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Abstract
Aiming at the uncertainty of wind power and the low accuracy of multi-step interval prediction, an ultra-short-term wind 
power multi-step interval prediction method based on complete ensemble empirical mode decomposition with adaptive 
noise-fuzzy information granulation (CEEMDAN-FIG) and convolutional neural network-bidirectional long short-term 
memory (CNN-BiLSTM) is proposed. Firstly, the CEEMDAN is used to decompose the wind power time series into several 
sub-components to reduce the non-stationary characteristics of the wind power time series. Then, different components are 
selected for FIG, and the maximum value sequence, average value sequence, minimum value sequence gotten from FIG, and 
the remaining components without FIG are combined with the wind speed data, wind direction data, and the temperature data. 
They all are input into the CNN-BiLSTM combined prediction model to obtain the initial wind power prediction interval. 
The prediction results of the maximum value sequence, the average value sequence, and the minimum value sequence are 
respectively superimposed on the prediction results of the remaining components to obtain the upper limit, point prediction, 
and lower limit of the initial prediction interval. Finally, the improved coverage width criterion is used as the objective func-
tion to optimize the interval, and the forecast interval of wind power under a given confidence level is generated. Taking the 
actual operating data of a certain unit of a wind farm as an example, the validity of the proposed model is verified.
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Introduction

Currently, the energy structure is mainly based on traditional 
primary energy and supplemented by new energy. However, 
primary energy is a non-renewable resource, and there is an 
unadjustable contradiction between the utilization of pri-
mary energy and the storage of primary energy. At the same 
time, these used primary energy sources often produce a 
large amount of carbon dioxide, sulfur dioxide, carbon mon-
oxide, and other substances that have a bad impact on the 
environment. These substances will have a great negative 
impact on the environment, forming acid rain, aggravating 
the greenhouse effect, and leading to the ecological envi-
ronment of the earth (Zhang 2021). Therefore, all countries 

have begun to focus on energy issues, improve their energy 
structure, and adjust the proportion of new energy sources. 
In order to alleviate these problems, the large-scale use of 
renewable energy is imperative.

Wind power is clean and renewable, and is one of the 
most widely used power generation methods in the field of 
renewable energy. With the continuous advancement of wind 
power technology, the global wind power industry is boom-
ing. According to Global Wind Energy Council (GWEC) 
statistics, as of the end of 2019, the cumulative grid-con-
nected installed capacity of global wind power reached 651 
GW, an increase of more than 26 times compared with the 
end of 2001, with an average annual compound growth rate 
of 20.12% (Xia 2020). According to the Global Wind Energy 
Report 2021 released by GWEC in 2021, the cumulative 
installed capacity of global wind power has reached 743 GW 
in 2020, reducing carbon dioxide emissions by more than 
1.1 billion tons. The newly installed capacity is 93 GW, an 
increase of 53% over 2019 (Luo 2021). And GWEC fore-
casts that global installed wind power capacity will reach 
840 GW by 2022 (Shen 2019).
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At present, there are more than 90 countries and regions 
using wind power in the world. From the perspective of the 
status quo of wind power generation in various countries, as 
of the end of 2019, the top five countries with cumulative 
installed capacity of onshore wind power in the world were 
China, the USA, India, Spain, and Sweden. According to 
the statistics of wind power grid connection data of National 
Energy Administration (National Energy Commission 2016; 
National Energy Commission 2017; National Energy Com-
mission 2018; National Energy Commission 2019; National 
Energy Commission 2020), significant progress has been 
made in the field of wind power generation in China in the 
past 5 years. From 2016 to 2019, the cumulative grid-con-
nected installed capacity of wind power jumped from 149 
million kilowatts to 210 million kilowatts, an increase of 
40.94%. In the past 5 years, the annual wind power genera-
tion has soared from 241 billion kilowatt-hours to 405.7 bil-
lion kilowatt-hours. In addition, the quality of wind power 
generation in China has rapidly improved, and the wind cur-
tailment rate has dropped from 20 to 4%.

However, as the installed capacity of wind power contin-
ues to increase, some negative impacts also follow. Since 
wind power is intermittent and random, large-scale wind 
power grid integration will have a serious impact on the 
traditional power system. Therefore, in order to maintain the 
power balance and frequency stability of the grid, there is 
a large-scale wind abandoning phenomenon, resulting in an 
obvious contradiction between large installed fan capacity 
and wind abandoning volume. Based on this, studying the 
uncertainty of wind power output and accurately predicting 
the output information of wind power are of great signifi-
cance to reducing wind curtailment and the stable operation 
of the power system.

Wind power prediction methods can be divided into phys-
ical methods (Feng et al. 2010), statistical methods (Liu and 
Meng 2013), and machine learning methods (G. N. Kari-
niotakis et al. 1996; Yang et al. 2017). Physical methods 
mainly refer to prediction methods based on digital weather 
forecasts. This method generally uses meteorological data 
and landmark information as initial and boundary condi-
tions, directly solves the physics equations to obtain the 
wind speed and direction at the height of the wind turbine 
hub, and calculates the output power through the power 
curve of the wind farm. However, this method has a large 
amount of calculation, slow prediction speed, and poor accu-
racy. The statistical method is a method of estimating the 
wind power in the future based on the historical wind power. 
However, this method is difficult to deal with scenes with 
drastic changes and needs to be used in combination with 
specific scenarios. Machine learning method establishes the 
relationship between input and output through some learn-
ing rules and establishes a prediction model based on his-
torical wind power related data. It has the characteristics 

of high prediction accuracy and is a hot research topic in 
recent years. In recent years, in view of the high complexity 
of data input for wind power forecasting, a large number 
of scholars have conducted research on wind power fore-
casting decomposition technology. Literature (Zhang et al. 
2021) uses the EMD method to decompose the wind power 
and uses the k-means clustering method to perform the 
clustering, respectively, constructing the empirical mode 
decomposition-relevance vector machine prediction model, 
which improves the prediction efficiency. However, EMD 
decomposition has the phenomenon of modal aliasing. In 
order to avoid the appearance of modal aliasing, literature 
(Yang et al. 2018) uses the EEMD method to decompose 
historical wind power data and achieves good results. EEMD 
adds symmetrical Gaussian white noise on the basis of EMD 
decomposition, which effectively avoids the phenomenon of 
modal overlap. However, if the added noise amplitude is not 
appropriate, it will not only increase the calculation scale, 
but also make the IMF component doped. There are more 
false components, which in turn affects accuracy. In view 
of the above considerations, literature (Zhao et al. 2019) 
uses the VMD method to decompose the wind power, each 
sub-component is predicted by the ARIMA method, and the 
GARCH model is introduced to eliminate the heteroscedas-
ticity characteristics, and finally the results are superimposed 
to obtain the predicted value. This VMD method avoids the 
phenomenon of modal aliasing. However, VMD decompo-
sition has a large reconstruction error. Therefore, literature 
(Zhao et al. 2020) uses the CEEMD method to decompose 
wind power input, which reduces the reconstruction error 
and improves the prediction accuracy on the basis of avoid-
ing modal aliasing. In the literature (Zhao et al. 2020), in 
view of the high complexity of CEEMDAN decomposition, 
the CEEMDAN-VMD secondary decomposition method is 
proposed to effectively solve the problem of excessive high 
frequency complexity and improve the accuracy of wind 
power forecasting. Wind power point forecasting can only 
output forecast values and cannot describe the interval range 
of wind power forecasting. Therefore, in the form of fore-
casting, the current forecast has gradually shifted from point 
forecasting to interval forecasting.

However, the strong volatility, randomness, and intermit-
tent nature of wind energy have brought great impacts and 
challenges to the integration of wind power into the grid. 
In order to ensure the safety of power integration, reduce 
the uncertainty caused by wind power grid integration, and 
provide more auxiliary information for grid dispatchers, 
wind power interval prediction is becoming more and more 
important.

According to different interval formation methods, wind 
power interval prediction methods are mainly divided into 
two categories: the first category is to build a dual-output 
model of wind power based on neural networks to predict the 
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upper and lower bounds of wind power that may occur (Yang 
et al. 2020a, b); the second type is to assume or estimate the 
probability distribution function of wind power prediction 
error in advance, and perform inverse calculation on it to 
generate the confidence interval of wind power power(Yang 
et al. 2019).

The first type of method avoids the problem of strong 
hypothesis and weak versatility of the probability distribu-
tion function of the second type of method. Wind power 
interval prediction based on fuzzy information granulation 
is the first type of method. This article conducts an in-depth 
study of this method.

Yin et al. proposed a wind speed multi-step interval pre-
diction model based on singular spectrum analysis-fuzzy 
information granulation and extreme learning machine. 
Wind speed sequence data was preprocessed through sin-
gular spectrum analysis, and all decomposed components 
were preprocessed through fuzzy granulation (Yin et al. 
2018, 2019). Zeng et al. (2018) proposed a short-term wind 
speed interval prediction model based on empirical wave-
let transform-fuzzy information granulation and mutation 
robust extreme learning machine. Through empirical wave-
let transform, the wind speed decomposition components 
are obtained, and only the component with the highest fre-
quency is used to perform fuzzy granulation. Literature (Yin 
et al. 2018, 2019) granulating all components leads to exces-
sive computational cost, while literature (Zeng et al. 2018) 
only granulates the highest frequency component, and the 
interval prediction effect is not good. Therefore, it is neces-
sary to select the best fuzzy granulation component.

In addition, most of the above literatures use traditional 
machine learning methods for interval prediction, and 
machine learning methods cannot effectively use a large 
amount of historical data due to their structural limitations, 
which will cause low prediction accuracy. In recent years, 
deep learning has made great progress. Compared with mod-
els such as extreme learning machines, deep neural networks 
have a memory function and have natural advantages for pre-
dicting and analyzing time series data. Compared with the 
traditional neural network algorithm, BiLSTM has memory 
ability, and the forward propagation layer and the back prop-
agation layer are connected to the output layer together. Con-
sidering the correlation between data, BiLSTM can make the 
output result more accurate (Xue et al. 2020).

In view of the above considerations, this paper proposes 
an ultra-short-term wind power multi-step interval predic-
tion method based on CEEMDAN-FIG and CNN-BiLSTM 
models. Firstly, CEEMDAN is used to decompose the wind 
power time series. Secondly, the components are selected 
for fuzzy information granulation. Then, the Low, R, Up, 
and other components obtained by fuzzy granulation are 
combined with wind speed data, wind direction data, and 
temperature data as the input of the CNN-BiLSTM model. 

Output of this model is obtained. Finally, CWC​proposed is 
used as the objective function to optimize the prediction 
interval to generate a wind power prediction interval under 
a given confidence level.

Basic method principle

Complete ensemble empirical mode decomposition 
with adaptive noise

Wind power time series are non-stationary and nonlinear; if 
it is directly used as the input of the prediction model, it is 
generally difficult to obtain accurate prediction results. The 
nonlinearity and non-stationarity of wind power time series 
can be reduced and the prediction accuracy can be improved 
by using data decomposition technology.

EMD (empirical mode decomposition, EMD) can decom-
pose nonlinear time series into finite modal components by 
using cubic spline interpolation functions. However, EMD 
has the phenomenon of “modal aliasing.” EEMD (ensemble 
empirical mode decomposition, EEMD) reduces the phe-
nomenon of “modal aliasing” by adding white noise to the 
original signal. But EEMD has noise residue. CEEMDAN 
(Torres et al. 2011) is an improved algorithm of EEMD. 
By adding a finite amount of white noise at each stage of 
decomposition process, it successfully solves the problem 
of noise residue.

Graining of fuzzy information

Information granulation (He et al. 2019) is the study of a set 
of close or similar elements as a whole. The whole is called 
the information granule. Fuzzy information granulation is 
an information granulation model based on fuzzy set theory. 
Fuzzy information granulation mainly includes two steps: 
time window division and fuzzification. The division time 
window is to divide the original time series into multiple 
time series data of the same length according to a certain 
time. The time window is divided into each small piece of 
data. The width of the time window is the time span of each 
small piece of data. Fuzzification is the membership func-
tion to determine the information granulation. Information 
fuzzification uses triangular fuzzy particles to obtain the 
maximum value, average value, and minimum value of the 
window data. The membership function is:

(1)A =

⎧
⎪⎨⎪⎩

0,x<a
x−a

m−a
,a≤x≤m

b−x

b−m
,m<x≤b

0,x>b
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Where x is a time domain variable; α, m, and b respec-
tively correspond to the maximum, average, and minimum 
value of data in each window after fuzzy graining.

CNN‑BiLSTM model

Convolutional neural network

Convolutional neural network (CNN) is one of the represent-
ative algorithms of deep learning. In particular, it has been 
widely used in the field of image processing (Qiu 2020).

Long short‑term memory

In order to selectively update memory cells, long short-term 
memory (LSTM) introduces the cell state on the basis of the 
hidden layer state of the original RNN to store long-term 
memory and reflect the dependence of adjacent moments 
learned by the deep network at any time step and the struc-
tural characteristics of input data a long time ago (Hochreiter 
and Schmidhuber 1997). Each LSTM calculation unit con-
tains three control gates, which are input gate, output gate, 
and forget gate. The structure is shown in Fig. 1.

ft is the forgetting gate, It is the input gate, and ot is the 
output gate. The relationship between output ft of LSTM 
network forgetting gate and current input xt is as follows:

In formula (2),  ωt and  bf are the weight and bias of 
the forgetting gate input respectively, σ(⋅) is the activation 
function sigmoid, which is used to restrict the passage of 
information, 0 means “completely discarded,” and 1 means 
“completely reserved.” The intermediate variable is used to 

(2)ft = �
(
�f ∙

[
ht−l, xt

]
+ bf

)

determine whether the cell state will be added. The specific 
functional relationship is as follows:

In formulas (3) and (4),  ωc and  ωi are the weight val-
ues of the intermediate variable and the input gate;  bc and 
bi are the offset value. The unit state  ct has the following 
functional relationship:

Based on the above variables, the output value of the 
output gate at the current time can be obtained:

In formulas (6) and (7), ωo and bo are the weight and 
bias of intermediate variables respectively. ⊙is the Had-
amard product.

Generally, the information in the LSTM network is one-
way transmission, and only the past information can be 
used; the future information cannot be used.

Bidirectional long short‑term memory

Bidirectional long short-term memory (BiLSTM) is com-
posed of two LSTM networks in opposite directions. The 
structure is shown in Fig. 2. The forward LSTM can obtain 
the past data information of the input sequence, and the 
backward LSTM can obtain the future data information 
of the input sequence; the forward and backward LSTM 
training of the time series can further improve the global 
and integrity of feature extraction.

The hidden state at time t is defined as forward h(1)t  and 
reverse h(2)t  , as shown in Eqs. (8) and (9) respectively:

Then, the output of the hidden layer at time t  is deter-
mined by the forward hidden layer and the reverse hidden 
layer at the same time, namely:

In formula (10), ⊕is the vector splicing operation.

(3)
∼
ct= tanh

(
�c ∙

[
ht−l, xt

]
+ bc

)

(4)it = �
(
�i ∙

[
ht−l, xt

]
+ bi

)

(5)ct = ct−l ⊙ ft + it⊙
∼
ct

(6)ot = �
(
�o ∙

[
ht−l, xt

]
+ bo

)

(7)ht = ot ⊙ tanh
(
ct
)

(8)h
(l)
t = ��⃗ht = ����������⃗LSTM

(
ht−l, xt, ct−l

)

(9)h
(2)
t = �⃖�ht = �⃖���������LSTM

(
ht+l, xt, ct+l

)

(10)ht = h
(l)
t ⊕ h

(2)
t

Fig. 1    LSTM network unit structure
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CNN‑BiLSTM model

In order to improve the accuracy of interval multi-step 
prediction, CNN-BILSTM is selected in this paper to con-
struct the prediction model. The CNN-BiLSTM model 
combines the feedforward mechanism of the convolutional 
neural network with the feedback mechanism of the BiL-
STM network.

Through the feature extraction of the convolutional neural 
network, the computational cost is greatly reduced. BiLSTM 
has a memory function, and the prediction of the BiLSTM 
model can improve the model forecast accuracy of multi-
step forecasts. The structure of the CNN-BiLSTM combined 
prediction model is shown in Fig. 3.

Wind power interval prediction based 
on CEEMDAN‑FIG and CNN‑BiLSTM

CEEMDAN‑FIG‑CNN‑BiLSTM prediction mode

Aiming at the randomness and non-stationarity of wind 
power time series, this paper proposes a wind power inter-
val prediction method based on CEEMDAN-FIG and CNN-
BiLSTM. Fig 4 is a flowchart of the prediction model.

The model prediction steps are as follows:

(1)	 The original wind power time series is decomposed 
by CEEMDAN to obtain n components including the 
remaining components;

(2)	 Select some components for fuzzy information granu-
lation and obtain the minimum sequence, maximum 
value sequence, and average value sequence. Com-
bine the wind speed, wind direction, and temperature 
sequence as the input of the CNN-BiLSTM combined 
model. The remaining components are treated in the 
same way;

(3)	 The prediction result of the minimum sequence com-
bined with the prediction results of the remaining com-
ponents is used as the lower limit of the interval; the 
prediction result of the maximum sequence combined 
with the prediction results of the remaining components 
is used as the upper limit of the interval; the prediction 
result of the average sequence combined with the pre-
diction results of the remaining components is used as 
the point prediction result.

Evaluation index of prediction results

This paper selects prediction interval coverage probability 
(PICP) (Li et al. 2019), prediction interval normalized aver-
age width (PINAW) (Yang et al. 2020a, b), and coverage width 
criterion proposed (CWC​proposed) (Chen 2019) to evaluate the 
performance of the prediction model.

(11)PICP =
l

N

N∑
i=l

ci × 100%

(12)ci =

{
1, ifPti ∈

(
Li,Ui

)
0, ifPti ∉

(
Li,Ui

)

Fig. 2    BiLSTM network 
structure

Fig. 3    CNN-BiLSTM model structure diagram
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In formulas (11) and (12), N is the total number of samples, 
and Ci is the reliability index of the upper limit Ui and the 
lower limit Li of the interval to the real value Pti of wind power.

(13)PINAW =
l

N

N∑
i−l

Ui − Li

Pti

× 100%

(14)

⎧⎪⎨⎪⎩

CWCproposed=

𝛽∙PINAW

(𝛼 + 𝛽 ∙ PINAW) ∙ (l + exp(−𝜂 ∙
(PICP≥𝜇

PICP−𝜇)))

PICP<𝜇

In formula (14), α is used to avoid the problem that the 
influence of PICP is ignored when PINAW is too small, β 
is the proportion coefficient of the PINAW index, � is the 
penalty parameter, and µ is the preset nominal confidence 
level of the interval prediction.

Experiment

This paper selects wind power data, wind speed data, wind 
direction data, and temperature data of a wind turbine in 
northwest China from January to March as experimental 
samples, and divides the data into training set, validation 
set, and test set. The data sampling interval is 5 min. And 
the wind power historical data is input into the adftest func-
tion of MATLAB for testing, and the test result is 0, which 
indicates that the wind power data is non-stationary.

The application of CEEMDAN to decompose wind 
power sequence

Because the wind power sequence fluctuates greatly, the data 
needs to be processed. In this paper, CEEMDAN is used to 
decompose the original sequence into several relatively flat 
components. The result of applying CEEMDAN to decom-
pose the original wind power time series is shown in Fig. 5.

It can be seen from the wind power decomposition dia-
gram that the original power sequence is decomposed into 
14 sub-components. From IMF1-RES, the components 
gradually transition from high-frequency components to 
low-frequency components.

Selecting the optimal fuzzy information granulation 
component

In order to avoid the influence of artificial selection of 
fuzzy granulation components on the interval prediction 
effect, when selecting sub-components for fuzzy informa-
tion granulation, we respectively select IMF1, IMF1-IMF2, 
IMF1-IMF8 etc. components for experiments. The IMF1 
component accounts for a large proportion of all the original 
data, so the experiments all contain the IMF1 component. 
By comparing the interval prediction effects of the 8 groups 
of experiments on the validation set, the best granular fuzzy 
information component is screened out.

Normalize the Low sequence, R sequence, Up sequence 
with the resolution of 15 min, and the remaining components 
with the resolution of 5 min obtained by granulating the 
fuzzy information of 8 groups of experiments to [0 1]. The 
normalized sequence is divided into training set, validation 
set, and test set according to 8:1:1.

The purpose of this section is to select the best fuzzy 
information granulation component. Taking into account 

Fig. 4   CEEMDAN-FIG and CNN-BiLSTM prediction model flow-
chart. Note that WS refers to wind speed. Dr refers to direction and T 
refers to temperature
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that the BiLSTM network operation occupies a lot of com-
puting resources, here, a single-layer LSTM network is 
selected for prediction, and the optimal granulation compo-
nent is determined by comparing the one-step interval pre-
diction results of 8 groups of experiments on the verification 
set at a 90% confidence level.

It can be seen from Table 1 that when the confidence 
level is 90%, the minimum average bandwidth PINAW of 
the prediction interval of the fuzzy information granulation 
component of the second group of experiments is 0.1423, 
and the minimum coverage width criterion of the interval 
comprehensive evaluation index is 0.8542, so the best granu-
lar component of fuzzy information is IMF1–IMF2

Select the granular component of fuzzy information 
IMF1–IMF2 and reconstruct it into IMF; the remaining 
components IMF3,…, RES will not be processed. Perform 
FIG processing on the components IMF. The selected 
fuzzy particles are triangular fuzzy particles, and the time 
window width is 3. In this way, the components with a 
resolution of 5 min are granulated by fuzzy information 

and processed into a minimum sequence (Low), an aver-
age sequence (R), and a maximum sequence (Up) with a 
resolution of 15 min. The granular view of the component 
blur information is shown in Fig. 6.

Fig. 5    The result of applying CEEMDAN to decompose the original wind power time series

Table 1   One-step interval prediction evaluation index on the 8 sets of 
experimental verification sets

Fuzzy information granu-
lation component

PICP PINAW CWC​proposed

IMF1 0.9299 0.1706 1.0238
IMF1 − IMF2 0.9044 0.1423 0.8542
IMF1 − IMF3 0.9108 0.1820 1.0919
IMF1 − IMF4 0.9044 0.1988 1.1928
IMF1 − IMF5 0.9108 0.2674 1.6049
IMF1 − IMF6 0.9235 0.3643 2.1858
IMF1 − IMF7 0.9044 0.4878 2.9268
IMF1 − IMF8 0.9108 0.6778 4.0667
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So far, three sequences of Low sequence, R sequence, and 
Up sequence with a resolution of 15 min have been obtained, 
and 12 components with a resolution of 5 min IMF3,…, RES, 
etc. have been obtained. Combine the wind speed sequence, 
wind direction sequence (processed into wind direction sine 
and wind direction cosine), and temperature sequence as 
the input of the prediction model to obtain the initial wind 
power prediction interval, and finally take the improved cov-
erage width criterion as the objective function to optimize 
the PICP and PINAW of the initial prediction interval to 
generate the wind power prediction interval under the given 
confidence level.

One‑step interval prediction result analysis

Table 2 shows the one-step interval prediction results of 
the CNN-BiLSTM model, CNN-GRU model, CNN-LSTM 
model, KELM model, and SVR model at the 90% confi-
dence level. Table 3 shows the one-step interval prediction 
results of the five models with 80% confidence level. And 
the CNN-BiLSTM model structure includes one CNN, one 
max pooling layer, two BiLSTM layers, and one fully con-
nected layer. The structure and parameters of the CNN-GRU 
model and the CNN-LSTM model are consistent with the 

CNN-BiLSTM model, and the BiLSTM network layer is 
replaced by the GRU layer and the LSTM layer, respectively. 
The parameters of the KELM model are set as follows: 
Elm_Type selects 0, indicating that regression analysis is 
performed; the regularization coefficient or penalty coeffi-
cient C is set to 1; the kernel function Kernel_type selects 
RBF_kernel. The parameters of the SVR model are set as 
follows: SVM type selects ε; the kernel function is the RBF 
kernel function; the loss function ε in ε-SVR is set to 0.01; 
the parameter C of ε-SVR and the γ in the kernel function 
are selected by grid search method, and the initial range is 
[− 10, 10]. In addition, the parameters of CWC​proposed are as 
follows: α is 0.1, β is 6, � is 15, and µ is the preset nominal 
confidence level of the interval prediction.

From Table 2 and Table 3, when the confidence level is 
the same, the average bandwidth PINAW of the prediction 
interval of the CNN-BiLSTM model is the smallest, and the 
CWC​proposed value of the improved coverage width criterion 
is the smallest, indicating that the one-step interval predic-
tion effect of the CNN-BiLSTM model is the best.

When the confidence level is 90%, the prediction inter-
val average bandwidth index PINAW of the CNN-BiLSTM 
model is increased by 3.79%, 1.89%, 14.57%, and 10.13% 
compared with the CNN-GRU model, CNN-LSTM model, 

Fig. 6    IMF
′ component fuzzy 

information granular view

Table 2   One-step interval prediction results of 5 models at 90% con-
fidence level

Prediction model PICP PINAW CWC​proposed

CEEMDAN-FIG-CNN-BiLSTM 0.9059 0.1038 0.6232
CEEMDAN-FIG-CNN-GRU​ 0.9231 0.1079 0.6476
CEEMDAN-FIG-CNN-LSTM 0.9145 0.1058 0.6346
CEEMDAN-FIG-KELM 0.9059 0.1215 0.7290
CEEMDAN-FIG-SVR 0.9145 0.1155 0.69931

Table 3   One-step interval prediction results of 5 models with 80% 
confidence level

Prediction model PICP PINAW CWC​proposed

CEEMDAN-FIG-CNN-BiLSTM 0.8034 0.0943 0.5656
CEEMDAN-FIG-CNN-GRU​ 0.8205 0.0959 0.5758
CEEMDAN-FIG-CNN-LSTM 0.8119 0.0955 0.5731
CEEMDAN-FIG-KELM 0.8034 0.1095 0.6573
CEEMDAN-FIG-SVR 0.8205 0.1078 0.6470
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KELM model, and SVR model, respectively. Compared with 
the other four models, the improved coverage width criterion 
CWC​proposed index of the CNN-BiLSTM model is increased 
by 3.76%, 1.79%, 14.51%, and 10.08%, respectively. The 
two indicators, the prediction interval average bandwidth 
PINAW and the improved coverage width criterion CWC​
proposed, fully demonstrate the superiority and effectiveness 
of the CNN-BiLSTM model.

Table 4 is the results of the CNN-BiLSTM model using 
different decomposition methods. It can be seen from 
Table 4 that when the confidence level is the same, the 
CEEMDAN-FIG-CNN-BiLSTM model has the highest 

prediction interval coverage rate PICP, the smallest aver-
age bandwidth PINAW, and the smallest improved coverage 
width criterion CWC​proposed value, indicating the effective-
ness of CEEMDAN-FIG.

Figures 7 and 8 are the results of ultra-short-term one-step 
interval prediction of wind power with a confidence level of 
80% and 90% of the CEEMDAN-FIG-CNN-BiLSTM pre-
diction model, respectively. Figs 9 and 10 respectively show 
the ultra-short-term one-step interval prediction results of 
wind power of EEMD-FIG-CNN-BiLSTM and EMD-FIG-
CNN-BiLSTM models with confidence level of 90%.

Multi‑step interval prediction results analysis

From Table 5, when the confidence level is the same and the 
number of prediction steps is the same, the prediction inter-
val average bandwidth PINAW of the CNN-BiLSTM model 
and the improved coverage width criterion CWC​proposed are 
better than the other four comparison models.

For example, in the 2-step interval prediction results, 
the average bandwidth of the prediction interval PINNAW 

Table 4   One-step interval prediction results of 3 models with 90% 
confidence level

Prediction model PICP PINAW CWC​proposed

CEEMDAN-FIG-CNN-BiLSTM 0.9059 0.1038 0.6232
EEMD-FIG-CNN-BiLSTM 0.9023 0.1259 0.6542
EMD-FIG-CNN-BiLSTM 0.9014 0.1155 0.6755

Fig. 7    CEEMDAN-FIG-CNN-
BiLSTM ultra-short-term one-
step interval prediction with 
80% confidence level

Fig. 8    CEEMDAN-FIG-CNN-
BiLSTM ultra-short-term one-
step interval prediction with 
90% confidence level
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Fig. 9    EEMD-FIG-CNN-BiL-
STM ultra-short-term one-step 
interval prediction with 90% 
confidence level

Fig. 10    EMD-FIG-CNN-BiL-
STM ultra-short-term one-step 
interval prediction with 90% 
confidence level

Table 5   Multi-step interval 
prediction results of 5 models 
with 90% confidence level

Prediction model Prediction step PICP PINAW CWCproposed

CEEMDAN-FIG-CNN-BiLSTM 2 steps 0.9052 0.0961 0.5768
3 steps 0.9043 0.1004 0.6023
4 steps 0.9035 0.1092 0.6550

CEEMDAN-FIG-CNN-GRU​ 2 steps 0.9138 0.0998 0.5988
3 steps 0.9217 0.1005 0.6029
4 steps 0.9035 0.1062 0.6371

CEEMDAN-FIG-CNN-LSTM 2 steps 0.9224 0.0993 0.5959
3 steps 0.9130 0.1040 0.6241
4 steps 0.9123 0.1096 0.6578

CEEMDAN-FIG-KELM 2 steps 0.9052 0.1215 0.7294
3 steps 0.9130 0.1455 0.8735
4 steps 0.9035 0.1610 0.9660

CEEMDAN-FIG-SVR 2 steps 0.9052 0.1172 0.7037
3 steps 0.9043 0.1379 0.8274
4 steps 0.9035 0.1516 0.9096
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of the CNN-BiLSTM model is increased by 3.71%, 3.22%, 
20.91%, and 18.01% compared with the CNN-GRU model, 
CNN-LSTM model, KELM model, and SVR model, 
respectively. Compared with the other four models, the 
improved coverage width criterion CWC​proposed of the 

CNN-BiLSTM model is increased by 3.67%, 3.19%, 
25.48%, and 21.19%, respectively.

Figure 11, Fig. 12, and Fig. 13 are the ultra-short-term 
2-step, 3-step, and 4-step interval prediction results of 

Fig. 11    Two-step interval 
prediction result graph

Fig. 12    Three-step interval 
prediction result graph

Fig. 13    Four-step interval 
prediction result graph
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wind power with a 90% confidence level of the CEEM-
DAN-FIG-CNN-BiLSTM model.

Conclusion

In this paper, the method of constructing a dual-output wind 
power model based on neural network in the prediction of 
wind power interval and generating the confidence interval 
of wind power is studied. Through simulation and compari-
son experiments, the following conclusions are obtained:

(1)	 An ultra-short-term wind power multi-step interval pre-
diction method based on CEEMDAN-FIG and CNN-
BiLSTM is proposed;

(2)	 By analyzing the prediction results of different granu-
lation components on the verification set, the optimal 
granulation component is selected objectively, and the 
prediction error caused by artificial selection of the 
granulation component is avoided;

(3)	 Compared with the CNN-GRU model, CNN-LSTM 
model, KELM model, and SVR model, the CNN-BiL-
STM combined model has superiority in the results of 
one-step interval prediction and multi-step interval pre-
diction.
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