 
not congruent with the upregulation of microcystin synthesis 
(Takaara et al. 2019). Specifically, it can partly be elucidated 
by the inhibition of As accumulation in algal cells due to 
iron uptake and thus decreased the abiotic stresses for M. 
aeruginosa. Microcystin concentrations in media decreased 
first and then increased with increasing As(V) concentra-
tions. The lowest microcystin concentration in media was 
observed at 1 mg/L As(V) treatments with significantly dif-
ferences from other As(V) treatments. Gong et al. (Gong 
et al. 2011) had reported that As(V) at higher than 7.5 mg/L 
could promote microcystin content in M. aeruginosa by 
inhibiting algal growth, and the lowest microcystin produc-
tion was found at 0.75 mg/L As(V) treatment. The consistent 
results illustrated that nano-Fe2O3 did not significantly alter 
microcystin release trends with different As(V) concentra-
tions even though the toxicity of M. aeruginosa regulated 
by nano-Fe2O3.
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As(V) uptake kinetics affected by nano‑Fe2O3

The TAs concentration in algal cells increased with increas-
ing exposure time for different nano-Fe2O3 treatments 
(Fig. S3), which were well fitted to the nonlinear one-
compartment model with the R2 (between 0.894 and 0.963) 
(Fig. S3; Table S1). The calculated ku for uptake rate con-
stant for As(V) in M. aeruginosa under different nano-Fe2O3 
treatments ranged from 0.170 ~ 0.627 L/g/h. The values of 
ku were observed to slightly decreased under lower nano-
Fe2O3 (0.1 and 1 mg/L), but prominently increased under 
5 mg/L nano-Fe2O3. They were lower than that of M. aerugi-
nosa exposed at 10 µM As(V) with ku from 6.58 to 136.90 
L/g/h (Wang et al. 2014). Moreover, it was similar to green 
algae Chlamydomonas reinhardtii (0.40 L/g/h) but more 
than Scenedesmus obliquus (0.09 L/g/h) at 75 µg/L As(V) 
exposures for 144 h (Wang et al. 2013a, b). In addition, the 
BCF decreased from 38.46 to 11.40 L/g (Fig. 4), indicating 
that As accumulated in M. aeruginosa was reduced with 
increasing nano-Fe2O3 in media. However, it was more than 
Chlamydomonas reinhardtii (6.15 L/g) at 75 µg/L As(V) 
exposures (Wang et al. 2013a, b). Furthermore, the small 
ke value for the efflux rate constants (0.005 ~ 0.055 /h) sug-
gested a sluggish As release from M. aeruginosa, but it 
increased with nano-Fe2O3 increasing especially for 5 mg/L 
nano-Fe2O3 which was quintuple of the free nano-Fe2O3 and 
caused the decrease of BCF. Specifically, ke values in this 
study were lower than Chlamydomonas reinhardtii (0.065 
/h), but similar to our previous study of M. aeruginosa 
(0.017 ~ 0.055 /h) when they all exposed at 75 µg/L As(V) 
conditions (Wang et al. 2013a, b;  Wang et al. 2018a, b). 
Therefore, nano-Fe2O3 as iron sources of M. aeruginosa 
accelerated intracellular As release and decreased intracellu-
lar As accumulation. It can be explained by the dilute As(V) 
concentration in media by As(V) sequestration through 
high adsorption of nano-Fe2O3 (Fig. S4) (Lin et al. 2019). 

Furthermore, the rapid As absorption equilibrium in algal 
cells with nano-Fe2O3 thus decreased As intracellular BCF. 
Specifically, the BCF of As in M. aeruginosa was reduced 
by 38% under 0.1 mg/L nano-Fe2O3 compared with nano-
Fe2O3 free in media. It was different from the result that As 
BCF in Daphnia magna was increased with nano-TiO2 as a 
positive carrier (Li et al. 2016).

As(V) biotransformation affected by nano‑Fe2O3

Except for only As(V) and trace amount of DMA were 
detected in media under nano-Fe2O3 free treatments, As(III) 
in media was also determined with less than 1 μg/L concen-
tration under nano-Fe2O3 treatments (Fig. 5). Our previous 
study shows that M. aeruginosa at As(V) exposures was 
observed with higher organic As (OAs) release rate than 
that of As(III) (Wang et al. 2013a, b). In this study, relatively 
high As(III) release in media was decreased with increas-
ing nano-Fe2O3, but OAs concentrations showed opposite 
tendency (Fig. 5). This indicated that As biotransformation 
in media was improved to a certain extent by nano-Fe2O3 as 
iron sources for M. aeruginosa. It might be caused by the 
high conductivity of nano-Fe2O3 and could enhance electron 
transfer in living organisms to accelerate As(V) biological 
reduction as well as the subsequent methylation in algal cells 
and their rapid release to media (Lin et al. 2019). Meanwhile 
the reported adsorption capacity of nano-Fe2O3 on As(III) 
was twice than that of As(V) (Tang et al. 2011), which could 
partly enhance As(III) biotransformation of M. aeruginosa. 
The detailed mechanisms need further investigation.

Although three As species including As(V), As(III) 
and DMA were all found in algal cells, As(V) remained 
dominant species with more than 75.0% of intracellular 
TAs, followed by As(III) with 15.3–24.4% under different 
nano-Fe2O3 treatments. The intracellular As accumulation 
decreased with increasing nano-Fe2O3, and significant dif-
ferences were observed for intracellular As(V) accumulation 
especially under more than 1 mg/L nano-Fe2O3 treatments 
(Fig. 5b). This result was consistent with As BCF observed 
in M. aeruginosa under different nano-Fe2O3 treatments, and 
was different from nano-TiO2 to accelerate As accumulation 
in M. aeruginosa (Luo et al. 2018). Whether in media or in 
algal cells, As(V) biotransformation (the amount of As(III) 
and methylated As species) were all improved under 1 mg/L 
nano-Fe2O3 treatments, which indicated that a suitable 
nano-Fe2O3 level in aquatic environment could increase As 
biotransformation. This is supported by the higher relative 
gene expression levels (2−∆CT) of arsC and arsM in elevated 
nano-Fe2O3 treatments (Fig. S5). Previous studies reported 
that 5 mg/L nano-Fe2O3 stimulated green algae growth and 
elevated algal lipid and polyunsaturated fatty acids contents 
by the dissolved trace ions of nano-Fe2O3 as a trace element 
for algal growth (He et al. 2017).
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Subcellular distribution of arsenic

From the subcellular distribution of As in algal cells (Fig. 6), 
we found that As primarily existed in cytoplasmic superna-
tant of the tested algae with more than 78.0% of TAs. There 
were insignificant differences of As in cytoplasmic super-
natant and chloroplast fractions under both free and 5 mg/L 
nano-Fe2O3 treatments. More notably, As distributed in 
cell organelles was increased but decreased in cell walls by 
nano-Fe2O3 additive, which exhibited significant differences 
compared with nano-Fe2O3 free (Fig. 6). This indicated that 
nano-Fe2O3 as As carrier mainly affected As transportation 
from cell walls to organelles. It might be elucidated by the 
mild cell wall damage and strong affinity to cell membranes 
due to the uptake of nano-Fe2O3 for algal cells (Phenrat et al. 
2009; Saxena et al. 2020). Meanwhile, chloroplasts were 
regarded as playing a central role in the cellular iron ion sink 
of plant cells (Jain and Connolly 2013). Iron deficiency in 
media might cause nano-Fe2O3 carried with As accumulated 
in algal organelles and increase As toxic effects (Fig. 2). 
From these aspects, As biotransformation in algae was then 

stimulated potentially by this increased toxic effects of As 
(Luo et al. 2018).

Environmental implication

In this study, we found nano-Fe2O3 reduce arsenate bioaccu-
mulation in M. aeruginosa, but increase arsenic biotransfor-
mation (i.e., bioreduction and methylation). It suggests that 
As ecological risk in M. aeruginosa can be lowered by nano-
Fe2O3 through its decreased accumulation of arsenic and 
its subsequent biotransformation into lower toxic species. 
Taking into account the wide distribution, elevated amount 
and high As adsorption of nano-Fe2O3 in the environment, 
the As risks in waters can be mitigated to some extent by 
nano-Fe2O3. Additionally, this mitigated role cannot lead to 
release excessive harmful microcystins from the tested algae, 
supported by the insignificant differences of microcystins 
release under different As treatments at 5 mg/L nano-Fe2O3 
levels compared to other reported values. On the other hand, 
as the first report on how nano-Fe2O3 influence As metabo-
lisms in freshwater algae, this study provided new insights 
into how nano-Fe2O3, as one of the components in natural 
nano-clay minerals, could be used to mitigate the As risks 
in aquatic environment. The findings would be helpful in 
the understanding and practical applications of natural clay 
minerals on algal bioremediation of As-contaminated water. 
However, various processes and uncertainties of As behav-
iors are needed to considered in-depth, involving the changes 
of crystal structures of nano-Fe2O3 and their adsorption of 
As, other more tested algal species and algal physiological 
dynamics, and other environmental influencing factors.

Conclusions

In summary, this study found that nano-Fe2O3 increased 
As(V) toxicity on M. aeruginosa. Meanwhile, nano-Fe2O3 
did not significantly alter microcystin release even though 
the toxicity of M. aeruginosa regulated by nano-Fe2O3 
under different As(V) concentrations. Due to the efflux 
rate constants of As increasing with the increase of nano-
Fe2O3 and it was more exaggerated than the uptake rate 

Fig. 5   Arsenic species in media 
and algal cells under differ-
ent nano-Fe2O3 level treat-
ments (The different letters 
represent significant differences  
at 0.05)
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constants increasing for 5 mg/L nano-Fe2O3 compared with 
nano-Fe2O3 free, the BCF of As was decreased by increas-
ing nano-Fe2O3. The reduction of As(V) to As(III) and the 
subsequently methylation caused by M. aeruginosa were 
observed to be increased with nano-Fe2O3 addition, and the 
optimal As biotransformation was at 1 mg/L nano-Fe2O3 
conditions. Nano-Fe2O3 as iron sources of M. aeruginosa 
regulated As subcellular distribution with declining in cell 
walls but increasing in cytoplasmic organelles. Accordingly, 
As accumulation of M. aeruginosa was decreased, but its 
biotransformation was increased due to nano-Fe2O3 addition 
in media. The obtained findings could benefit us to thor-
oughly understanding how nano-Fe2O3 as important natural 
clay minerals impacts on As biogeochemical behavior and 
its As removal application of microalgae.
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