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Abstract
Sufficient attention should be attached to the large amount of fly ash containing high levels of toxic heavy metals generated 
after municipal solid waste incineration. Because heavy metals could be leached out of the fly ash under specific conditions, 
it is necessary to stabilize the heavy metals in fly ash before landfill disposal. Processing technologies of incineration fly ash 
include solidification/stabilization technology, thermal treatments, and separation processes. This study reviewed the current 
treatment technologies of municipal solid waste incineration (MSWI) fly ash, with the main focus on the treatment of heavy 
metals in fly ash with chemical stabilization. Chemical stabilization processes involve chemical precipitation of heavy metal 
and chelation of heavy metals. In multiple studies, chemical stabilization technology has shown practical feasibility in terms 
of technology, economy, and effect. In addition, the combination of two or more stabilization agents broadens the general 
applicability of the agents to heavy metals and reduces the cost. The application of joint processing technology realizes the 
remove of soluble salt from fly ash. To minimize pollutants while increase their usable value, effective use of waste and co-
disposal of several kinds of wastes have gradually become the research hotspots. New developments in chemical stabiliza-
tion are progressively moving towards the sustainable direction of harmlessness and resource utilization of MSWI fly ash.

Keywords  MSWI fly ash · Chelation · Leaching · Stabilization technology · Chemical stabilization agents · Effective use of 
waste · Sustainable utilization

Introduction

Due to the dramatic rise of municipal solid waste (MSW) 
and the reduction of land (Demirbas 2011), municipal 
solid waste incineration (MSWI) has been widely applied 
and spread in recent years (Cheng and Hu 2010; Lin and 
Ma 2012; Lu et al. 2017). Compared with the traditional 
methods of MSW treatment, such as compost and landfill 
(Eriksson et al. 2007), incineration is more efficient and 
more reductive in volume. Incineration can decrease the 
weight of waste by 80 to 85% and the volume by 90% and 

kill all pathogenic microorganisms and parasite eggs (Bie 
et al. 2016; Lam et al. 2010). Moreover, the heat energy 
produced by burning MSW is recyclable (Palanivel and 
Sulaiman 2014; Scarlat et al. 2015). Generally, incinera-
tion will make household waste reductive, harmless, and 
resourceful to the maximum and occupy less land resources 
(Kirby and Rimstidt 1993; Lu et al. 2017).

China is one of the countries with the heaviest munici-
pal solid waste burden in the world (Zhou et al. 2014). The 
proportion of waste incineration for harmless treatment in 
China is increasing year by year. From 2008 to 2020, the 
number of sites for MSW incineration had risen from 74 to 
463, and the disposal ratio had grown from 15.2 to 62.3% 
(Fig. 1) based on the data from the Statistical Yearbook of 
Chinese Ministry of Housing and Urban–Rural Development 
from 2008 to 2020 (MOHURD 2021). Since burning MSW 
can meet the needs of the reduction and harmless develop-
ment in treating urban household MSW, it may become the 
mainstream way to dispose of MSW in the future. By 2015, 
there were 1179 waste incineration power plants generating 
electricity around the world, with a total capacity of more 
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than 700,000 Mg/day (Mg is short for Megagram; 1 Mg 
equals to a metric ton) (Lu et al. 2017). The use of MSW 
in the power industry reduces the use of fossil fuels such as 
coal and oil and reduces the energy pressure for some coun-
tries and regions. Compared with the harmless treatment rate 
of waste in some representative developed countries such as 
Japan, the waste-incineration industry in China and some 
other regions still has broad room for growth.

However, waste incineration also has potential environ-
mental pollution, which will produce a large number of resi-
dues, including bottom ash and fly ash (Assi et al. 2020). As a 
sort of secondary pollutants, fly ash are the small particulate 
matters trapped and settled in the process of purifying flue 
gases in an incineration system (Huber et al. 2018), account-
ing for about 3 ~ 5% of the whole volume of the waste put 
into incineration (Tian et al. 2015). After incineration, most 
heavy metals, such as Pb, Cr, Zn, and Cd, are concentrated 
in the fly ash, and their contents are 10 ~ 100 times higher 
than those in the soil. High levels of heavy metals and toxic 
organic pollutants such as dioxins and dibenzofuran make fly 
ash hazardous wastes (Jiao et al. 2016; Zhang et al. 2020a), 
which pose significant environmental risks and are regarded 
as hazardous wastes internationally (Huang et al. 2011b; 
Xiong et al. 2014). If not properly handled, heavy metals 
in fly ash will enter the soil and groundwater under certain 
conditions through leaching and other processes (Du et al. 
2014; Long et al. 2022; Shim et al. 2003), causing pollution 
to water bodies and soils, and entering organisms through 
channels such as the atmosphere, water, and food, thereby 
posing potential threats to the environment and human health 
(Reijnders 2005; Wang et al. 2019). Therefore, MSWI fly ash 
must be harmlessly treated before buried or reused, and the 
safe disposal and resource utilization of fly ash have become 
a new challenge for national urban development.

The fly ash disposal technologies, with slight capacity 
increase, low cost, effective stability of heavy metals, and 
environmental friendliness, are critical approaches to waste 

disposal and management. In this paper, the current treat-
ment technologies of MSWI fly ash are reviewed, focusing 
on the research and application of the chemical stabilization 
of heavy metals in fly ash, and the direction and prospect of 
the technology in the future are pointed out.

Treatment and disposal of heavy metals 
in fly ash

The color of waste incineration fly ash is usually grey or 
brown, related to its incineration technologies. Circulating 
fluidized bed and stoker grate are the two major MSWI tech-
nologies currently being used in China. The particle size 
of fly ash is primarily distributed in the range of several 
micrometers to hundreds of micrometers. Fly ash are mostly 
irregularly shaped particles, with small particles adsorbed 
on the surface, in addition to some microcrystalline and 
cenospheres dispersed in the particle–matrix (Marieta et al. 
2021), which has complex structures and high hygrosco-
picity. Fly ash usually contain alkaline substances, mainly 
due to a large amount of lime sprayed into the exhaust gas 
during the desulfurization process. Chemical and physical 
characteristics of fly ash depend on the compositions of the 
raw waste, auxiliary fuel, incinerator body type, flue gas 
purification system, etc. (Dou et al. 2017; Luo et al. 2019a; 
Tian et al. 2015; Zacco et al. 2014). In most regions, the 
treatment goals of the flue gas purification system are still 
focused on acid gas and NOx controls. There is no signifi-
cant difference in the mineral composition of fly ash before 
and after treatment by the flue gas purification system, but 
the mineral phase content is different. The compositions of 
the raw MSW vary over time and region. But under normal 
circumstances, fly ash usually contain the main components 
like SiO2, Al2O3, calcium salts, and chloride salts, and the 
main heavy metals with lower boiling points such as Cd, 
Pb, and Zn (Li et al. 2004; Pan et al. 2013), most of which 

Fig. 1   Change of incineration 
capacity and the incineration 
disposal ratio of municipal solid 
waste in China from 2008 to 
2018. (Data from the Statisti-
cal Yearbook of MOHURD of 
China from 2008 to 2020)

0

10

20

30

40

50

60

70

0

2000

4000

6000

8000

10000

12000

14000

16000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

In
ci

ne
ra

tio
n 

di
sp

os
al

 ra
tio

(%
)

M
yticapac

noitarenicni
etsa

w
diloslapicinu

(×
10

4
t) 

Incineration capacity of municipal solid waste

Incineration ratio of municipal solid waste

40385Environmental Science and Pollution Research  (2022) 29:40384–40402

1 3



are embraced in silicate or silicoaluminate in the form of 
insoluble substances (Jiang et al. 2007; Yakubu et al. 2018). 
To effectively prevent heavy metals in fly ash from leach-
ing and reduce the impact on the environment, the heavy 
metals need to be treated harmlessly to reduce their toxicity 
before the final disposal of fly ash in waste incineration. 
The processing technologies of fly ash in incineration at 
home and abroad mainly include three categories: separa-
tion treatment, stabilization/solidification treatment, thermal 
treatment (Zacco et al. 2014). Table 1 shows a comparison 
of the typical fly ash treatment processes, and supplemen-
tary data shows the flow charts of different technologies of 
MSWI fly ash treatment.

Solidification/stabilization treatment technology

Solidification/stabilization technology can fix heavy met-
als through physical processes and chemical reactions. It is 
currently a widely used fly ash treatment technology, which 
can be specifically divided into stabilization technology 
and chemical stabilization technology. The curing process 
reduces the mobility of toxic substances by changing physi-
cal properties such as permeability and surface area and 
ultimately solidifies the toxic substance into the structure 
of the hydration product. This technology mainly relies on 
curing agents, such as cement (Bie et al. 2016; Yang et al. 
2018), asphalt (Rani et al. 2008), and clay (Luna Galiano 
et al. 2011). They work through the means of solidifica-
tion and inclusion to make the heavy metals wrapped in the 
hydration silicate, which is generated after hydration reac-
tion, thus reducing the leaching toxicity of fly ash (Lampris 
et al. 2011). However, solidified products obtained from 
the curing treatment become larger in volume than initial 
fly ash, and thus, this technology has been restricted due to 
increased pressure of landfill (Luo et al. 2019a).

Chemical stabilization reduces the environmental risk 
of toxic substances by adding agents to transform poison-
ous substances into forms with lower solubility or toxicity 
through chemical reactions. With high treatment efficiency 

and simple operation, chemical stabilization can effectively 
realize innocuous waste and stabilization of heavy metals 
with small volume increase after treatment. Thus, it shows 
excellent advantages and development prospects in engi-
neering applications. The technology has been well used in 
the USA, Japan, and other countries (Eighmy et al. 1997). 
However, there are some shortcomings in conventional sta-
bilization technologies to be solved, such as the cost of the 
agent input and the long-term stability cannot be balanced. 
In practical application, a low-cost stabilizer is often unable 
to achieve long-term stability of heavy metals in a wide 
range of pH, and agents with long-term stability are often 
expensive.

Thermal treatment technology

Thermal treatments are the methods that are carried out at 
high temperatures, which can solidify most heavy metals 
in hard sinter with decomposing the dioxins, furans and 
other organic pollutants in fly ash under high temperature 
(Lindberg et al. 2015; Wey et al. 2006). According to the 
treatment temperature, thermal treatments can be generally 
divided into sintering treatment (700 ~ 1100℃) (Wey et al. 
2006; Zhang et al. 2007) and vitrification/melting treatment 
(1000 ~ 1500℃) (Abe et al. 1996; Quina et al. 2008). Ther-
mal treatment of fly ash in incineration achieves detoxifi-
cation and volume reduction due to its high temperature 
and reducing volume by about 2/3 (Zhang et al. 2011). The 
molten slag obtained by melting is a glass matrix composed 
of a Si–O network structure and heavy metals are effectively 
wrapped in this disordered network structure so that the 
leachability of heavy metals in the slag is extremely low. The 
obtained materials can be used as basic glass and asphalt 
aggregate to produce roadbed materials and glass–ceram-
ics to achieve resource reuse (Andreola et al. 2008; Fer-
reira et al. 2003). Many prior studies have shown that ther-
mal plasma is a promising technology for the vitrification 
of hazardous fly ash (Carnogurska et al. 2015). Initiation 
and maintenance of low ionization plasma are simple and 

Table 1   Comparison of typical MSWI fly ash treatment processes

Solidification Chemical stabilization Thermal treatment Hydrothermal treatment Electrochemical method

Volume change Increase Almost unchanged Decrease Decrease Almost unchanged
Steady effect General Medium–high High High High
Organic destruction No effect No effect Destroy Destroy No effect
Secondary pollution Non-pollution Non-pollution Secondary pollution Secondary pollution Secondary pollution
Technical requirements Low Low High High High
Processing Cost Low Low High High High
Technology Maturity Industrial 

application 
engineer

Industrial application 
engineer

Small demonstration 
project

Laboratory projects Laboratory projects
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easily controlled (Chen et al. 2009; Cheng et al. 2002; Zhao 
et al. 2010). Although it seems to be technically feasible, 
the secondary pollution caused by the volatile heavy metal 
elements in fly ash at high temperature has to be considered 
(Kuo et al. 2004; Li et al. 2014; Polettini et al. 2004). In 
addition, the unstable quality of vitrified products caused by 
the large difference in the properties of incineration fly ash 
further limits the popularization of this technology. How-
ever, this technology, with high energy consumption and 
high cost (Fedje et al. 2010), is mainly used in countries 
with very limited landfill space (such as Japan) (Bernardo 
et al. 2010).

Separation technology

Separation technology refers to the separation and extraction 
of heavy metals and salts from fly ash under the action of 
microorganisms or specific chemical agents to improve the 
quality of residue and make waste recyclable (Funari et al. 
2017; Zacco et al. 2014). Chemical leaching removes heavy 
metals and soluble salts by adding water, acids, or other 
solvents as washing agents (Huang et al. 2011a; Wang et al. 
2018, 2001a), which is usually as the washing pre-treatment 
of fly ash. The existing researches have shown that Sulfoba-
cillus and Acidiphilium have been used as microorganisms 
to extract heavy metals (Dominguez-Benetton et al. 2018; 
Ishigaki et al. 2005; Karwowska et al. 2015), although less 
research has been done on fly ash. Although many heavy 
metals with toxicity can be extracted, recycled, and seques-
tered by way of separation (De Boom and Degrez 2015; 
Huang et al. 2011a), the process is complex, and the waste 
water generated needs follow-up treatment before discharge. 
Otherwise, secondary pollution will be produced (Wang 
et al. 2015a).

Other MSWI fly ash treatment technologies

Hydrothermal treatment technology is to synthesize silicoa-
luminate minerals under alkaline conditions in which the 
heavy metals are stabilized by using Al and Si sources from 
fly ash or added extra Al and Si sources, taking water as 
a medium under hydrothermal conditions (Bayuseno et al. 
2009). In essence, hydrothermal treatment technology is a 
unique chemical stabilization technology that occurs under 
specific conditions. This process is often accompanied by the 
formation of zeolites, such as tobermorite (Luo et al. 2019b), 
which has a strong ability to adsorb heavy metals (Querol 
et al. 2002; Shoumkova and Stoyanova 2013). Although 
hydrothermal treatment does not require high-temperature 
conditions as thermal treatments, it still needs enough heat 
to support the reactions. Therefore, hydrothermal treat-
ment is still accompanied by high energy consumption. 
For this reason, microwave technology has been applied to 

hydrothermal treatment to reduce energy consumption ( Qiu 
et al. 2016, 2017). Qiu et al. (2017) have studied that micro-
wave-assisted hydrothermal treatment was performed to sta-
bilize the heavy metals in MSWI fly ash, which confirmed 
the high efficiency of the microwave-assisted hydrothermal 
treatment. However, the efficiency of the microwave-assisted 
hydrothermal treatment is greatly affected by factors such 
as liquid–solid ratio, alkaline substance addition (Bayuseno 
et al. 2009), the content of Al, Si, and other elements (Shan 
et al. 2011). For this reason, the engineering practicality of 
this technology still needs to be tested.

Electrodialysis technology has been widely used in the 
treatment process of sea water desalination (Mohammadi 
and Kaviani 2003) and soil pollution (Ottosen et al. 1997) to 
realize the separation, concentration, and removal of related 
substances. However, as a new type of extraction method, 
it has been used for fly ash treatment research only in the 
past 20 years (Pedersen 2002). The principle of electrodi-
alysis technology is to apply an electric field to the polluted 
material, undergoing four steps of acidification-desorption-
transfer-removal to enrich and remove heavy metals distrib-
uted on mineral and non-mineral components (Kirkelund 
and Jensen 2018). The experimental model study of electro-
dialysis technology by Kristine et al. showed that the effect 
of electrodialysis treatment to remove heavy metals from 
pollutants is related to many factors, such as current density, 
remediation time, stirring rate, dry/wet sediment, cell setup 
as well as sediment properties (Pedersen et al. 2015).

Research progress of chemical stabilization 
technology

Although the heavy metal leaching rate of the thermal-
treated fly ash product is lower than that after chemical 
stabilization treatment, the chemical stabilization treatment 
has unique advantages under the condition of lower control 
cost and small compatibilization. If the performance and 
structure of the reagents are improved, the long-term stabil-
ity of the stabilized products can also be enhanced to avoid 
the secondary leaching of toxic materials. Therefore, the 
research and development of new environmentally friendly 
reagents with high efficiency and low price and the rational 
use of conventional agents have gradually become a hot spot 
in developing the stabilization technology of MSWI fly ash.

The precipitation‑dissolution technology

The precipitation-dissolution technology is based on the 
precipitation-dissolution equilibrium theory, using specific 
agents to form precipitates with positively low solubility of 
heavy metals (Table 2), thereby achieving the stability of 
heavy metals (Lewis 2010). Inorganic agents are selected in 
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this technology, including sulfides, soluble phosphates, fer-
rites, and other relatively inexpensive inorganic salts (Atanes 
et al. 2019; Eighmy et al. 1997; Liu et al. 2015; Lundtorp 
et al. 2002). The solubility of most metal sulfides is minimal. 
Therefore, adding sulfides to fly ash can transform heavy 
metals from a soluble state to an insoluble state. Thus, heavy 
metals exist in nature as mineral precipitate for a long time 
(Lewis 2010; Zhao et al. 2002). Sodium sulfide and thio-
urea, the commonly used sulfide agents, are considered to 
be one kind of excellent chemical agents for effective treat-
ment of fly ash and have shown a more significant stabilizing 
effect on heavy metals than NaOH and ethylene diamine 
tetraacetic acid (EDTA) (Kim et al. 2002; Zacco et al. 2014; 
Zhao et al. 2002). The leaching concentration of fly ash can 
be reduced to less than 0.1 mg/L with the addition of 2% 
thiourea, while the limits of Pb in landfill pollution control 
standard for domestic waste is 0.25 mg/L (Ma et al. 2019a).

Compared with sulfides, phosphates have a better long-
term stabilizing effect on those heavy metals which leach-
ing amount generally exceeds the standard limit such as Cd, 
Pb, and Zn (Jiang et al. 2005; McGowen et al. 2001; Quina 
et al. 2014; Zhu et al. 2020). Especially Pb, in the pH range 
of 4 ~ 13, the leaching amount of Pb is very low after phos-
phate treatment (Jiang et al. 2005). Phosphates are also rec-
ommended to stabilize heavy metals in industrial wastewa-
ter and Pb contaminated soil (McGowen et al. 2001; Oliva 
et al. 2011; Wang et al. 2001b), which is known as the most 
promising development and in-depth study of the chemical 
species (Vavva et al. 2017; Zacco et al. 2014). Eighmy et al. 
(1997) found that soluble phosphate can react with particles at 
a nanometer level after mixing with fly ash for a certain time, 
which effectively reduces the leaching concentration of Cd2+, 
Cu2+, Pb2+, and Zn2+. Besides, they pointed out that it is help-
ful to optimize the stabilization effect of heavy metals with 
the sequence of promoting metal dissolution first, and then 
the metal precipitates with the phosphate. It is worth noting 
that the reaction mechanism of phosphate stabilizing heavy 
metals is not a simple chemical precipitation. Therefore, the 
mechanism needs to be further explored (Grubb et al. 2000).

Ferrite agents are mainly ferrous salts, such as FeSO4, 
which can be oxidized into iron oxide or hydrated iron oxide 

crystals under alkaline heating conditions. The oxidized 
products obtained by mixing the ferrite agent with fly ash 
and water bind the heavy metals firmly in the crystal lattice 
to reduce the leaching rate (Hu et al. 2015; Mizutani et al. 
2000). Hu (2005) used a mixed solution of ferrous sulfate/
iron sulfate to treat MSWI fly ash at room temperature. The 
results showed this mixed solution reacts with the ash on 
the surface of the dust particles forming a Ca4Fe9O17 coat-
ing which tightly stabilizes the heavy metals, and the heavy 
metal concentration meets the regulation limits of toxicity 
characteristic leaching procedure (TCLP) test.

Due to the simple principle and easy availability of mate-
rials, the precipitation-dissolution technology to stabilize 
heavy metals has been applied relatively early. The products 
obtained from heavy metals in MSWI fly ash treated with 
inorganic chemicals are highly affected by the environment 
and are easy to be leached in an acidic environment; thus, 
the stabilization effect is difficult to meet the environmen-
tal protection requirements of entering the domestic waste 
landfill (Zhang et al. 2016a). Therefore, with the improve-
ment of the long-term stable safety requirements of hazard-
ous waste and the emergence of more efficient agents (Jiang 
et al. 2004; Mizutani et al. 2000; Wang et al. 2015a), these 
inorganic agents have gradually become auxiliary agents 
in the stabilization of heavy metals, and the research on 
the combination of these inorganic agents with cement or 
organic chelating agents is increasing progressively (Quina 
et al. 2014; Zhu et al. 2020).

The complex precipitation technology

The complex precipitation technology refers to the technol-
ogy based on the complexation mechanism, where certain 
organic agents, represented by organic chelator, coordinate 
with metal ions to form stable coordinate bonds (Table 2). 
Organic chelating agents involve coordination bonds formed 
by heavy metals and their own coordination atoms, con-
taining lone pair electrons to generate stable complexes 
to achieve stabilization. In recent years, organic chelating 
agents have received more and more attention in terms of 
reducing heavy metal pollution due to their relatively low 

Table 2   Comparison 
of mechanism between 
precipitation-dissolution and 
complex precipitation-taking 
sulfide and sodium dimethyl 
dithiocarbamate for example

Precipitation pathway Precipitation mechanism

Precipitation-dissolution

Complex precipitation
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cost and tolerance in different environments. Compared 
with inorganic chemicals, organic reagents, particularly 
the organic polymer ones, have a more potent binding force 
with heavy metals and can form more stable insoluble sub-
stances (Zhang et al. 2020b). Heavy metal chelating agents 
(dithiocarbamate), synthesized by Jiang et al. (2004) in the 
laboratory, are useful heavy metal chelators for fly ash. 
Compared with inorganic chemicals Na2S and lime, dithi-
ocarbamate has a more significant advantage in terms of 
stabilization, and its efficiency in capturing heavy metals is 
as high as 97%. Meanwhile, it is immune to microbial activ-
ities. Organic chelating agents mainly include dithiocarba-
mates and their derivatives (DTCs), mercaptopolyamines, 
EDTA polymers, and chitosan and its derivatives, etc. (Hu 
2005; Ma et al. 2019a; Mizutani et al. 2000; Zhang et al. 
2020b). In terms of stabilization, synthetic organic chelat-
ing agents are superior to the inorganic ones and the natural 
ones, and they are more adaptable to the environment (Ma 
et al. 2019a; Wang et al. 2015a; Zhang et al. 2016a).

In recent years, DTCs have been extensively studied 
because of their strong ability to coordinate with metals 
(Jiang et al. 1999; Wang et al. 2015a; Zheng et al. 2019). 
DTCs are synthesized by the nucleophilic reaction of 
organic polyamines and carbon disulfide. According to 
their solubility (Jiang et al. 2004; Zheng et al. 2019), organic 
chelating agents are mainly divided into two forms of uti-
lization: chelating agent and chelating resin. Among them, 
DTCs can be divided into single-DTC chelating agents and 
multi-DTC linear chelating agents according to the number 
of DTC groups in the molecule (Wang et al. 2015a; Zhang 
et al. 2020b). Having more DTC groups, high-molecular-
weight DTC thus owns more sites to react with heavy metals 
and chelated products with more complex structures will be 
formed that firmly embeds heavy metals therein to reduce 
the amount of leaching (Xu et al. 2013). For this reason, 
high-molecular-weight DTC is often used for the stable 
treatment of heavy metal pollutants. The comparative test 
between single-DTC chelating agents (sodium dimethyldith-
iocarbamate) and multi-DTC linear chelating agents (sixthio 
guanidine acid and tetrathio bicarbamic acid) on disposing 
of fly ash has shown that multi-DTC linear chelating agents 
can bind with heavy metals more effectively and present 
more excellent overall curing performance due to their mul-
tiple hydrosulfide groups (Wang et al. 2015a). Many stud-
ies have shown that DTC can steadily work within a broad 
range of pH, and in the entire pH range (3 ~ 11) the chelation 
effect of DTCs to most of the heavy metals keeps reliable 
and stable (Jiang et al. 2004; Mizutani et al. 2000; Zheng 
et al. 2019). In addition, some macromolecular DTC chelat-
ing agents can achieve better overall stability performance at 
low doses (3%) and prevent heavy metals from leaching in a 
wide pH range (2 ~ 13), which cannot be achieved by small 
molecule chelating agents (Zhang et al. 2020b).

Polymer DTC chelating resin is a water-insoluble chelat-
ing resin synthesized by grafting DTC groups on different 
polymer matrixes, which usually contain an amine group or 
connect an amine group after modification. Polymer chelat-
ing resins are mostly applied to the separation and recycling 
of heavy metals. Although there are many pieces of research 
on it (Liu et al. 2016; Ma et al. 2019a), chelating resins, due 
to their high cost, are seldom used to dispose of MSWI fly 
ash in practical application.

Moreover, the natural polymer DTC also has got a lot of 
attention. Based on natural polymers, these chelating agents 
are one kind of heavy metal trapping agents that introduce 
DTC groups through cross-linking, etherification, and poly-
amine substitution. Natural polymers commonly used mainly 
include cellulose, lignin, chitosan, and starch (Babel and 
Kurniawan 2003; Xiang et al. 2016). Cheng et al. (2013), 
using starch as raw material, synthesized DTC modified 
glycidyl methacrylate starch DMGS that can quickly and 
effectively complex metal ions. Some researchers created 
new types of DTC composite collectors through modifying 
sesbania gum and montmorillonite (Say et al. 2008; Zhang 
et al. 2008). The natural organic polymer materials are abun-
dant, cheap, and easy to degrade that their modified products 
can capture the heavy metal ions with high efficiency and 
low toxicity. Exactly because of the benefits in economy 
and environment, the natural organic polymer materials may 
develop into a new research focus in the future.

Mercaptopolyamines are mainly organic substances con-
taining sulfhydryl functional groups. Among them, thiourea 
can convert Pb and Zn into more stable substances, far better 
than Na2S in terms of stability. The stability of the function-
alized product of sulfhydryl is better than that of single thio-
urea (Liu et al. 2016; Zhang et al. 2016a). Trithiocyanuric 
acid trisodium salt (TMT) is also a favorable stabilizer. For 
example, TMT-15 can effectively reduce the leaching con-
centration of heavy metals when a low dose (4.2%) is added 
(Zhu et al. 2020). Studies on dendrimer macromolecules 
have begun to increase because researchers want to achieve 
the goal of forming a complex structure to strengthen the 
binding with heavy metals and improve the resistance to 
acid and alkali. Using functional groups during the synthe-
sis of dendrimers to possess certain functions has achieved 
the goal (Zhang et al. 2016a, 2020b). A team from Tongji 
University in China has developed a series of functionalized 
dendrimer chelator, such as TEPA-SNa (Zhang et al. 2016a) 
and TEM-CSSNa (Li et al. 2019a). Studies have revealed 
that these chelating agents have a strong chelating ability 
of heavy metals such as Cd and Pb in fly ash. The three-
dimensional dendritic polymer, formed by the chelator, leads 
the heavy metals to strong stability in the harsh environ-
ment with strong acid and strong alkali (Zhang et al. 2020b). 
Some researchers also grafted polyamide dendrimers with 
chitosan, carbon nanotubes, and other types of compounds, 

40389Environmental Science and Pollution Research  (2022) 29:40384–40402

1 3



and the obtained materials have shown good effects in com-
bining with heavy metals such as Pb2+ (Al Hamouz et al. 
2017; Hayati et al. 2017; Zarghami et al. 2016). Although 
organic chelating agents have outstanding advantages, like 
high compatibilization ratio, good stabilization effect, and 
has wide sources, there is a problem that the organic chelat-
ing agent buried underground itself may have adverse effects 
on the soil, groundwater, and surroundings, which need to be 
verified by experiments and time. Table 3 summarizes some 
typical studies on chemical stabilization of heavy metals in 
MSWI fly ash.

The adsorption stabilization technology

The adsorbents used to dispose of heavy metal include acti-
vated carbon, clay, montmorillonite, zeolite, and other natu-
ral modified or artificial materials (Babel and Kurniawan 
2003; Liu et al. 2020; Tillman et al. 2005; Zhang and Pu 
2011). Mineral materials enable to effectively adsorb heavy 
metals and organic pollutants for their small particles and 
large specific surface area, reducing the leaching rate of sol-
uble heavy metals and reducing pollution to soil and water 
(Usman et al. 2005). Belviso et al. (2010) used synthetic 
zeolite to treat soil containing incineration fly ash, and the 
results showed that the zeolite played a good role in stabiliz-
ing Ni. In recent years, the research on apatite used to dis-
pose of the heavy metals in fly ash has gradually increased 
(He et al. 2013). Materials containing apatite, such as ani-
mal bones, also have similar effects (Dybowska et al. 2009; 
Mu et al. 2018; Sneddon et al. 2006). Based on the phos-
phate mineral, apatite materials have a complicated reaction 
mechanism with heavy metals. In the existed literature, the 
mechanisms including ion-exchange, surface complexa-
tion, dissolution–precipitation, and co-precipitation have 
been proposed to act separately or jointly in the adsorption 
reaction (Fig. 2) (Corami et al. 2008; del Rio et al. 2004; 
Elouear et al. 2008; He et al. 2013; Oliva et al. 2011; Saxena 
and D'Souza 2006). In addition, there is also a view that the 
mechanisms may vary from metal to metal (Dybowska et al. 
2009; Ndiba et al. 2008; Sneddon et al. 2006).

Compared with other stabilization technologies, most 
adsorption materials such as ores and clay are relatively 
inexpensive, and the stabilization effect is relatively sat-
isfactory (Babel and Kurniawan 2003). Meanwhile, some 
adsorbents from waste materials are also actively explored, 
and adsorption stabilization technologies are popular in the 
field of pollutant stabilization (Mu et al. 2018; Saxena and 
D'Souza 2006). However, adsorbents take a longer time to 
work, not as fast as the chelating agent (Quina et al. 2014). 
Furthermore, the adsorbed substances are easily detached 
under extreme conditions and their stabilization effects are 
affected by the fluctuation of pH. Therefore, the adsorption 
stabilization method usually needs to be used to achieve the 

expected goal in conjunction with the stabilization technolo-
gies of other agents (Quina et al. 2014). Of course, devel-
oping new adsorbents is also an option. For example, Bai 
et al. (2011), grafting dithioamino polyethyleneimine onto 
modified silica, devised a new type of silicon-based DTC 
adsorbent used for heavy metal treatment.

New developments in chemical stabilization

A combination of chemical agents

The organic chelating agent is difficult to be widely used 
because of its high cost. Moreover, the chelation of heavy 
metals is selective, and the stabilization effects of different 
heavy metals vary to a certain extent, and thus, it is hard to 
guarantee the stabilization effect of all heavy metals; inor-
ganic agents are greatly affected by the environment and 
have relatively poor long-term stability but with low costs. 
Therefore, a treatment method in which organic chelating 
agents and inorganic agents are combined is adopted. Adopt-
ing the agent that mixed appropriate inorganic agents and 
organic agents to treat heavy metals in MSWI fly ash can 
prolong stabilization time while achieving a better effect 
and sound product expansion ratio and economic benefits. 
Zhu et al. (2020) designed single and composite stabiliza-
tion agents to deal with the waste incineration fly ash. The 
comparison of the treatment results shows that although the 
single agent with a certain concentration can make the heavy 
metals leached into the environment below the prescribed 
limit, the method of mixed agents is more effective and 
even cheaper than single-agent treatment. Most outstanding 
organic chelating agents with high prices are synthesized 
or patented in the laboratory (Zhang et al. 2016a, 2020b). 
Accordingly, the complementarity of different chemical 
agents that are common in the market can be used to achieve 
adequate stability of different metals, thereby reducing costs. 
The combination of two or more agents is worth trying.

Application of joint processing technology

The soluble salts contained in fly ash hinder the stabilization 
of heavy metals, especially large amounts of soluble chloride 
salts, which increase the solubility of some heavy metals 
such as Cd, Pb, and Zn in the processed product, thereby 
increasing the difficulty of processing (Chen et al. 2012; 
Mu et al. 2018; Wang et al. 2001a). Moreover, after fly ash 
treatment, resource utilization is mainly used as construction 
materials, and high levels of metal chlorides are very harm-
ful to that (Zhu et al. 2018). The removal of chlorine from fly 
ash is very important. However, chemical stabilization tech-
nology is often specifically for heavy metals and has little 
effect on removing soluble substances in fly ash (Zacco et al. 
2014). Therefore, it is necessary to perform pre-treatment 
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operations before chemically treating, which is usually 
proceeded with the support of water washing or pickling 
(Chimenos et al. 2005; De Boom and Degrez 2015; Logi-
nova et al. 2019; Vavva et al. 2017). The fly ash undergoes a 
combined treatment of two technologies: water washing and 
phosphoric acid stabilization, which can effectively stabilize 
the Pb in the fly ash while removing the salts in the ash and 
getting harmless landfill materials that meet the disposal 
standards (Vavva et al. 2017). Loginova et al. (2019) adopted 
a three-step combined treatment of water washing, stabiliza-
tion by ethylenediaminetetraacetate and gluconate, which 
greatly improved the elution capacity of metals, among 
which the metal Cd in this aspect increased by 1800 times 
in comparison with plain water washing. Washing treatment 
is a pre-treatment step that can be involved in other stabiliza-
tion technologies (Fig. 3), and many related attempts have 
worked well (Benassi et al. 2016; Liu et al. 2009; Wang 
et al. 2010; Zhu et al. 2018). However, the waste water after 

washing contains a large amount of soluble salts and some 
heavy metals, causing serious harm to the environment if it 
is directly discharged (McGowen et al. 2001). Therefore, the 
wastewater generated in this way must undergo subsequent 
treatment to reduce the content of soluble salts and heavy 
metals before it can be discharged or recycled (McGowen 
et al. 2001; Quina et al. 2009; Wang et al. 2001a). Studies 
have shown that changing the order of treatment can produce 
cleaner wastewater (Vavva et al. 2017).

The product of stabilizing fly ash with chemicals alone 
has a large surface area and lose structure, facilitating the 
leaching of heavy metals and harmful substances again 
(Ma et al. 2019a). For stronger fixation of heavy metals, the 
experiments of combining the stabilization process of the 
agent and the solidification technology were carried out (Hu 
et al. 2015; Ma et al. 2019a). The high physical strength and 
low porosity of cured or heat-treated product reduced the 
fluidity of pollutants (Batchelor 2006; Quina et al. 2014), 

Fig. 2   The surface of adsorbents 
with multiple actions, including 
ion-exchange, surface complex-
ation, dissolution–precipitation, 
and surface-adsorption

Fig. 3   The disposal process of MSWI fly ash: from waste generation to landfill or resource utilization
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before which the process of the chemical treatment has con-
verted heavy metals into less toxic forms. Adding cement 
to the fly ash will produce C-S–H gel which can wrap the 
heavy metals in the cement-based solidification product to 
prevent the migration of heavy metals (Ma et al. 2019a). The 
process reduced the processing cost and prolonged the stable 
life cycle of the product, providing technical and economic 
supports for the industrial processing of fly ash. In addition, 
hydrothermal treatment of fly ash has been regarded as a 
promising approach for its significant advantages in eco-
nomic, technical, and environmental performance (Ferreira 
et al. 2003; Hu et al. 2015; Sun et al. 2011). The combined 
use of multiple fly ash treatment technologies is a new devel-
opment trend. Like the combined use of physical, chemical, 
and biological methods to treat contaminated soil and waste-
water, the technologies are complemented with each other 
to achieve optimal economic and environmental benefits.

Effective use of waste

With the continuous promotion of sustainable development 
concept worldwide, people’s views on waste have changed, 
and their consciousness of “turning waste into treasure” has 
been strengthened (Baek et al. 2017). Waste from production 
and daily life also plays a role in the management and dis-
posal of fly ash. The waste generated by MSWI includes not 
only fly ash but also bottom ash. Assi et al. (2020) attempted 
to treat fly ash with bottom ash and mixed flue gas desul-
furization residues and fly ash to produce a material with 
pozzolana characteristics, which would provide a new way to 
achieve zero waste in MSWI industries. However, this pro-
cess has the problems of elevated metal contents and leach-
ing toxicity in themselves (Poykio et al. 2016; Saqib and 
Backstrom 2015; Zhu et al. 2020), which seems to be com-
mon problems of processing waste materials. The Univer-
sity of Brescia developed a new sustainable method named 
COSMOS for heavy metal stabilization based on the use of 
colloidal silica, producing a colloidal silica medium eventu-
ally (Bontempi et al. 2010). Their recent research utilized 
waste and by-product materials (such as coal fly ash, flue 
gas desulfurization residues, and rice husk ash) to replace 
colloidal silica, which also traps heavy metals into the silica 
network successfully (Benassi et al. 2015; Bosio et al. 2013, 
2014), and this technology had been verified by engineer-
ing (Benassi et al. 2016). However, problems also exist in 
this technology (Dou et al. 2017; Schnell et al. 2020). Other 
wastes have been applied in the field of fly ash stabiliza-
tion as well, such as red mud (Li et al. 2019c), electrolytic 
manganese residues (Zhan et al. 2018), and fishbone waste 
(Mu et al. 2018) (Li et al. 2014; Xu et al. 2018), although 
their principles are different. There are also studies using 
waste liquids (Sun et al. 2019; Tian et al. 2020). For exam-
ple, Tian et al. (2020) investigated the stabilization effect of 

MSWI fly ash by using spent caustic as alkaline activators 
and adding blast furnace slag. Moreover, co-disposal of sev-
eral kinds of wastes, while trying to get usable products as 
much as possible, seems to be a trend nowadays (Geng et al. 
2020; Luo et al. 2020; Yue et al. 2019; Zhan et al. 2021; 
Zhao et al. 2019, 2020). Zhan et al. (2021) successfully co-
sintered MSWI fly ash, water-washed fly ash, coal fly ash, 
and electrolytic manganese residue to produce lightweight 
MFCE ceramisite, which provided a feasibility method for 
the development of urban sources while producing green 
materials. Significantly, the compositions of waste and fly 
ash vary from sources and treatment methods. Therefore, 
there are some uncertainties in the promotion and applica-
tion of using (Zhu et al. 2020). However, it is undeniable that 
waste resource recovery from fly ash treatment is distinctly 
a very rewarding and sustainable idea.

As an available resource, fly ash itself is also used in 
roads, construction, industry, and other fields. The most 
common one is to use fly ash as one of the raw materials 
for cement production (Aubert et al. 2006; Guo et al. 2014). 
Some researchers have used the characteristics of heavy met-
als in fly ash to be volatile during high-temperature treat-
ment to conduct high-temperature thermal separation of 
heavy metals such as high content of Cd, Cu, Pb, and Zn in 
fly ash (Jakob et al. 1996; Syc et al. 2020). The fly ash pro-
cessed by high-temperature thermal separation technology 
can be used as ordinary waste landfill or construction raw 
materials. The secondary fly ash formed by the condensa-
tion of heavy metal volatiles with the flue gas has a high 
heavy metal content, which is equivalent to a special heavy 
metal–rich resource that can be used as raw material for 
metallurgy (Geng et al. 2020). For the recycling of fly ash, 
except for the existing standard toxicity leaching test, it is 
also necessary to evaluate its environmental compatibility 
through a long-term leaching test to confirm that the product 
will not cause secondary pollution to the environment in the 
future. The ultimate goal of MSW management is to build 
and perfect the integrated management systems on the basis 
of optimizing and utilizing available technologies (He et al. 
2019), and it is a key link in sustainable development.

Influencing factors of chemical stabilization 
technology

Effects of ash properties

The key to stabilization is to reduce the leaching of hazard-
ous components from the waste. Then, the leaching behavior 
of MSWI fly ash can be influenced by ash properties such 
as the soluble salt content, particle size distribution, and 
chemical speciation (Luo et al. 2019a; Saqib and Backstrom 
2015). The fly ash particles are easily filled by heavy metals, 
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increasing toxicity due to the small ash particle size (Mangi-
alardi 2003). Besides, the fly ash after flue gas purification 
is often highly alkaline, but the landfill is generally neutral 
or acidic, which leads to heavy metals leaching out easily 
during the disposal process (Cornelis et al. 2008; Saqib 
and Backstrom 2015). The remaining alkaline substances 
(mainly calcium-bearing compounds) are the important 
factor of metal leaching behavior in fly ash. Anions play a 
major role in soluble substances (Tong et al. 2019). Anions 
promote or inhibit the leaching of heavy metals by form-
ing corresponding salts with heavy metals. For example, 
SO4

2− stabilizes most of the heavy metals by forming sulfate 
phases and inhibits leaching and consequently contributes 
to the stabilization effect (Verhulst et al. 1996). On the con-
trary, the existence of Cl− is not conducive to the stabiliza-
tion of heavy metals, which has been widely studied in the 
current fly ash disposal technologies (Zhang et al. 2016a). 
Some researchers have adopted water washing pre-treatment 
in the treatment program to reduce the negative effects of 
soluble chloride salts on the stability effect (Atanes et al. 
2019; Chimenos et al. 2005; Loginova et al. 2019; Wey et al. 
2006).

The treating result varied among metals in fly ash. For 
example, the leaching of some heavy metals such as Ba, 
Pb, Sb, V, and Zn is mainly affected by the reaction system. 
Under the high liquid–solid ratio (L/S ratio), the release of 
target elements will increase with the dissolution of the min-
eral phase, leading to a higher cumulative release (Allegrini 
et al. 2015). In contrast, for As, Cd, Cu, Ni, and Se, the 
leaching procedure seems to have a greater influence (Luo 
et al. 2019a). Therefore, the properties of the residue itself 
are critical to selecting proper management and disposal 
strategies for MSWI fly ash.

Effects of agents

The stability ability of different agents to metal elements 
varies greatly due to their mechanism of action and differ-
ences in molecular weight (Ma et al. 2019a; Wang et al. 
2015a). Combination products of agents and heavy met-
als based on the precipitation-dissolution principle or the 
adsorption principle are greatly affected by environmental 
changes. If the metal and the agents are combined in a com-
plexation mechanism, they will have stronger environmental 
resistance. There are differences in the molecular weight of 
organic chelating agents, and macromolecular organic chela-
tion agents perform better due to a large number of coor-
dinating groups. Some macromolecular organic chelating 
agents can form two-dimensional or even three-dimensional 
structures (Li et al. 2019a; Zhang et al. 2016a), which firmly 
bind heavy metals. Besides, functional groups will affect the 
selectivity of the agent to heavy metals. Research on chemi-
cal stabilization has focused on organic chelation agents with 

N, P, and S as coordinating atoms, and the corresponding 
groups include amine, sulfhydryl, and dithiocarboxylate acid 
groups (Ahmad et al. 2020). It has induced a research trend: 
the integration of multiple groups into one chelation agent.

Any kind of agents has an optimal dosage, which is the 
concentration effect. In general, the stability of heavy met-
als in fly ash after reaction increases with the increase in 
the amount of chemical added. Still, when the additive 
chemical exceeds a certain amount, the leaching concentra-
tion of heavy metals in fly ash is almost in a constant state 
after treatment (Assi et al. 2020; Jiang et al. 1999; Ma et al. 
2019a; Xu et al. 2013; Zhang et al. 2020b). In this process, 
there is an optimal additive amount, that is, the minimum 
additive amount to achieve this state. Space for landfill con-
struction and operation is so scarce that the volume increase 
ratio must be taken into account (Yakubu et al. 2018). There-
fore, the chemical agents in a small additional amount as 
well as effective are more advantageous and more popular 
in the market.

The influence of the leaching system

Disposed fly ash is in a non-static environment. Thus, as 
landfill time grows, waste that is initially classified as non-
hazardous may turn hazardous again due to long-term inter-
actions with the surrounding environment. When fly ash is 
disposed of at the landfill, the heavy metals may leach out 
again depending on the change of L/S ratio, temperature, 
pH, and other factors in the environmental system (Luo et al. 
2019a). Among the various factors that affect the leaching 
behavior of heavy metals, the pH of the leaching solution 
has the most direct and greatest influences (Li et al. 2019b; 
Quina et al. 2009). Changing field conditions caused by 
temperature, soil type, rain (especially acid rain), the activ-
ity of soil living organisms, and vegetation may result in 
pH fluctuations which might favor an increase in the levels 
of heavy metals in a particular waste (Yakubu et al. 2018). 
Relevant studies have shown that the leached concentrations 
of the majority of the elements from fly ash increased with 
the decrease of pH, which means that it is easier to leach 
large amounts of heavy metals under acidic conditions (Jiang 
et al. 1999; Zhang et al. 2016a, 2020b), while Pb, Zn, and 
Cr may also be leached under strong alkali conditions due 
to their amphoteric nature (Quina et al. 2009; Yakubu et al. 
2018). The pH of the leaching solution and the adsorption 
process are the main factors affecting the leaching (Zhang 
et al. 2016b). Therefore, the width of pH at which metal sub-
stances can be effectively stabilized is an important indica-
tor for evaluating whether a chemical agent is practical and 
feasible. Although the pH is the most critical variable in the 
leaching system, the liquid–solid ratio (L/S ratio) also is an 
innegligible factor in leaching processes (Quina et al. 2011) 
because leaching of inorganic constituents from MSWI ash 
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such as heavy metals is controlled by solubility on the whole 
(Luo et al. 2019a). A higher L/S ratio promotes the dis-
solution of minerals and accelerates the release of heavy 
metals (Quina et al. 2011), although this is not the case for 
all metals.

Many studies have investigated the leaching behavior of 
heavy metals from residual materials (Allegrini et al. 2015; 
Jiang et al. 2007; Jiao et al. 2016; Quina et al. 2009; Saqib 
and Backstrom 2015; Zhang et al. 2016b). Luo et al. (2019a) 
reviewed the factors affecting the leaching behavior of pol-
lutants in fly ash, including weathering and aging treatments 
and biological activity, in addition to those as mentioned 
earlier. There has been a lot of researches into different fac-
tors, but in reality, they always work together and are often 
complex and changeable. Waste managers should put the 
processed fly ash, which may become hazardous waste, in a 
stable environment as much as possible to increase their life 
stability and reduce the environmental risks they may bring.

Conclusion

Faced with the ever-increasing world population and lim-
ited available land area, adequate disposal of the generated 
municipal solid waste without pollution is an urgent problem 
facing the world. Incineration is widely adopted in urban 
waste management because it provides an efficient path to 
compress the volume of waste needed to be dumped in land-
fills and to realize resource recycling at the same time. How-
ever, this has resulted in a rapid increase in the amount of 
MSWI fly ash. Among the treatments of fly ash, solidifica-
tion technology and thermal treatment technology have obvi-
ous defects and are not suitable for the future urban develop-
ment direction. Hydrothermal treatment technology has a 
high potential for promotion due to its energy-saving, high 
efficiency, and vital applicability, but it will take some time 
to apply mature technology to practical projects. By contrast, 
the development of new chemical agents environmentally 
friendly with high efficiency and low price to stabilize heavy 
metals in fly ash is an easier control way. For better stable 
performance, the development of high-efficiency and multi-
functional stabilizing agents is required. Besides, compound 
agents may have a broad market prospect due to their good 
prices. Reasonable addition of washing pre-treatment steps 
that can improve the quality of waste ashes is beneficial 
to removing harmful substances in fly ash. Designing an 
effective chemical stabilization process and quantifying the 
relationship between heavy metal pollutants and stabilizing 
agents will enhance the universal applicability of chemical 
stabilization technology in different regions. Besides, munic-
ipal solid waste classification should be advocated, and nec-
essary pre-treatment should be implemented, to realize the 

harmless and resource-based disposal of municipal solid 
waste and promote sustainable development.
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