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Abstract
The development and operation of road infrastructure require machines and equipment driven by low-powered internal com-
bustion engines. In this study, we conducted emission tests on five small spark-ignition engines. We used the most popular 
commercial design on the market, the Lifan GX 390, with a carburettor power system, and another commercial power unit, 
the Honda iGX 390, with an innovative power system characterised by an electronically controlled carburettor flap. The 
remaining three tested constructions were proprietary solutions modernising the design of the Lifan GX 390 engine: one 
had an electronic injection and ignition system powered by gasoline, whereas the other two had systems powered by alterna-
tive fuels. Emission tests were conducted under identical operating conditions on an engine dynamometer complying with 
European Union guidelines (Regulation 2016/1628/EU). The results of the tests showed that the innovative solutions in most 
cases reduced CO,  CO2 and hydrocarbon emissions but increased  NOx compounds.
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Introduction

The dynamic development of road infrastructure and vehicu-
lar transport has undeniable benefits related to economic 
development (Liu and Chao 2020; Said and Hammami 
2017) and the increased mobility of people (Meekan et al. 
2017) and movement of goods (Gnap et al. 2019). However, 
such development may also have negative impacts (Yu et al. 
2013), e.g. increased air pollution (Ehrenberger et al. 2021; 
Cepeda et al. 2017; Colvile et al. 2001) and reduction of 
natural green areas (Ren et al. 2019) and residential areas 
(Lin et al. 2015) at the expense of transport infrastructure 
sprawl.

There is a perceived link between human health, green 
spaces and pollution from transport (Nieuwenhuijsen 2018). 
Research conducted on the impact of air pollution on peo-
ple’s activity satisfaction has shown the need to improve 
air quality in urban areas (Ma et al. 2020). The problem is 
well known, and one of the countermeasures is the introduc-
tion of increasingly stringent standards for toxic emissions 
from vehicles and machinery on a global level. Legisla-
tors distinguish different groups of machines and vehicles 
when setting acceptable limits of pollutant emissions from 
their propulsion engines, e.g. car and light truck (Regula-
tion (EC) 715/2007; Lijewski et al. 2020; Ziółkowski et al. 
2019), heavy-duty truck and bus (Regulation 595/2009; 
Rymaniak 2018; Merkisz et al. 2012a), heavy-duty vehicles 
(Regulation (EU) 2019/1242; Yasar et al. 2013) and non-
road machinery and vehicles (Directive 97/68/EC; Ryma-
niak et al. 2020; Kamińska et al. 2019). The last group of 
machines may be used during the construction and operation 
of road infrastructure, and thus, the emissions they generate 
can be linked to transport. Of the above-mentioned groups 
affected by the permissible limits of pollutant emissions in 
the European Union, non-road machinery and vehicles have 
been characterised by different directives since 2002 depend-
ing on the type of internal combustion engine used, i.e. com-
pression-ignition (CI) engines or spark-ignition (SI) engines. 
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The present study considered SI engines with a power output 
not exceeding 19 kW, which are known as small engines in 
the legislation (Regulation 2016/1628/EU). These regula-
tions are characterised by relatively liberal emission limit 
requirements relative to, e.g. motor vehicles (Waluś et al. 
2018). This translates into low technical sophistication of 
the fuel supply systems of these engines (Warguła et al. 
2018a), as demonstrated by commercially available engine 
designs equipped with carburettor power systems (Warguła 
et al. 2018b), the use of which was abandoned in automotive 
vehicles as early as the 1990s partly owing to increasingly 
stringent limits on emissions.

The main problems in the construction of fuel supply 
systems for SI small engines are the necessity for a low 
weight and low cost of construction and the limited space 
available for the engine. One of the many problems of using 
modern injection systems in small engines is the lack of 
space for an energy generator (e.g. alternator) necessary 
to power the controller, sensors and actuators. Researchers 
around the world are studying development of these drive 
units towards the use of innovative injection systems, mainly 
indirect injection into the intake manifold with electronic 
control (Niinikoski et al. 2016) or direct injection (Darzi 
et al. 2018; Andwari et al. 2018; Tartakovsky et al. 2015). 
Another direction of development is to change the fuel or 
use alternative fuel admixtures (alternative fuel within the 
meaning of the European Union Directive 2014/94/EU), e.g. 
ethanol (Ribeiro et al. 2018; Schirmer et al. 2017; Lin et al. 
2010), methanol (Ravi et al. 2021; Tartakovsky et al. 2015; 
Celik et al. 2011; Arapatsakos et al. 2003), LPG (bin Mohd 
Zain et al. 2019; Sabariah et al. 2018; Sulaiman et al. 2013; 
Li et al. 2003), CNG (Subramanian 2011; Mikulski et al. 
2015) and biogas (Iyer 2020; Homdoung et al. 2015; Surata 
et al. 2014), as alternatives to energy sources derived from 
crude oil (EU Directive 2014/94/EU), e.g. gasoline. Other 
studies have considered design changes of, e.g. the valvetrain 
(Fontana and Galloni 2009), piston (Iyer 2020) and intake 
manifold (Wahono et al. 2019). The main aim of develop-
mental, simulation, experimental and real-world research is 
to reduce air pollutant emissions and fuel consumption.

Fuel supply systems commonly and commercially fitted 
in non-road small engines use carburettor systems, in which 
fuel in the liquid phase is sucked into the intake manifold 
according to Bernoulli's law. At the point of narrowing of the 
channel through which the air flows across the carburettor 
(Venturi tube), a pressure difference is created (hydrody-
namic paradox). This causes the fuel supplied through the 
nozzle to be sucked into the intake manifold (Barbosa 2012). 
Over the years, systems have been developed to improve the 
precision of fuel dosing, e.g. depending on the engine load. 
For this purpose, various types of regulation mechanisms are 
used, e.g. centrifugal or vacuum, which most often change 
the position of the throttle valve, increasing or reducing the 

amount of fuel–air mixture supplied to the cylinder (Warguła 
et al. 2017). Most of the adjustments in carburettor systems 
are mechanical and require control, as their settings may 
change as a result of wear or large changes in the surround-
ing environment, e.g. temperature, atmospheric pressure or 
air density (Czarska-Klisz et al. 2010; Afonina 2005). These 
designs are also replaced in many applications because they 
do not have the ability to automatically adjust the mixture 
composition based on the results of the exhaust gas compo-
sition. In addition, during engine braking processes, injec-
tion systems can cut off the fuel supplied to the cylinder, 
whereas most carburettor designs continue to supply fuel to 
the engine, increasing fuel consumption and emissions of 
unburned fuel particles in the exhaust gas. For this reason, 
in machines and devices where it is possible to use injection 
fuel systems, carburettor systems are replaced. An injec-
tion system for control purposes requires electric power for 
the electronics, sensors and actuators. Therefore, the engine 
structures must also be expanded with energy generation 
systems (Warguła et al. 2016). The simplest system to meet 
the electricity demands of a fuel injection system com-
prises an alternator and a battery. On the other hand, the 
simplest fuel injection system requires a signal form sensors 
carrying information about the engine load, which could 
be in form of vacuum in the intake manifold or informa-
tion about the throttle angle, rotational speed and camshaft 
position. In addition, such a system requires electricity to 
power the injectors and fuel pump. Moreover, it is advanta-
geous to measure the temperature of the engine and intake 
air supplied to the intake manifold. Regarding the control 
precision, feedback information on the amount of oxygen 
in the exhaust gas is also important. Recent innovations in 
small combustion engines (with a power of about 10 kW) 
have led to the development of carburettor systems with an 
electronic controllable throttle flap. An example of such an 
engine is the Honda iGX 390. On the other hand, in motor 
vehicles, the standard is the implementation of multiphase 
direct injection into the combustion chamber, which requires 
a high pressure fuel system, most often with a mechani-
cal pump (Nocivelli et al. 2020; Li et al. 2019). This type 
of injection is also characteristic of the newest alternative 
fuel injection systems, such as LPG and CNG (Kim et al. 
2017; Choi et al. 2016). However, non-commercial innova-
tions in small energy non-road engines adapted to LPG and 
CNG fuels have mainly been based on older solutions used 
in motor vehicles. Such systems are characterized by the 
supply of fuel to the combustion chamber in the gaseous 
phase. In basic designs, this is accomplished by gas expan-
sion regulated by a gas pressure reducer. In motor vehicles, 
where liquid cooling of engines is common, the fuel is addi-
tionally heated, improving transition to the gaseous phase of 
the liquid fuel stored in the tank. However, non-road small 
engines are most often air-cooled. Hence, non-commercial 
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fuel supply systems are based on gas expansion using gas 
reducers. LPG fuel is stored in tanks at a pressure of about 
1 MPa, whereas CNG is stored at a higher pressure (20 MPa) 
due to the lower calorific value of the gas (Demirbas 2002). 
Expanding the gas from such a high pressure usually causes 
the pressure reducer to freeze up. Therefore, it is advanta-
geous to supply these types of engines from a stationary 
installation characterized by a lower natural gas pressure 
of about 0.01 MPa, avoiding the problem of freezing of the 
reducer. Alternatively, CNG systems may be equipped with 
an electric heater, but this requires an additional electricity 
supply system.

The problem of air pollution generated from these types 
of engines is important as such drives are applied in machin-
ery used in the construction or maintenance of road infra-
structure, and very often, the operator is in direct contact 
with the exhaust gases. Examples of such machinery are 
shown in Fig. 1 and include equipment used in construc-
tion and renovation, such as circular saws, concrete trowels, 
rammers, soil drills and equipment used for cleaning and 
clearing snow from pavements. Other groups include road 
marking machinery for painting road lanes and machinery 
related to the maintenance of green infrastructure in the lane 
area, e.g. combustion scythes, chain saws and wood chip-
pers. Demand for the last group is expected to increase as 
the benefits of roadside trees are increasingly recognised. 
Roadside trees reduce the spread of road noise and absorb 
fine particles (Ozdemir 2019), harmful exhaust compounds 
from the air (Lahoti et al. 2020; Amorim et al. 2013) and 
de-icing salts from the soil (Ju et al. 2020; Gałuszka et al. 
2011). Studies of metal concentrations in tree rings in indus-
trial and roadside areas have demonstrated their pollutant 

absorption capacity (Kim et al. 2020). According to public 
opinion, residents of large cities appreciate the ecosystem 
properties of trees and other vegetation elements of road-
side infrastructure. Even wild urban roadside vegetation is 
highly appreciated, although planted and maintained vegeta-
tion is preferred. Since many cities lack public green areas, 
enhancing cultivated and wild roadside vegetation can help 
provide ecosystem services in areas where people travel and 
live nearby (Weber et al. 2014). Another benefit of roadside 
trees is the protection of pedestrians, vehicles and roads 
from intense sunlight. Roadside studies in tropical areas 
have shown that trees with relatively large crowns reduce the 
mean radiant temperature (Tmrt) by 35% and the physiologi-
cal equivalent temperature (PET) by 25% (Zaki et al. 2020), 
helping to improve the microclimate of road infrastructure 
areas by increasing vehicle cooling, reducing heat build-up 
and improving pedestrian comfort. Another benefit is reduc-
ing the possibility of sun glare when travelling on roads 
(Redweik et al. 2019). In addition to thermal comfort for 
pedestrians, walking on urban roads surrounded by trees has 
the potential to significantly reduce negative psychological 
states, such as tension, fatigue, disorientation and anxiety, 
compared to roads without them. Research has indicated that 
urban roadside trees can help to relieve stress and improve 
mental health for urban residents (Elsadek et al. 2019). How-
ever, disadvantages include dangers associated with road 
collisions and damage to trees during adverse weather condi-
tions. The average percentages of accidents, injured persons 
and fatalities related to collisions with a tree among total 
road accidents in Poland between 2003 and 2015 were 6%, 
6% and 14%, respectively (Rosłon-Szeryńska et al. 2019). 
Thus, measures should be taken to reduce the risk of road 

Fig. 1  Examples of machinery 
with small engines used in the 
construction and maintenance of 
road infrastructure: a concrete 
and asphalt cutter, b circular 
saw, c chain saw, d combustion 
scythe, f pavement and car park 
rotary broom, g concrete trowel, 
e soil drill, h soil compactor, 
i snowblower, j road marking 
machine and k wood chipper
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accidents in wooded areas, as such events are characterised 
by a relatively high probability of a fatal event. The demand 
for wood chipping machines in transport-related industries 
is likely to increase due to not only increased handling of 
trees in roadside areas but also their cutting in widening road 
infrastructure (Lahoti et al. 2020).

The main aim of the present study was to evaluate exhaust 
emissions from small engines (power ~ 10 kW) commer-
cially available in the European Union market, taking into 
account the level of technical advancement of the fuel supply 
system (classic carburettor, electronic carburettor). The val-
ues of the tested emissions were compared to limits in force 
in the EU from 2019. Such results can be used as a reference 
for developing other innovative solutions for this group of 
engines related to the fuel supply system in order to reduce 
fuel consumption and exhaust emissions. Such changes 
are likely to be the next stage implemented in commercial 
power units, as direct injection solutions require extensive 
alterations to the engine design, extending the time and 
cost of commercialization of such solutions. Recent studies 
of non-commercial fuel supply systems have mainly con-
cerned carburettor fuel supply systems adapted to fuels such 
as LPG and CNG, which, owing to their simple and cheap 
design, have a high potential for commercialization in the 
coming years. The present study investigated how different 
changes, e.g. innovations in control or variation of the type 
of fuel, can enable a reduction of pollutant emissions. It was 
important to compare the results of tests of modifications on 
the same drive unit under identical, standardized operating 
conditions. In addition, this paper provides information on 
emissions related to the construction or operation of trans-
port infrastructure.

Among the methods used to limit air pollution from non-
road machinery, regulations setting out limits on permissi-
ble exhaust gas emissions restrict the use of technologically 
older designs and motivate the search for innovative solu-
tions. Several studies have been conducted on small engines 
used in a wide range of industries, often under real work-
ing conditions, e.g. combustion chain saws (Lijewski et al. 
2017), energy generators (Lijewski et al. 2017), scooters 
(Lijewski et al. 2021), wood chippers (Warguła et al. 2020a; 
2020b; 2020c) and combustion scythes (Zardini et al. 2019). 
However, there is a lack of research on this group of drives 
under identical operating conditions, which is needed to 
compare them and assess the impact of applying different 
innovative design solutions. This paper presents test results 
of small engine emissions under laboratory conditions on an 
engine chassis dynamometer, the emissions of which were 
determined to comply with European Union guidelines 
(Regulation 2016/1628/EU). Tests were carried out on a 
popular, commercially available propulsion unit with a Lifan 
GX 390 carburettor supply system and the most innovative 
commercial propulsion unit on the market, Honda iGX 390, 

with an electronically controlled carburettor. Three versions 
of the Lifan GX 390 engine modernised by the authors were 
tested. The modernisations involved changing the fuel sup-
ply system from a carburettor to an electronic ignition and 
injection system or changing the fuel used to alternative gas-
eous fuels LPG and CNG using a design based on a carburet-
tor adapted to gaseous fuels.

Materials and methods

Five different designs of propulsion units commonly used to 
drive non-road machinery were examined: two commercial 
and three innovative designs developed by our group. The 
first propulsion unit tested was a Lifan GX390 SI engine 
(license: American Honda Motor Company, Inc., Torrance, 
CA, USA), a design with the most popular and cheapest 
fuel supply system. It was based on a classic carburettor 
system. The characteristics of the power unit are presented 
in Table 1. The second power unit tested was a Honda iGX 
390 SI internal combustion engine (Honda Motor Co., Ltd., 
Kumamoto Factory, Kumamoto, Japan) equipped with the 
most innovative fuel supply system available for this group 
of engines. The fuel supply system of this engine was char-
acterised by an electronically controlled carburettor flap. The 
characteristics of this propulsion unit are also presented in 
Table 1. The remaining three propulsion units were moderni-
sations of the Lifan GX 390 engine with innovative fuel sup-
ply systems developed by our group at the Poznań Univer-
sity of Technology, Poznań, Poland. The third engine tested 
was a Lifan GX 390 with a fuel supply system adapted to 
LPG based on a carburettor adapted to gaseous fuel (engine 
characteristics are presented in Table 2) (Warguła et al. 
2020b; 2020d). The fourth engine tested was a Lifan GX 
390 with a fuel supply system adapted for CNG based on 
a carburettor adapted for gaseous fuels (Table 2) (Warguła 
et al. 2020a). The fifth and final engine was a Lifan GX 390 
engine (also called German GX 390 engine depending on 
the engine distributor in the European market) equipped with 
an innovative fuel supply system based on an electronically 
controlled integrated injection and ignition system operating 
in feedback through the use of a wideband oxygen sensor in 
the exhaust gases (Table 2) (Warguła et al. 2020c; 2020e; 
Warguła 2019). Photos of the commercial engines and fuel 
supply system diagrams of all the tested systems are shown 
in Fig. 2.

The test methodology for assessment of exhaust gas emis-
sions was in accordance with European Union guidelines 
(Regulation 2016/1628/EU) for testing non-road mobile 
machinery equipped with low-power internal combustion 
engines. The stage V engines tested belong to the NRS-v/
vr-1b subcategory (Table 3) and are affected by the G2 test 
cycle (Table 4), whose weighting factors of the ISO 8178 
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type B test cycle are shown in Table 5 and emission limits 
in Table 6.

Tests were carried out on an engine chassis dynamom-
eter adapted for use with low-power internal combustion 
engines (Fig. 3). During the tests, the rotational speed and 
torque were recorded, on the basis of which the power out-
put was determined. Simultaneously, emissions of different 
exhaust gases, i.e. hydrocarbons (HCs), carbon monoxide 
(CO), carbon dioxide  (CO2) and nitrogen oxides  NOx, were 
measured. For each engine, the test was performed with ten 
repetitions, and the test results were subjected to statistical 
analysis. An Axion RS + portable emission measurement 
system (PEMS) from Global MRV was used for the exhaust 
emission tests (Table 7 shows its technical specifications). 
The emission tests analysed levels of hydrocarbons (HCs), 
carbon monoxide (CO), carbon dioxide  (CO2) and nitrogen 
oxides  (NOx). Measured concentrations were expressed in 
vol.% or ppmv. As a result, more measurable emissions were 
determined. Emissions were calculated from the measured 
concentrations of the tested compounds and the mass of air 
delivered to the combustion chamber by measuring the pres-
sure in the intake manifold.

Table 8 presents the characteristics of the fuels used to 
power the engines during the tests. The composition of gas-
eous fuels (especially natural gas) varies in different geo-
graphical areas. We used gas available on the Central Euro-
pean market for the tests (Kuczyński et al. 2019).

The main test results provided average values from 10 tri-
als (N = 10), for which confidence intervals were determined 
at a confidence level of 95% (p = 0.05). Significant statistical 
differences were analysed using Student’s t-test.

Results and discussion

The recorded test results spanned a larger range of operat-
ing conditions than required by the European type approval 
regulations. Results (torque, speed, power, CO,  CO2, HC, 
 NOx emissions and fuel consumption) obtained during the 
research test are shown in Fig. 4 (grey indicated the range of 
operating conditions used for analysis according to ISO 8178 
type B). The analysis was conducted under stable speed and 
torque conditions.

Average values of pollutant emissions at the operat-
ing points determined according to ISO 8178 type B with 
consideration of weighting factors (Table 5) are presented 
in Table 9. The average values of non-road steady cycle 
(NRSC) test emissions TNRSC were determined according 
to Eq. (1):

where W denotes the contribution of the selected operating 
conditions to the total test analysis, E denotes the pollutant 
emissions under the selected conditions and the numerical 
subscripts denote the mode number according to Table 5.

Exhaust gas emissions from small SI engines analysed in 
the European Union during type approval tests concern CO 
and HC +  NOx. All the power units tested did not exceed the 
permissible emission limits (CO in Fig. 5a and HC +  NOx in 
Fig. 5b). We calculated the percentage comparison of emis-
sions during the engine dynamometer tests and the permis-
sible emission limits according to Eq. (2):

(1)
TNRSC = W1 ∙ E1 +W2 ∙ E2 +W3 ∙ E3 +W4 ∙ E4 +W5 ∙ E5 +W6 ∙ E6

Table 1  Characteristics of small, commercial, non-road Lifan GX390 
and Honda iGX390 engines

Low-power internal combustion engines

Parameters Characteristics

Lifan GX390 Honda iGX390

Displacement 389  cm3 389  cm3

Maximum power at 3600 rpm 9.56 kW/13 HP 8.72 kW/11.7 HP
Maximum torque at 2500 rpm 26.5 Nm 26.5 Nm
Diameter/stroke 88 mm/64 mm 88 mm/64 mm
Engine type Four-stroke, 

OHV (over-
head valve)

Four-stroke, 
OHV (overhead 
valve)

Number of cylinders 1 1
Ignition system Electronic, 

without igni-
tion timing 
adjustment

Electronic, with-
out ignition 
timing adjust-
ment

Weight 31 kg 37 kg

Table 2  Characteristics of upgraded Lifan GX390 engines with LPG, CNG and gasoline fuel injection systems

Upgraded Lifan GX390 low-powered internal combustion engines

Parameters Characteristics

LPG CNG Fuel injection system

Maximum power 5.8 kW/6.8 HP at 2800 rpm 5.5 kW/6.8 HP at 2700 rpm 8.6 kW/11.5 HP at 3480 rpm
Maximum torque 22 Nm at 2100 rpm 23 Nm at 2100 rpm 30 Nm at 1500 rpm
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where EU is the emission limit described in European Union 
regulations, T is the emission test result of the tested designs 
(commercial engines: A, German GX 390, B, Honda iGX 
390; innovative designs: C, LPG-fuelled engine, D, CNG-
fuelled engine, E, engine with electronic fuel injection), and 
X is the value from approval regulations or research tests 
according to the subscript (Fig. 5c).

(2)
EU

T
=

XEU − X
T

XEU

∙ 100%,

The commercial design solutions (for the Lifan GX 390 
and Honda iGX 390 engines) were characterised by lower 
CO emissions than the permissible standards by 33% and 
8%, respectively, whereas HC +  NOx emissions were lower 
by 43% and 51%, respectively. It should be noted that the 
most innovative commercial design (Honda iGX 390) was 
characterised by higher CO emissions close to the permis-
sible limit, whereas the design reduced HC +  NOx emis-
sions by almost half of the permissible standard. When 
setting emission limits, legislators consult with scien-
tists and manufacturers on the feasibility of meeting the 
requirements. The set limits are met by classically used 
designs with a carburettor supply system and innovative 
ones with an electronically controlled carburettor throt-
tle flap. The values of harmful exhaust compounds emit-
ted during gasoline combustion were consistent with other 
tests results for this group of engines carried out under 
real conditions, i.e. 408 ± 2.3–561 ± 3.1 g/kW for CO and 
3.90 ± 0.2–4.53 ± 0.2 g/kW for HC +  NOx versus results 
available in the literature from tests of wood shredding 
machines of 346 g/kW and 4 g/kW, respectively (Warguła 
et al. 2020a). CO emissions for a similar engine have also 
been measured in laboratory tests at 381 g/kW (Bin et al. 
2003) and for 2-stroke engines at 603 g/kW (Volckens et al. 
2007). In addition, tests on an engine with similar design 
and power and fuelled by gasoline showed that depending 
on the composition of the air–fuel mixture, emission values 
were in the range CO 250–550 g/kW, HC 4–10 g/kW and 
 NOx 1–4 g/kW (Murillo et al. 2005).

The innovative solutions developed in the present study 
were aimed at limiting the emission of pollutants by using 
electronic fuel injection (gasoline) or changing the fuel 
coupled with use of a carburettor adapted to gaseous fuels. 
The results showed that the use of LPG and CNG fuels may 

Fig. 2  Tested drive units. Commercial engines: A, German GX 390; 
B, Honda iGX 390; innovative designs: C, LPG fuelled engine; D, 
CNG fuelled engine; E, engine with electronic fuel injection. Num-
bers in the diagram represent the basic components of the fuel supply 
system: 1, fuel tank; 2, gasoline carburettor; 3, gasoline carburettor 
with electronically controlled flap; 4, carburettor for gaseous fuels 
(LPG and CNG); 5, regulator (1.5 to 0.01  MPa); 6, low pressure 
tank (1  MPa); 7, second-stage regulator (0.6 to 0.01  MPa); 8, first-
stage regulator (20 to 0. 6 MPa); 9, gas heater; 10, high-pressure tank 
(20 MPa); 11, 12 V battery; 12, DC converter (12 to 230 V AC); 13, 
electronic control unit; 14, injector; 15, electric fuel pump 16, wide-
band sensor of oxygen content in exhaust gases; 17, intake air tem-
perature sensor; 18, engine temperature sensor; 19, engine rotational 
speed and crankshaft angular position sensor; 20, throttle position 
sensor

Table 3  Category of NRS internal combustion engines as defined 
in Regulation (EU) on Requirements for Emission Limit Values of 
Gaseous and Particulate Pollutants and Type-Approval with Respect 
to Internal Combustion Engines for Mobile Machines Non-road, 
Amending Regulations (EU) No. 1024/2012 and (EU) No. 167/2013 
and Amending and Repealing Directive 97/68/WE. No. 2016/1628 of 
the European Parliament and of the Council of 14 September 2016. 
Off. J. Eur. Union. 2016, 252, 53–117

Category NRS
Ignition type SI
Speed characteristics Variable ≥ 3600 rpm or constant
Power range (kW) 0 < P < 19
Displacement  (cm3) SV ≥ 225
Subcategory NRS-vr-1b
Reference power Maximum net power
Date of the regulation 1 February 2018
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reduce CO emission by 94% and 97%, respectively, with 
respect to the limits allowed in the European Union. On the 
other hand, the reduction of HC +  NOx was 10% and 60% 
for LPG and CNG, respectively. Thus, the engine fuelled by 
LPG significantly reduced CO emissions but had the highest 
HC +  NOx emissions among the tested engines. In contrast, 

the engine fuelled by CNG was characterised by the lowest 
emission of pollutants during the EU type approval tests 
among the tested engines. The use of an electronic fuel sup-
ply system with gasoline reduced CO emissions by 67% and 
HC +  NOx by 50%. This result was better than those of the 
commercial units but was inferior to that of the CNG-fuelled 
engine. The values of harmful exhaust compounds emitted 
during CNG and LPG combustion were consistent with 
previous test results for this group of engines. The results 
of the emission tests during the combustion of CNG were 
19 ± 0.3 g/kW for CO and 3.20 ± 0.2 g/kW for HC +  NOx. 
These values are comparable to those reported in the lit-
erature for wood shredding machines of 31 g/kW and 1 g/
kW, respectively (Warguła et al. 2020a). Tests on CNG-
fuelled engines have shown CO emissions of 30 g/kW and 

Table 4  NRSC test cycle for 
NRS category engines Category NRS

Speed characteristics Variable ≥ 3600 rpm or constant
Purpose Variable speed engine with reference power not exceeding 19 kW 

designed to operate at ≥ 3600 rpm; constant speed engine with refer-
ence power not exceeding 19 kW

Subcategory NRS-vr-1b
NRSC G2

Table 5  Weighting factors of 
ISO 8178 type B test cycles

Engine torque is expressed as a percentage of the maximum available torque at a given engine speed. Rated 
speed is the speed at which the manufacturer specifies the rated engine power. Intermediate speed is the 
speed corresponding to the peak engine torque.

Mode number 1 2 3 4 5 6 7 8 9 10 11
Torque % 100 75 50 25 10 100 75 50 25 10 0
Speed Rated speed Intermediate speed Low idle
G2 0.09 0.20 0.29 0.30 0.07 - - - - - 0.05

Table 6  Emission limits for stage V for engines of NRS category

Emission stage Engine subcategory Power range [kW] Ignition type CO [g/kWh] HC +  NOx [g/kWh]
Stage V NRS-vr-1b 0 < P < 19 SI 610 8

Table 7  Characteristics of Axion RS + , a portable exhaust emissions 
analyser (Lijewski et al. 2019)

Gas Measurement range Sensitivity Characteristic
HC propane 0–4000 ppm  ± 3% 1 ppm
CO 0–10%  ± 3% 0.01 vol.%
CO2 0–16%  ± 3% 0.01 vol.%
NOx 0–4000 ppm  ± 4% 1 ppm
O2 0–25%  ± 3% 0.01 vol.%

Fig. 3  Diagram of an engine chassis dynamometer for low-power 
engines, where the numbers denote the different components: 1, inter-
nal combustion engine; 2, driving pulley; 3, driven pulley; 4, belt 

transmission (ratio 1:1); 5 and 9, layshaft; 6 and 8, clutch with elastic 
insert; 7, torque meter with speed measurement; 10, brake with con-
trol of braking torque value; 11, PEMS
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6 g/kW (Johnson 2014) and a range of values of 26–34 g/
kW (Srivastava and Agarwal 2014). On the other hand, 
the emission values of different exhaust gases during LPG 
combustion were CO 35 ± 0.4 g/kW,  CO2 9544 ± 56.6 g/kW, 
 NOx 6.08 ± 0.3 g/kW, HC 1.14 ± 0.1 g/kW and HC +  NOx 
7.23 ± 0.4 g/kW. For comparison, previous tests of an engine 
of similar design and power fuelled by LPG fuel showed 
that, depending on the composition of the fuel–air mixture, 
emission values were CO 1–300 g/kW, HC 3–7 g/kW and 
 NOx 1–20 g/kW (Murillo et al. 2005). Emission results of 
a LPG-powered energy generator under a heavy load have 
been reported as CO 18 g/kW,  CO2 701 g/kW and  NOx 9 g/
kW (Romero-Piedrahita and Mejía-Calderón 2022).

We next extended the analysis of exhaust emissions 
beyond the components included in the approval tests used 
in the European Union.  CO2 emissions were measured, as 
well as HC and  NOx emissions independently. Controlling 
 CO2 emissions is important as it contributes to the green-
house effect, but it is better recycled by the environment 
than other pollutants. All the components tested are plotted 
in Fig. 6 and 7 (CO and  CO2 in Fig. 6 and HC and  NOx 

in Fig. 7). The results of these tests allowed assessment of 
the impact of the retrofits carried out. For this purpose, the 
results for the commercial units (A, German GX 390, and B, 
Honda iGX 390) were summed and the arithmetic mean cal-
culated, making it possible to relate the results of retrofitting 
(innovative design: C, LPG-fuelled engine; D, CNG-fuelled 
engine; E, electronic fuel injection engine) to those of the 
commercial solutions, denoted further by the K index. Com-
parison of CO,  CO2, HC and  NOx emissions of the innova-
tive designs with those of the commercial designs revealed 
that the CNG-fuelled engine gave the best results. Its emis-
sions were lower than those of the commercial designs by 
96%, 72% and 50% for CO,  CO2 and HC, respectively, and 
showed the lowest increase in  NOx emissions by 9%. These 
results are consistent with other studies showing that switch-
ing fuel from gasoline to CN helps to reduce emissions of 
CO (Usman and Hayat 2019; Yaser et al. 2013; Geok et al. 
2009; Shamekhi et al. 2006),  CO2 (Usman and Hayat 2019; 
Jahirul et al. 2010; Geok et al. 2009; Shamekhi et al. 2006) 
and HC (Quintili and Castellani 2020; Usman and Hayat 
2019; Bielaczyc et al. 2016; Yaser et al. 2013; Merkisz et al. 

Table 8  Properties of tested 
fuels. MON, motor octane 
number; RON, research octane 
number (Dorosz 2018; Merkisz 
et al. 2016; Wołowsz 2003; 
Warowny and Tkacz 2001)

Properties Gasoline Liquefied 
petroleum gas

Com-
pressed 
natural 
gas

Density under reference conditions (liquid phase) (kg/m3) 720–775 520 450
Density under reference conditions (gas phase) (kg/m3) 0.74 2.36 0.72
Fuel calorific value (MJ/kg) 42.6 46 48
Boiling temperature (°C) 40–210  − 30  − 161
Excess air coefficient λ up to the ignitability boundaries 0.4–1.4 0.4–1.7 0.7–2.1
Octane number MON (RON) 85 (95) 95 (100) 105(110)
Air fuel ratio (AFR) for stoichiometric mixture (mass) 14.7:1 15.5:1 17.2:1
Composition of LPG and CNG fuels at Polish filling stations 

(% by volume)
- C3H8 50% CH4 96.6%

N2 2.1%
C4H10 50% O2 0.1%

CO2 0.1%
C2H6 1.1%

Fig. 4  Characteristics of the 
Lifan GX 390 internal combus-
tion engine with carburettor 
power system during testing 
as a function of time: a power, 
torque and speed and b CO, HC, 
 NOx and  CO2 exhaust emissions 
and fuel consumption
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2012b; Zhang et al. 2011; Jahirul et al. 2010; Shamekhi et al. 
2006) but increases  NOx emissions (Singh et al. 2016; Huang 
et al. 2016; Mohamed 2006). CNG is composed of lighter 
hydrocarbons and has a much higher hydrogen-to-carbon 
ratio than in gasoline. This affects the combustion process in 
the cylinder, reducing the proportion of incomplete combus-
tion and lowering CO and HC emissions. However, it also 
increases  NOx emissions, which may be due to an increase 
in combustion temperature. On the other hand, the reduction 
in  CO2 is mainly associated with a reduction in fuel con-
sumption. A reduction of  NOx emissions after fuel switching 
is characteristic of diesel engines (Merkisz et al. 2015). In 
the present study, the use of LPG fuel contributed to a 93% 
reduction in CO and 53% reduction in HC emissions but a 
485% increase in  CO2 and 234% increase in  NOx emissions. 
HC emissions from the LPG-fuelled engine were the lowest, 
in agreement with previous results for gasoline-LPG blends 
showing that 100% LPG had the lowest HC emissions (Sim-
sek et al. 2021a). The latter study also considered a mixture 
of gasoline and biogas with a composition similar to that of 
LPG and CNG and showed that 100% biogas had lower HC 
emissions than mixtures with gasoline (Simsek et al. 2021b). 
A reduction of CO (Çinar et al. 2016; Myung et al. 2014; 
Gümüş 2009) and HC (Duc and Duy 2018; Çinar et al. 2016; 
Myung et al. 2014; Gümüş 2009) emissions and an increase 
of  CO2 (Myung et al. 2014) and  NOx (Çinar et al. 2016; 
Duc and Duy 2018) emissions has been observed previously 
after switching fuel from petrol to LPG. The combustion 
of LPG fuel is characterised by a more homogeneous fuel 
input mixture than gasoline, resulting in better combustion 
and lower HC and CO emissions but higher  NOx emissions. 
On the other hand, LPG has a lower carbon content and 
is characterised by higher fuel consumption, which has a 
strong effect on  CO2 emissions. Merkisz and Radzimirski 
(2006) showed that emissions were significantly affected by 
the level of technical sophistication of the LPG and gaso-
line fuel supply systems, while Dziewiatkowski et al. (2020) 
demonstrated that emissions were also affected by wear of 
the fuel supply system components. In the present study, 
the use of an electronically controlled gasoline injection 
system reduced CO emissions by 59%,  CO2 emissions by 
71%, HC emissions by 18% and increased  NOx emissions 
by 10% relative to commercial solutions based on carburet-
tor fuel systems. These findings are similar to those of other 
studies showing a reduction of CO and HC emissions and 
a slight increase in  NOx emissions when using electronic 
fuel injection compared to a carburettor system (Yao et al. 
2017). Electronic fuel injection with mixture control pro-
motes better matching of the fuel–air mixture composition to 
the operating conditions and ensures operation close to stoi-
chiometric mixtures, unlike carburettor systems that operate 
on enriched mixtures (Warguła et al. 2020b). With lower HC 
and CO emissions, this promotes higher  NOx emissions, and Ta
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reduced fuel consumption through better fuel–air mixture 
selection reduces fuel consumption and thus  CO2 emissions.

Our results show the opportunities for development of 
these types of small engines and the possibility of using 
gaseous fuels. In particular, CNG gave the best effects 

in terms of reducing pollutant emissions. We expect that 
access to and the popularity of gaseous fuels will increase as 
biogas plants (Wąs et al. 2020), different types of biodegrad-
able materials (Czarnecka-Komorowska and Wiszumirska 
2020; Knitter et al. 2019; Czarnecka-Komorowska et al. 

Fig. 5  Emissions of a  CO and b  HC +  NOx from small engines and 
c comparison to emission limits in the European Union (EU). Com-
mercial engines: A, German GX 390; B, Honda iGX 390; innovative 

designs: C, engine fuelled by LPG; D, engine fuelled by CNG; E, 
engine with electronic fuelinjection

Fig. 6  a  CO2 and b CO emissions from small engines and c compari-
son of average emissions from commercial engines (K) to those of 
the innovative designs. Commercial engines: A, German GX 390; B, 

Honda iGX 390; innovative designs: C, engine fuelled by LPG; D, 
engine fuelled by CNG; E, engine with electronic fuel injection
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2018) and backyard natural gas fuelling stations (Kuczyński 
et al. 2019) become more common. In parallel, gas-fuelled 
designs could be developed with electronically controlled 
gaseous fuel injection systems. Such designs should be 
investigated to assess the impact of using exhaust after-
treatment systems (Merkisz and Siedlecki 2017), adaptive 
control systems (Irimescu et al. 2014) and fuel additives (Le 
Anh et al. 2014).

Conclusion

The results of this study showed that small SI engines 
intended for non-road machines, e.g. in machines for the 
construction and maintenance of road infrastructure, irre-
spective of the level of innovation of the fuel supply system, 
did not exceed the permissible pollutant emission limits pro-
vided in NRSC type-approval tests applied in the European 
Union. However, these limits are relatively high compared 
to those of other groups of engines. The non-commercial 
solutions, developed and examined by the authors, may con-
tribute to future legislative efforts to limit emissions (CO, 
 CO2, HC and  NOx) from this type of engine. The use of a 
gasoline-fuelled design with an innovative injection system 
reduced CO,  CO2 and HC emissions, as did an engine with 
a carburettor supply system adapted to CNG gas fuel. The 
CNG-fuelled engine had the highest pollutant emissions, 
except for  NOx emissions.  NOx emissions were lowest for 
the commercial engines (with a carburettor fuel supply 

system and mechanical or electrical throttle flap control) 
fuelled with gasoline. The LPG-fuelled engine with a car-
burettor system was characterised by a reduction in CO and 
HC emissions by an increase in  CO2 and  NOx emissions. 
Our research shows that a reduction of pollutants can be 
achieved by introducing innovations in fuel supply systems 
and by changing the type of fuel used. However, the best 
results are expected when the two measures are combined. 
Small SI engine fuel supply systems for non-road machine 
designs could be adapted to include similar solutions to 
those utilised in other engine groups that meet more strin-
gent emission requirements. Thus, in these small SI engines, 
efforts should be made to develop systems that enable the 
use of alternative fuels with a lower environmental impact 
and electronic systems for controlling the operation of the 
internal combustion engine. Developments in the design of 
electricity generating systems and high pressure fuel injec-
tion systems are also needed to produce a low weight and 
compact design. However, commercialization of such solu-
tions will require significant reconstruction of production 
lines and higher product costs. Thus, the implementation of 
such solutions on the market will require legal regulations 
limiting the use of technologically old designs characterized 
by higher emissions of air pollutants.
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