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Abstract
African catfish is a freshwater species with a high ability to resist brackish water conditions, but heat stress may impair the 
health status of fish. Thus, the impact of varying levels of water salinity (0, 4, 8, and 12 ppt) was investigated on the growth 
performance, survival rate, and blood biochemistry of African catfish (average weight: 180.58 ± 2.8 g and average length: 38 
± 1.2 cm) for 4 weeks; then, fish were stressed with high temperature (32 °C) for 72 h. The growth performance and survival 
rate were markedly higher in fish reared in 0, 4, and 8 ppt than fish in 12 ppt (p < 0.05). Before heat stress, the superoxide 
dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) levels were markedly increased 
in fish stressed with 12-ppt salinity (p < 0.05). After heat stress, all groups showed a marked increased SOD, CAT, GSH, 
and MDA levels than fish before heat stress in the same manner (p < 0.05). Furthermore, fish in the 12 ppt group showed 
severe intestinal, gill, and liver histological features. The levels of blood glucose and cortisol were markedly increased in 
fish exposed with 8 and 12 ppt than 0 ppt gradually either before or after heat stress (p < 0.05). The highest values of ALT, 
AST, urea, creatinine, and the lowest total protein, albumin, and globulin were observed in fish reared in 12 ppt. Significant 
salinity and heat stress interactions were seen on the ALT, AST, urea, creatinine, total protein, albumin, and globulin values (p 
< 0.05). The integrated multi-biomarker response (IBR) results showed marked differences among the groups and increased 
gradually before and after heat stress, with the highest IBR in 12 ppt. In conclusion, growing African catfish in high salinity 
(12 ppt) hampered the growth performance and health status while the heat stress improved the antioxidative status vis-a-vis 
increased lipid peroxidation along with higher stress-related markers in expressed both blood and tissue.
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Introduction

Climate change is one of the main challenges associated 
with various impacts on humanity, animals, and the eco-
system (Galappaththi et al., 2020). Extremely low and high 
temperatures resulting from the fluctuations in climate 
change disrupt the biological and physiological rhymes of 
living organisms (Esam et al., 2022; Falconer et al., 2020). 
An observed rising in the temperature is markedly hitting 
vast areas around the globe for long periods throughout 
the year (Stewart-Sinclair et al., 2020). Interestingly, it 
becomes difficult to separate between the year four seasons 
due to the collapse of weather temperature and unclear 
temperature limits. As one of the major food suppliers, 
the aquaculture industry is not far away from the impacts 
of climate change (Ahmed and Turchini, 2021; Dawood 
et al., 2021a). Most aquatic animals require optimal water 
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temperature to have healthy physiological and productive 
performances (Dawood, 2021; Zhou et al., 2021). High 
temperature is involved in impairing the reproduction and 
hatching of finfish seeds (Cai et al., 2020b; Pountney et al., 
2020). High temperatures in adult fish induce deformities 
in the erythrocytes, causing nuclear and cellular damage 
(Islam et al., 2020). Under these circumstances, the regu-
lations of growth, immunity, antioxidative, and antistress 
hormones and genes can be disturbed, leading to irregular 
growth performance and resistance to infection (Cai et al., 
2020a; Dawood et al., 2020; Shahjahan et al., 2018).

Due to the temperature changes, the water salinity 
increases, particularly in the brackish water areas and 
places suffering from a lack of freshwater (Durigon et al., 
2020; Thomas et al., 2020). Along with the fluctuations 
in the temperature, these uncontrolled water characteris-
tics result in several physiological and biological abnor-
malities (Hlordzi et al., 2020; Magouz et al., 2022). High 
salinity levels alter the osmoregulation capacity of fish, 
leading to irregular metabolic rates and disturbances in 
physiological and immunological status (Britz and Hecht, 
1989). Consequently, fish suffer from weak growth perfor-
mance and feed utilization, causing low productivity and 
substantial economic loss (Abass et al., 2016). In channel 
catfish (Ictalurus punctatus), a freshwater fish model, the 
interactive impacts of high temperature and water salin-
ity resulted in fluctuations in the expression of growth 
hormone, osmoregulation, and homeostasis (Abass et al., 
2016). Although that European seabass (Dicentrarchus 
labrax) is euryhaline fish species, high temperature (33 
°C) combined with hypersalinity caused low adaptation 
ability through high mortality rates and oxidative stress 
(Islam et  al., 2020). Since freshwater fish species are 
sensitive to water salinity changes (Nepal and Fabrizio, 
2020), it is crucial to investigate the combined impacts 
of high temperature and salinity on the growth perfor-
mances, physiological, immunological, and antioxidative 
responses.

African catfish (Clarias gariepinus) can perform 
adequately if the water temperature is around 25–28 °C 
(Andrews and Stickney, 1972; Ogunji and Awoke, 2017). 
However, high temperatures adversely impact oxygen 
availability in the water (Buentello et al., 2000). Hot tem-
perature (32 °C) reduces the solubility of oxygen in the 
water and eventually leads to low metabolic and physi-
ological function, thereby low growth and death (Dutta, 
1994; Prokešová et al., 2015). Concurrently, this study 
aimed at evaluating the combined effects of salinity and 
high temperature on the serum biochemical traits, anti-
oxidant, and stress-related markers of African catfish. 
Besides, the study evaluated the impacts of salinity and 
high temperature-induced oxidative stress on the intestine, 
gill, and liver histological features.

Materials and methods

Acclimatization of fish

One-hundred-twenty adult African catfish weighing 
180.58 ± 2.8 g with an average length of 38 ± 1.2 cm were 
obtained from a private farm located in Kafr El-Sheikh city 
and gently transported to The Center for Applied Research 
on the Environment and Sustainability, The American 
University in Cairo, Cairo, Egypt. Fish were treated and 
handled by following the ethical guidelines approved by 
the ethical committee of the Faculty of Agriculture, Kaf-
relsheikh University, Egypt. Upon arrival, fish were kept 
in two 1000-L plastic tanks and kept for adaptation for 2 
weeks. The tanks were supplied with continuous aeration, 
and the water was replaced with fresh dechlorinated water 
daily. During the adaptation period and throughout the 
trial, fish-fed pellets of 30% crude protein manufactured 
by Skretting (Bilbis, El Sharqia Governorate, Egypt) up to 
the satiation level twice daily (08:00 and 15:00).

Experimental procedures

Exposure to salinity stress

After acclimatization, fish were distributed in twelve 
100-L plastic tanks with ten fish in each tank. The experi-
mental tanks were provided with continuous aeration, and 
half of the water was changed daily with dechlorinated 
water. Every three tanks were considered an experimental 
group where fish were reared in water with 0, 4, 8, and 
12 ppt. The water salinity was raised gradually at 2 ppt 
daily until reaching the proposed salinity levels. The saline 
water was prepared daily by mixing dry sea saline with 
fresh water and kept in stock tanks. The water quality was 
checked daily and recorded to confirm that the proposed 
salinity levels were applied. The water was exchanged with 
temperature adjusted and appropriate saline water (0, 4, 8, 
and 12 ppt). When the proposed levels of salinity (0, 4, 8, 
and 12 ppt) were confirmed, all fish were kept under exper-
imental conditions for 4 weeks. Feed intake was recorded 
to calculate the feed conversion ratio (FCR). The water 
quality was detected by Orion Star™ A329 Portable Mul-
tiparameter Meter (Thermo Scientific™, Waltham, MA, 
USA) for salinity, temperature, dissolved oxygen, and 
pH. Total ammonia (TAN) levels were measured calori-
metrically using the APHA (1912) standard method. The 
dissolved oxygen, pH, and total ammonia levels were not 
meaningfully impacted by the effects of varying salinity 
levels before or after heat stress and recorded 6.21 ± 0.12 
mg/L, 7.22 ± 0.18, and 0.03 ± 0.001 mg/L, respectively. 
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The salinity levels were recorded 0.21 ± 0.02, 4.21 ± 0.11, 
8.32 ± 0.23, and 12.32 ± 0.32, respectively. Water tem-
perature was significantly higher in all groups after heat 
stress (32.36 ± 0.41 °C) than before heat stress (26.95 ± 
0.11 °C).

Exposure to heat stress

Using electrical heaters, the remaining fish in each tank were 
stressed with heat stress (32 °C) for 72 h. Each tank was 
fixed with a heater, and the temperature was raised gradually 
at 2 °C per hour until reaching the proposed degree; then, 
fish were kept for 72 h under the experimental conditions. 
The water quality was checked regularly using the same pro-
cedure mentioned above.

Collection of blood and tissue sample 
for biochemical analysis including antioxidant 
(SOD, CAT, GSH) and damage indicator (MDA) as well 
as tissue samples for histology

After 4 weeks, all fish were starved for 24 h then weighed 
and counted to calculate the growth performance, feed con-
version ratio, and survival rate using the following formulae:

Weight gain (%) = ((f inal weight (g) − initial weight (g))∕initial weight (g)) × 100

Specif ic growth rate (SGR) = 100 ×
[

ln f inal weight (g)– ln initial weight (g)
]

∕days

Feed conversion ratio (FCR) = feed intake (g)∕((f inal weight (g) − initial weight (g))

After salinity exposure and heat stress, all fish were anes-
thetized with tricaine methanesulfonate (MS-222; 25 mg/L), 
and the blood was collected from 3 fish per tank from the 
caudal vein using 3-mL non-heparinized syringes. The col-
lected blood was kept clotting at 4 °C; then, serum was sepa-
rated at 1107 g/15 min at 4 °C and kept at −20 °C for further 
analysis. The intestines, gills, and livers were dissected from 
the fish for preparing the homogenate and stocked at −20 °C. 
The homogenates of collected tissues were prepared by rins-
ing the tissues in ice-cold phosphate-buffered saline (PBS) 
(50 mM potassium phosphate, pH 7.5 1 mM EDTA). Tissues 
were homogenized in 10-fold PBS buffer (1-g tissue, 1:10 
w:v) with glass homogenizer tubes (pellet pestle motor) and 
centrifuged at 7871 g for 5 min. The supernatant was col-
lected and stored at 4 °C for further analysis.

Analysis of both blood and tissue samples

Serum aspartate aminotransferase (AST), alanine ami-
notransferase (ALT), creatinine, and urea were detected by 
SPIN 800 Autoanalyzer using readymade chemicals (kits) 
supplied by Spinreact Co. Spain, following the manufac-
turer’s instructions. Serum total proteins and albumins were 
determined, according to Doumas et al. (1981) and Dumas 

Survival (%) = 100 × final number∕initial number of f ish

and Biggs (1972). Globulin was calculated by the differ-
ence between serum total protein and albumins. Glucose and 
cortisol levels were determined using glucose and cortisol 
enzymatic PAP kits obtained from Bio-Merieux (France) 
(Trinder, 1969).

Superoxide dismutase (SOD), catalase (CAT), and glu-
tathione (GSH) in intestine, gill, and liver homogenate samples 
were measured using commercial kits following the manufac-
turer’s (Biodiagnostics Co., Egypt) instructions. The malon-
dialdehyde (MDA) concentration was detected by following 
Uchiyama and Mihara (1978) and expressed as nmol MDA/g.

Intestines, gills, and livers were removed and flushed with 
phosphate buffer saline (PBS; pH 7.4) and fixed in neutral-
buffered formaldehyde for 48 h. The fixed specimens were 
processed by the conventional paraffin embedding technique, 
including the dehydration through ascending grades of ethanol, 
clearing in three changes of xylene, and melted paraffin ended 

by embedding in paraffin wax at 65 °C. Four-micrometer-thick 
sections were stained by hematoxylin and eosin (H and E), 
as Bancroft and Layton (2013) described. The tissue histo-
pathology examination was carried out using a digital cam-
era (Leica EC3, Leica, Germany) connected to a microscope 
(Leica DM500) and with software (Leica LAS EZ).

Integrated biomarker response and statistical 
treatment of data

The integrated biomarker response (IBR) was assessed 
using the measured biomarkers of African catfish exposed 
to high salinity and temperature. The IBR was applied only 
for the biomarkers showing meaningful differences among 
the groups by following Beliaeff and Burgeot (2002) and 
Iturburu et al. (2018). Several IBR indices were calculated 
from the same data changing the order of the biomarkers and 
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using the median of all the index values as the final index 
value (Devin et al., 2014).

Levene’s test examined variance homogeneity of data to 
confirm the normality and homogeneity. All data were ana-
lyzed using one-way analysis of variance (ANOVA) by the 
SPSS 22.0 software by Duncan’s test. Differences were con-
sidered significant at p < 0.05. When significant differences 
were detected, two-way ANOVA was used to determine the 
effects of water salinity, heat stress, and their interaction on 
the water quality, blood biochemistry, and IBR of African 
catfish.

Results

Growth behavior

The final weight, weight gain, SGR, and survival rate were 
markedly higher in African catfish reared in 0, 4, and 8 ppt 
than fish in 12 ppt (p < 0.05; Table 1). Nevertheless, fish 
reared in 12 ppt had higher FCR than fish in 0, 4, and 8 ppt 
(p < 0.05; Table 1).

Table 1   Growth performance 
of African catfish exposed with 
varying levels of salinity

Means ± S.E. in the same column with different letters differ significantly (p < 0.05). IBW initial body 
weight, FBW final body weight, WG weight gain, SGR specific growth rate, FCR feed conversion ratio

0 ppt 4 ppt 8 ppt 12 ppt

IBW (g) 181.40 ± 1.22 179.73 ± 1.34 180.55 ± 1.26 180.65 ± 1.42
FBW (g) 235.00 ± 0.30 a 233.70 ± 1.80 a 233.28 ± 3.23 a 207.86 ± 5.13 b
WG (%) 29.55 ± 0.17 a 30.03 ± 1.00 a 29.20 ± 1.79 a 15.06 ± 2.84 b
SGR (%/day) 0.86 ± 0.02 a 0.88 ± 0.04 a 0.85 ± 0.05 a 0.47 ± 0.1 b
FCR 1.25 ± 0.03 c 1.31 ± 0.10 c 1.46 ± 0.03 b 3.46 ± 0.67 a
Survival (%) 100.00 ± 0.00 a 99.17 ± 0.83 a 97.50 ± 1.44 a 87.50 ± 2.89 b

Fig. 1   Histopathological exami-
nation of fish intestine. A The 
0-ppt group revealing normal 
villi with normal enterocytes 
(thin arrow) and goblet cells 
(arrowhead). B Salinity (4 ppt) 
group revealing degenerative 
enterocytes (thin arrow). C 
Salinity (8 ppt) group showing 
necrosis in the enterocytes (thin 
arrow) and vacuolations (arrow-
head). D Salinity (12 ppt) group 
exposing severe necrosis in 
the enterocytes with extensive 
vacuolations (arrowhead) and 
lymphocytic infiltrations (thin 
arrow). Scale bar = 50 μm
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Histopathological assessment in intestines, gills, 
and livers

Fish reared in the 0-ppt group revealed normal intestinal 
architecture with normal villi (Fig. 1A). On the other hand, 
fish in the 4-ppt group showed slight degenerative changes in 
the enterocytes (Fig. 1B). Moreover, fish in the 8-ppt group 
exposed severe necrosis and vacuolations in the enterocytes 
(Fig. 1C). Furthermore, fish in the 12-ppt group revealed 
excessive necrosis and vacuolations in the enterocytes and 
massive lymphocytic infiltration (Fig. 1D).

Fish reared in the 0-ppt group showed the normal gill 
architecture with normal primary and secondary lamellae 
(Fig. 2A). On the other hand, fish in the 4-ppt group revealed 
telangiectasis of the secondary lamella and hypertrophy of 
chloride cells (Fig. 2B). Besides, fish in the 8-ppt group 
showed excessive telangiectasis, necrosis of the secondary 
lamellae, and hypertrophy of chloride cells (Fig. 2C). Fur-
thermore, fish in the 12-ppt group were exposed to severe 
hypertrophy of chloride cells with severe necrosis of the 
secondary lamellae (Fig. 2D).

Fish reared in the 0-ppt group showed the normal hepato-
pancreatic architecture with normal hepatic cord and acini of 
the exocrine pancreas (Fig. 3A). However, fish in the 4-ppt 
group revealed slight vascular congestion and diffuse fatty 

vacuolized hepatocytes with pyknotic nuclei (Fig. 3B). In 
addition, fish in the 8-ppt group showed a moderate number 
of necrotic nuclei of hepatocytes and moderate congestion 
of hepatic sinusoid (Fig. 3C). Moreover, fish in the 12-ppt 
group revealed severe hepatic sinusoid congestion with dif-
fuse fatty vacuolized necrotic hepatocytes (Fig. 3D).

Antioxidative capacity (SOD, CAT, and GSH) and lipid 
peroxidation marker (MDA)

The intestinal superoxide dismutase (SOD) (Fig. 4A), cat-
alase (CAT) (Fig. 4B), glutathione (GSH) (Fig. 4C), and 
malondialdehyde (MDA) (Fig. 4D) were markedly increased 
in African catfish stressed with 12-ppt salinity (p < 0.05). 
Before heat stress, the activities of SOD and CAT were 
higher in fish exposed to 8 ppt than fish in 0- and 4-ppt 
groups and lower than fish in 12 ppt (p < 0.05). Also, fish 
exposed to 12 ppt had higher GSH and MDA than fish grown 
in 0, 4, and 8 ppt. After heat stress, in all groups (0, 4, 8, 
and 12 ppt), SOD, CAT, GSH, and MDA were markedly 
increased compared with before heat stress (p < 0.05). The 
activity of SOD was higher in fish exposed to 4 and 8 ppt 
than fish in the 0-ppt group and lower than fish in 12 ppt (p 
< 0.05). Further, CAT was increased markedly and gradually 
by increasing the salinity level (p < 0.05). The activities of 

Fig. 2   Histopathological exami-
nation of fish gills. A The 0-ppt 
group showing normal primary 
lamellae (arrow) and second-
ary lamellae (arrowhead). B 
Salinity (4 ppt) group reveal-
ing telangiectasis of secondary 
lamellae (thick arrow) and 
hypertrophy of chloride cells 
(thin arrow). C Salinity (8 ppt) 
group showing sever telangiec-
tasis and necrosis of the second-
ary lamellae (thick arrow) and 
hypertrophy of chloride cells 
(thin arrow). D Salinity (12 ppt) 
group showing extensive necro-
sis of the secondary lamellae 
(thick arrow) and hypertrophy 
of chloride cells (thin arrow). 
Scale bar = 50 μm
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GSH and MDA were higher in fish exposed to 8 ppt than 
fish in 0- and 4-ppt groups and lower than fish in 12 ppt (p 
< 0.05). Before or after heat stress, fish exposed with 12-ppt 
salinity showed the highest SOD, CAT, GSH, and MDA 
before or after heat stress (p < 0.05).

The samples of gill homogenates showed higher SOD 
(Fig. 5A), CAT (Fig. 5B), and GSH (Fig. 5C) in fish 
exposed with 8- and 12-ppt salinity than fish in 0- and 
4-ppt groups before heat stress (p < 0.05). Further, the 
levels of MDA (Fig. 5D) were meaningfully higher in 
the 12-ppt group than the 0-, 4-, and 8-ppt groups (p < 
0.05). After heat stress, all fish groups showed higher 
SOD, CAT, GSH, and MDA values than before heat 
stress (p < 0.05). Further, SOD was increased mark-
edly and gradually by increasing the salinity level (p < 
0.05). The activities of CAT and GSH were higher in 
fish exposed to 8 ppt than fish in 0- and 4-ppt groups 
and lower than fish in 12 ppt (p < 0.05). Fish exposed 
with 12-ppt salinity showed the highest MDA level after 
heat stress (p < 0.05).

The activity of SOD (Fig. 6A) was increased mark-
edly and gradually by increasing the salinity level before 
and after heat stress (p < 0.05). Before heat stress, liver 
CAT (Fig. 6B), GSH (Fig. 6C), and MDA (Fig. 6D) have 

increased in fish of 8- and 12-ppt groups than fish in 0- and 
4-ppt groups and lower than fish in 12 ppt (p < 0.05). Fish 
in the 8-ppt group had lower CAT, GSH, and MDA than 
fish in the 12-ppt group (p < 0.05). After heat stress, all 
groups showed a marked increased SOD, CAT, GSH, and 
MDA than fish before heat stress in the same manner (p < 
0.05). After heat stress, fish exposed with 12-ppt salinity 
showed the highest CAT and GSH activities (p < 0.05). 
MDA levels were higher in fish exposed to 8 ppt than fish 
in 0- and 4-ppt groups and lower than fish in 12 ppt (p < 
0.05).

Blood biochemistry variables

The levels of blood glucose were markedly increased in fish 
exposed with 4, 8, and 12 ppt than 0 ppt in a gradual man-
ner either before or after heat stress (p < 0.05; Fig. 7A). 
The cortisol level was markedly increased in 8- and 12-ppt 
groups before heat stress while increasing only 12 ppt after 
heat stress (p < 0.05; Fig. 7B). The glucose and cortisol 
levels were markedly increased in all groups after heat stress 
compared with before heat stress.

The values of ALT and urea were increased in the blood 
samples of African catfish in 8 and 12 ppt before and 

Fig. 3   Histopathological exami-
nation of fish liver. A The 0-ppt 
group revealing normal hepato-
cytes (thick arrow) and normal 
pancreatic acini (arrowhead). B 
Salinity (4 ppt) group exposing 
slight vascular congestion (thin 
arrow) and fatty vacuolized 
hepatocytes with pyknotic 
nuclei (arrowhead). C Salinity 
(8 ppt) group revealing moder-
ate congestion of hepatic sinu-
soid (thin arrow) and moderate 
number of necrotic hepatocytes 
(arrowhead). D Salinity (12 
ppt) group showing extensive 
congestion of hepatic sinusoid 
(thin arrow) and high number of 
pyknotic hepatic nuclei (arrow-
head). Scale bar = 50 μm
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after heat stress (p < 0.05; Table 2). At the same time, 
AST activity and creatinine levels were increased in the 
12-ppt group before heat stress. After heat stress, AST 
was increased in 8- and 12-ppt groups while creatinine 
increased in the 12-ppt group (p < 0.05; Table 2). Blood 
total protein was increased in 8- and 12-ppt groups before 
heat stress, but no differences were seen among the groups 
after heat stress (p < 0.05; Table 2). The albumin level was 
increased in the 12-ppt group before and after heat stress 
(p < 0.05; Table 2). The globulin levels were higher in 
8- and 12-ppt groups than 0- and 4-ppt groups before and 
after heat stress (p < 0.05; Table 2). After heat stress, all 
groups showed marked differences for all blood biochem-
ical traits compared with before heat stress. Significant 
salinity and heat stress interactions were seen on the ALT, 
AST, urea, creatinine, total protein, albumin, and globulin 
values (p < 0.05).

Integrated biomarker response

The integrated multi-biomarker response (IBR) results are 
shown in Table 3 and Fig. 8. The results showed marked dif-
ferences among the groups gradually before and after heat 
stress. Before and after heat stress, the highest IBR was seen 
in African catfish exposed with 12 ppt, while the lowest IBR 
was in the 0-ppt group (p < 0.05).

Discussion

Aquaculture activity is not far from the fluctuations in the 
environmental changes associated with influences on the 
water quality and its relationship with fish health (Reid 
et al., 2019a). Usually, fish suffer from several stressors in 
the farms, such as fluctuations in the water salinity, ammo-
nia accumulations, and dissolved oxygen (Deane and Woo, 
2009; Shukry et al., 2021). Accordingly, it is mandatory to 

Fig. 4   Intestinal (A) superoxide dismutase, (B) catalase, (C) glu-
tathione activities, and (D) malondialdehyde level of African catfish 
exposed with varying levels of salinity and heat stress. Bars with dif-

ferent small or capital letters differ significantly either before or after 
the heat stress (p < 0.05). The asterisk (*) refers to significant differ-
ences between the same groups before and after heat stress (p < 0.05)
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investigate the impacts of unstable environmental conditions 
on finfish species’ performance to sustain fish production 
(Ahmed et al., 2019; Reid et al., 2019b). Growing freshwater 
fish species is not available in some areas due to less avail-
ability of water resources. Alternatively, brackish water can 
grow fish, but this depends on fish species and the stability 
of other environmental conditions (e.g., temperature, ammo-
nia, and stocking density) (Mitra, 2013). African catfish is 
a popular commercial fish species with a high capacity to 
adapt to diverse environmental conditions (Dauda et al., 
2018). However, high salinity and heat stress are proposed 
to impair fish performances and health status, leading to low 
productivity and well-being (Eissa and Wang, 2016). In this 
study, African catfish were grown in varying water salini-
ties (0, 4, 8, and 12 ppt) for 4 weeks then exposed to heat 
stress (32 °C). The results showed the marked impact of high 
salinity on the growth performance and interactive influ-
ences of water salinity and heat stress on the health condition 
of African catfish. Up to 8-ppt fish showed no significant 

differences with fish grow in 0 and 8 ppt in the final body 
weight, specific growth rate, FCR, and survival rate. How-
ever, fish reared in 12 ppt had impaired growth performance, 
FCR, and survival rate. The results agree with various stud-
ies that indicated that catfish requires optimal water salinity 
for normal growth. Trong et al. (2017) reported that catfish 
(Pangasianodon hypophthalmus) reared in high salinity (12 
ppt) had impaired growth performance. The authors attrib-
uted the reduced growth performance to the osmoregula-
tory budget requirements, which need high energy to adapt 
to stressful conditions (Dawood et al., 2021b; Mohamed 
et al., 2021). Fish require high energy under hypoosmotic 
or hyperosmotic environments that can affect the metabolic 
and growth promotion activity, leading to less growth per-
formance and a high mortality rate (Abass et al., 2016). The 
reduced growth performance is also attributed to high salin-
ity in disturbing the osmoregulation in the intestines of fish, 
leading to less feed utilization (Islam et al., 2020). Concur-
rently, the results showed high FCR in the groups of fish 

Fig. 5   Gill (A) superoxide dismutase, (B) catalase, (C) glutathione 
activities, and (D) malondialdehyde level of African catfish exposed 
with varying levels of salinity and heat stress. Bars with different 

small or capital letters differ significantly either before or after the 
heat stress (p < 0.05). The asterisk (*) refers to significant differences 
between the same groups before and after heat stress (p < 0.05)
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reared in high salinity compared to the remaining groups. 
The reduced survival rate in this study is a feature of low 
feed utilization and impaired health status.

Blood biochemical indices, antioxidant markers, and his-
tological features are reliable and indicative indices corre-
lated with the impact of stressors on fish physiological and 
productive status (Šimková et al., 2015). The impact of water 
salinities with or without heat stress on the health status 
of African catfish was evaluated by detecting biochemical 
blood indices, oxidative-related markers, and histological 
features in the intestines, gills, and livers. The primary role 
of gills and intestines is the osmoregulation and hyposalin-
ity, or hypersalinity led to disturbed osmoregulation capac-
ity, thereby disturbances in fish’s metabolic and physiologi-
cal function (Ern and Esbaugh, 2018; Rivera-Ingraham 
and Lignot, 2017; Webb and Wood, 2000). In this study, 
intestine, gill, and liver tissues showed impaired histologi-
cal features attributed to the impact of high salinity (12 ppt) 
on the health status of African catfish. The abnormalities 
in the intestine, gill, and liver tissues of African catfish can 

be explained by salinity-induced oxidative stress (Dawood 
et al., 2021b). Stressful conditions cause the generation of 
free radicals, peroxides, and reactive oxygen metabolites 
(ROS) involved in lipid peroxidation, DNA damage, and cell 
mortality (Blewett et al., 2016; Chang et al., 2021b). The 
stressful conditions induce high secretion of cortisol which 
helps release glucose as a source of energy (Bonga, 1997). 
High lipid peroxidation is expressed by high malondialde-
hyde secretion (MDA). In this case, cells develop enzymatic 
and non-enzymatic activities to degenerate the excessive free 
radicals and ROS (Kim et al., 2017). Superoxide dismutase 
(SOD), catalase (CAT), and glutathione (GSH) are among 
the main biomarkers responsible for relieving the impact 
of oxidative stress on the organism’s entire body (Wang 
et al., 2016). The current study showed that the antioxidants 
(SOD, CAT, and GSH) increased with an increase in MDA 
levels. Although the synthesis of antioxidative molecules 
is increased, it is insufficient to prevent tissue peroxidation 
(MDA) and simultaneous change in tissue architecture, as 
reflected from the histological study of three tissues. The 

Fig. 6   Liver (A) superoxide dismutase, (B) catalase, (C) glutathione 
activities, and (D) malondialdehyde level of African catfish exposed 
with varying levels of salinity and heat stress. Bars with different 

small or capital letters differ significantly either before or after the 
heat stress (p < 0.05). The asterisk (*) refers to significant differences 
between the same groups before and after heat stress (p < 0.05)
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increased MDA level in this study explains the abnormali-
ties in the intestine, gill, and liver organs (Mohamed et al., 
2021). Additionally, in this study, cortisol and glucose levels 
were markedly increased in African catfish reared in high 
salinity with or without heat stress. The results are concur-
rent with Trong et al. (2017), who stated that catfish (P. 

hypophthalmus) grown in hypersalinity and the high tem-
perature had high glucose and cortisol levels.

When disturbances occur in the liver tissue, the release of 
its metabolites and enzymes is also disrupted (Chang et al., 
2021a). In this study, blood ALT and AST activities were 
higher in fish in hypersalinity with or without heat stress. 
High ALT and AST levels indicated the liver dysfunction 
that the effect of oxidative stress might induce (Ghelichpour 

Fig. 7   Blood glucose (A) and cortisol (B) levels of African catfish 
exposed with varying levels of salinity and heat stress. Bars with dif-
ferent small or capital letters differ significantly either before or after 
the heat stress (p < 0.05). The asterisk (*) refers to significant differ-
ences between the same groups before and after heat stress (p < 0.05)

Table 2   Blood biochemical variables of African catfish exposed with varying levels of salinity and heat stress

Means ± S.E. in the same column with different small or capital letters differ significantly either before or after the heat stress (p < 0.05). The 
asterisk (*) refers to significant differences between the same groups before and after heat stress (p < 0.05). AST aspartate aminotransferase ALT 
alanine aminotransferase

ALT (U/I) AST (U/I) Total protein (g/
dL)

Albumin (g/dL) Globulin (g/dL) Urea (mg/dL) Creatinine (mg/dL)

Before heat stress
  0 ppt 21.98 ± 0.71 c 24.13 ± 0.58 b 4.09 ± 0.02 a 2.18 ± 0.04 a 1.91 ± 0.06 a 2.19 ± 0.04 c 0.32 ± 0.01 b
  4 ppt 21.46 ± 0.56 c 23.96 ± 0.30 b 4.07 ± 0.03 a 2.24 ± 0.04 a 1.83 ± 0.06 a 2.21 ± 0.05 c 0.32 ± 0.01 b
  8 ppt 24.36 ± 0.65 b 24.94 ± 0.93 b 3.79 ± 0.07 b 2.11 ± 0.02 a 1.68 ± 0.09 b 2.41 ± 0.02 b 0.37 ± 0.01 b
  12 ppt 27.25 ± 0.50 a 27.67 ± 0.49 a 3.56 ± 0.07 b 1.92 ± 0.07 b 1.64 ± 0.14 c 2.60 ± 0.08 a 0.41 ± 0.01 a
After heat stress
  0 ppt 25.33 ± 0.61 C* 25.96 ± 0.47 C* 3.70 ± 0.04* 2.05 ± 0.04 A* 1.65 ± 0.06 A* 2.30 ± 0.04 C* 0.40 ± 0.01 B*
  4 ppt 24.77 ± 0.20 C* 25.75 ± 0.19 C* 3.72 ± 0.03* 2.05 ± 0.01 A* 1.68 ± 0.02 A* 2.41 ± 0.03 C* 0.41 ± 0.01 B*
  8 ppt 26.77 ± 0.43 B* 27.14 ± 0.94 B* 3.52 ± 0.05* 1.93 ± 0.04 AB* 1.59 ± 0.08 B* 2.51 ± 0.03 B* 0.43 ± 0.01 B*
  12 ppt 29.23 ± 0.52 A* 29.39 ± 0.46 A* 3.33 ± 0.01* 1.81 ± 0.02 B* 1.52 ± 0.02 B* 2.74 ± 0.09 A* 0.48 ± 0.01 A*
Two-way ANOVA (p-value)
  Salinity 0.001 0.001 0.001 0.001 0.001 0.001 0.001
  Heat stress 0.001 0.001 0.001 0.001 0.001 0.001 0.001
  Interaction 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 3   Integrated biomarker response (IBR) of African catfish 
exposed with varying levels of salinity and heat stress

Means ± S.E. in the same column with different small or capital let-
ters differ significantly either before or after the heat stress (p < 0.05). 
The asterisk (*) refers to significant differences between the same 
groups before and after heat stress (p < 0.05)

Median Mean SD Min Max

Before heat stress
  0 ppt 0.66 d 0.66 0.11 0.40 0.92
  4 ppt 1.47 c 1.47 0.23 1.22 1.71
  8 ppt 1.85 b 1.85 0.19 1.58 2.11
  12 ppt 3.03 a 3.03 0.21 2.16 3.89
After heat stress
  0 ppt 1.34 D* 1.34 0.11 1.02 1.65
  4 ppt 2.37 C* 2.37 0.23 2.05 2.68
  8 ppt 3.74 B* 3.74 0.19 3.21 4.26
  12 ppt 5.06 A* 5.06 0.21 3.89 6.22
Two-way ANOVA (p-value)
  Salinity 0.001 - - - -
  Heat stress 0.001 - - - -
  Interaction 0.001 - - - -
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et al., 2020). Similarly, the renal tissue-related indices (urea 
and creatinine) were higher in fish stressed with hypersa-
linity with or without heat stress (Abdel-Latif et al., 2021; 
Waheed et al., 2020). The high creatinine levels are related 
to the breaking of creatinine in the fish’s muscles then go 
through the kidney out the fish body (Patel et al., 2013). At 
the same time, urea indicates the excessive rate of broken 
tissues and the high metabolic rate in stressed fish bodies 
(Hazon et al., 2003; Wilkie, 2002).

The integrated biomarker response (IBR) is suitable for 
assessing the impact of various stressors on fish’s physi-
ological and health status (Perussolo et al., 2019). IBR can 
present the response of fish to stress in only one value that 
can help understand the overall impact of stress on fish per-
formances. The high value of IBR refers to the high impact 
of stress on the physiological condition of fish. In parallel, 
the IBR in African catfish stressed with high salinity with or 
without heat stress increases with increasing water salinity. 
The results agree with Dawood et al. (2021b), who indicated 
that the IBR value increased in Nile tilapia stressed with 
high salinity and exposed with hypoxia stress.

Conclusion

In summary, growing African catfish in high salinity (12 
ppt) hampered the growth performance and health status. 
The histological evaluation of the intestines, gills, and liv-
ers of African catfish showed normal features in fish grow 
in 0, 4, and 8 ppt but severe alterations in fish raised in 12 
ppt. After salinity and heat stress, African catfish reared 
in high salinity (12 ppt) responded with higher production 
of both antioxidative molecules but not to the level that 
could check the lipid peroxidation and simultaneous tis-
sue histopathological stress-related markers. Further, liver 
and kidney-related markers were high in fish stressed with 
high salinity and heat stress. The obtained results indicate 

the necessity of optimizing water salinity and temperature 
for the optimum growth performance and well-being of 
African catfish.
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