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Abstract
Submerged macrophytes and microbial communities are important parts of lake ecosystems. In this study, the bacterial 
community composition in rhizosphere sediments and water from areas cultivated with (PL) and without (CK) shining 
pondweed (Potamogeton lucens Linn.) was investigated to determine the effects of P. lucens Linn. on the structure of the 
bacterial communities in Nansi Lake, China. Molecular techniques, including Illumina MiSeq and qPCR targeting of the 
16S rRNA gene, were used to analyze the composition and abundance of the bacterial community. We found that bacterial 
alpha diversity was higher in PL water than in CK water, and the opposite trend was observed in sediment. In addition, 16S 
rRNA gene copy number in sediment was lower in PL than in CK. We found 30 (e.g., Desulfatiglans) and 29 (e.g., Limno-
habitans) significantly different genera in sediment and water, respectively. P. lucens Linn. can change chemical properties 
in sediment and water and thereby affect the bacterial community. At the genus level, members of bacterial community 
clustered according to source (water/sediment) and area (PL/CK). Our study demonstrated that submerged macrophytes can 
affect the bacterial community composition in both sediment and water, suggesting that submerged macrophytes affect the 
transportation and cycling of nutrients in lake ecosystems.

Keywords  Potamogeton lucens Linn. · Bacterial community · qPCR · Lake ecosystem · Shining pondweed · Water 
purification

Introduction

For decades, water eutrophication has been a major source 
of freshwater pollution in China (Wang et al. 2019) and has 
caused severe problems such as biodiversity loss and algal 
blooms (Yin et al. 2020). During the rainy season, agricul-
tural systems release abundant nitrogen (N) and other nutri-
ents into water bodies; therefore, organisms in these water 

bodies often experience high nutrient supplies (Yan et al. 
2018). As the main primary producers of wetland ecosys-
tems, plants (Zhang et al. 2016; Zhao et al. 2019), especially 
submerged macrophytes, are important participants in lake 
ecosystems and play an important role in nutrient removal 
(Qin et al. 2019) and other processes in constructed and 
natural water bodies. Submerged macrophytes can assimi-
late a variety of nutrients, such as organic and inorganic N 
(i.e., NO3

−, NO2
−, NH3, and NH4

+) and phosphorus (P), 
which can result in chronic toxicity to Hydrilla verticillata 
at high concentrations (Wang et al. 2010). Yan et al. (2018) 
reported that P. malaianus, Vallisneria natans, and Hydrilla 
verticillata had strong nutrient removal effects, indicating 
that nutrients were easily assimilated by these aquatic plants. 
Therefore, submerged macrophytes are important for water 
self-purification systems and for maintaining ecological bal-
ance (Han et al. 2018).

Microbial communities are important parts of lake eco-
systems (Yan et al. 2018) and play an important role in 
regulating the water quality of polluted lakes (Zhang et al. 
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2018). Microbial communities also play vital roles in bio-
geochemical cycling in the sediments of freshwater lakes 
(Liu and Yang 2020). Changes in microbial communities 
may reflect the status of the environment (e.g., water qual-
ity) (Liu et al. 2020). Excess N and P in wetlands can be 
removed through biological, physical, and chemical pro-
cesses (Ballantine et al. 2014). Sediment N cycling is an 
important biological process for permanent N removal (Wu 
et al. 2021). Submerged macrophytes can provide oxygen 
and appropriate environmental conditions for epiphytic 
bacterial communities (Bustamante et al. 2011). Wu et al. 
(2021) reported the direct effects of submerged macrophytes 
on the bacterial community and their indirect effects through 
altering sediment C and concluded that a greater develop-
ment of submerged macrophytes in lakes is associated with 
greater nitrogen removal from lake sediments. Furthermore, 
at night, respiration of submerged macrophytes may shift 
from aerobic to anaerobic because the conditions at night are 
favorable for anaerobic bacteria (Eriksson 1999). Changes 
in microbial communities can reflect the stability of efflu-
ent and sediment ecosystems. However, it is not clear how 
the cultivation of submerged plants for purifying water 
affects the bacterial community in rhizosphere sediments 
and nearby water.

Nansi Lake, which is located in Shandong Province, cov-
ers an area of 1266km2 and is the largest freshwater lake 
in northern China (34°27′–35°20′N, 116°34′–117°21′E) 
(Tian et al. 2013); as the main reservoir lake and biodiver-
sity protection area in the east route of the South to North 
Water Diversion Project, it has an important impact on water 
quality (Zhang et al. 2021). P. lucens Linn. is an important 
submerged plant in Nansi Lake and has a good water puri-
fication effect. However, how the bacterial communities in 

water and rhizosphere sediments differ in areas cultivated 
with P. lucens Linn. (PL) from those in control areas without 
P. lucens cultivation (CK) remains unclear. In this study, 
we collected 24 water and sediment samples from PL and 
CK areas to study the effects of this plant on water quality, 
nutrients and the microbial community.

Materials and methods

Site description and sampling

The sampling site was located in Nansi Lake (34°37′N, 
117°12′E and altitude 27 m) in Jining, Shandong Province, 
China (Fig. 1). This region has a temperate monsoon climate 
with an average annual temperature of 15 °C and a mean 
annual precipitation of 775 mm. With the development of 
industry and the increased application of pesticides along 
the lake area, the industrial and agricultural wastewater 
and domestic sewage discharged to Nansi Lake are increas-
ing yearly. In 2002, water quality was inferior to class V, 
which corresponds to “polluted” and “dirty” (Kondrat’eva 
et al 2009), according to the “China surface water quality 
standard” (GB3838–2002). It thus has great impacts on agri-
culture, fisheries, and the domestic water supply. Near Wan-
zhuang Village (34°37′N, 117°12′E) in Nansi Lake, there is a 
large area (approximately 1 ha) where only P. lucens Linn. is 
cultivated (PL) that appears to be in a clear state and an adja-
cent area (approximately 500 m away) in which the water is 
muddy and lacks any aquatic plants (CK). P. lucens Linn. 
was morphologically identified by Dr. Fengyue Shu using 
taxonomic keys, and voucher specimens were deposited at 
Qufu Normal University (School of Life Sciences), China. 

Fig. 1   The green circles are the sampling sites of the P. lucens Linn., and the white circles are the sampling sites of CK
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The time of sampling was November 2020, when P. lucens 
Linn. was in the declining phase. We randomly established 
three plots (approximately 10 × 10 m) in each of the two 
areas and selected two sampling sites in each plot. For water 
samples, 3.0 L water (20 cm depth) was collected at each site 
and immediately transported to the laboratory at low tem-
perature 0–4 °C. Then, the 1.5 L of each water samples were 
filtered through 0.22-μm membrane filters (Millipore, USA), 
and the filtrate was stored at − 80 °C until DNA extraction. 
The remaining 1.5 L water sample was used for physico-
chemical analysis (Chao et al. 2021). For sediment sam-
ples, we collected surface sediment (0–20 cm) by a Peterson 
dredger. The rhizosphere sediment was collected from the 
sediment adhering to the root crowns, where rooting was so 
dense that all sediment was determined to be under the influ-
ence of roots. Sediment was collected by removing a ran-
domly selected plant and associated root crowns to a depth 
of 20 cm, lightly shaking the plant to remove sediment not 
associated with roots and then collecting soil attached to 
roots (Zhou and Fong 2021), All of the sediments from each 
site were screened, mixed, and packed in polyethylene bags 
and transported to the laboratory on ice. These samples were 
collected in the wild environment of Wanzhuang Village, 
and we obtained permission from the director of the village 
for our collection. In total, we collected 24 sediment sam-
ples [2 individuals × 3 plots × 2 sample sources (water/sedi-
ment) × 2 area types (PL/CK)]. The sediments were sieved 
through a 1.0-mm sieve and stored at –80 °C for further 
molecular analysis.

Chemical characteristics

For chemical characterization, water samples were filtered 
through a 0.22-μm microporous filtering film, and sediment 
samples were air-dried at room temperature and sieved 
through a 1-mm screen. The pH was determined using a 
glass combination electrode (Li et al. 2013). The total nitro-
gen (TN) was determined according to potassium persulfate 
oxidation-UV spectrophotometry. KCl-extractable NO3

− and 
NH4

+ were determined by extraction with 2 M KCl, steam 
distillation, and titration (Mulvaney 1996). The organic mat-
ter (OM) and total potassium (TK) were determined by Nan-
jing Agricultural University. The total phosphorus (TP) was 
determined using the perchloric acid-sulfuric acid method 
(Hedley and Stewart 1982). The content of PO4

3− in water 
was analyzed by resin extraction following a protocol modi-
fied from Hedley and Stewart (1982).

Total community DNA extraction

Total DNA was extracted from 0.25  g of sediment or 
microporous filtering film using the Power Soil DNA Isola-
tion Kit (MOBIO Laboratories Inc., Carlsbad, CA, USA) 

according to the manufacturer’s instructions. The DNA 
concentration and purity (A260/A280) of the extracts were 
estimated using a NanoDrop 2000/2000c spectrophotom-
eter. High-quality DNA was stored at –80 °C for subsequent 
experiments.

Quantitative PCR (qPCR) analysis

The abundance of the bacterial 16S rRNA gene was quanti-
fied using a CFX96™ real-time PCR detection system (Bio-
Rad, Hercules, CA). The reaction mixture (20 μL) contained 
FastFire qPCR PreMix (SYBR Green) (Vazyme, China), 
10 nM of each primer, ROX Passive Reference Dye, and 1 
μL of DNA. Bacterial assays used the primers 515FmodF 
and 806RmodR (Zhou and Fong 2021) and the following 
thermal program: 95 °C for 1 min followed by 40 cycles of 
95 °C for 10 s and 60 °C for 30 s (Lauber et al. 2013). The 
standard for measuring the quantity of the 16S rRNA gene 
was developed from a clone with the correct insert. Plasmid 
DNA was prepared from the clone using a FastPure Plasmid 
Mini kit (Vazyme, Nanjing, China).The R2 of the standard 
curve was > 0.99. The qPCRs were run in quadruplicate with 
the DNA extracted from each sample.

Pyrosequencing and bioinformatics processing

The primers 515FmodF and 806RmodR (Zhou and Fong 
2021) were used to amplify the V4 hypervariable region 
of the bacterial 16S rRNA gene. The PCR products were 
sequenced on the Illumina MiSeq PE 300 platform of Major-
bio Pharm Technology Co., Ltd. (Shanghai, China). The 
obtained sequences were submitted to the NCBI Sequence 
Read Archive under the accession number PRJNA716102.

Paired-end reads were processed using Quantitative 
Insights into Microbial Ecology (QIIME) software, and 
presumptive chimeric sequences were screened and dis-
carded using UCHIME (Zhou and Fong 2021). The original 
sequence data were separated, and the primers were removed 
(Martin 2011). According to the reading quality profile, the 
forward reading of the 16S rRNA gene was truncated to 
240 bp, and the reverse reading was truncated to 160 bp 
(Schmidt et al. 2019). All reads were filtered and trimmed 
using the parameters maxEE = 2 and truncQ = 2. High-
quality sequences were refined and resampled according 
to the lowest number of reads in the sample. To minimize 
the possibility of retaining OTUs due to sequencing errors, 
we deleted OTUs if (1) there were fewer than 5 sequences 
in less than 3 samples in each group or (2) the total num-
ber of sequences in all samples was less than 20 using the 
Silva database (132nd edition; http://​www.​arb-​silva.​de). All 
sequences matching “chloroplast” and “mitochondria” were 
removed from the dataset.
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Statistical analysis

The concentrations of chemical characteristics among sam-
ples were determined using one-way analysis of variance 
(ANOVA), and paired comparisons of treatment means 
were achieved by Tukey’s procedure at P < 0.05 using SPSS 
BASE ver. 19.1 statistical software (SPSS, Chicago, IL, 
USA) (Ahn et al. 2012). Redundancy analysis (RDA) was 
performed using CANOCO 5.0 to identify the relationships 
between the bacterial communities and chemical character-
istics (Zhang et al. 2015). A phylogenetic tree of the genera 
showed significant differences between PL and CK using 
the neighbor-joining method in MEGA v.6.0 and displayed 
using iTOL (Interactive Tree Of Life, https://​itol.​embl.​de/) 
(Zhou and Fong 2021).

Results

Chemical characteristics of water and sediment

The chemical characteristics of the sediment and overlying 
water are shown in Table 1. There was no obvious difference 
in NH4

+, TP, or PO4
3− in water among the sampling sites. 

The water concentrations of NO3
− and NO2

− were signifi-
cantly lower in PL than in CK. There was no obvious dif-
ference in sediment NO3

−, NH4
+, OM, or TP between PL 

and CK. The sediment concentration of TK was lower in PL 
(7.367 g kg−1) than in CK (12.167 g kg−1).

Effects of P. lucens Linn. on the abundance 
of the 16S rRNA gene

The abundance of the 16S rRNA gene in sediment samples 
ranged from 1.1 × 108 to 8.2 × 108 copies/g sediment and 
in water samples ranged from 3.1 × 104 to 1 × 105 copies/
mL water (Fig. 2). The abundance of the 16S rRNA gene 
in sediment samples was significantly lower (P < 0.05) in 
PL than in CK, whereas the opposite trend was observed in 
water samples.

Bacterial alpha diversity

A total of 2,879 OTUs (24.97% of the total 11,532) were 
obtained from the 24 samples. There was a mean of 46,220 
classifiable sequences per sample used in the subsequent 
analysis, with a mean read length of 253 bp. The Good’s 
coverage values were in the range of 0.96–0.99 at a 97% 
similarity cutoff, indicating that the current numbers of 
sequence reads were sufficient for capturing the bacterial 
diversity in the samples.

The alpha-diversity indices in the four groups are shown 
in Table 2. There were significant differences (P < 0.05) 
Simpson, Chao1, Shannoneven, and Simpsoneven index 
measures between PL and CK. The Simpson and Chao1 
indices were higher, and Shannoneven and Simpsoneven 
indices were lower in CK water than in water with PL. 
Furthermore, Ace and Chao1 indices were lower in sedi-
ment with PL than in CK sediment. There was no signifi-
cant difference in the Shannon or Ace index of the bacte-
rial community in water or sediment between PL and CK 
(P > 0.05).

Table 1   Chemical 
characteristics in water and 
sediment from Potamogeton 
lucens Linn. and none-plant 
areas

Values are mean ± standard deviation (N = 3). Values within the same column followed by the different let-
ters indicate significant difference (P < 0.05) by SPSS BASE ver. 19.1

Water samples NO3
− (mg/L) NO2

− (mg/L) NH4
+ (mg/L) Total P (mg/L) PO4

3− (mg/L)

PL-water 0.05 ± 0.095 a 0.006 ± 0.00 a 0.05 ± 0.009 a 0.00 ± 0.00 a 0.025 ± 0.002 a
CK-water 2.9 ± 0.048 b 0.007 ± 0.01 b 0.17 ± 0.193 a 0.08 ± 0.079 a 0.022 ± 0,004 a
Sediment samples NO3

− (mg/kg) NH4
+ (mg/kg) OM (g/kg) Total P (mg/kg) Total K (g/kg)

PL-sediment 0.65 ± 0.007 a 75.00 ± 31.541 a 92.9 ± 4.869 a 158.75 ± 14.496 a 7.367 ± 0.321 a
CK-sediment 0.74 ± 0.102 a 60.89 ± 16.867 a 97.5 ± 0.985 a 141.17 ± 46.544 a 12.167 ± 0.643 b

Fig. 2   Relative abundances of 16S rDNA of P. lucens Linn. (different 
lowercase letters indicates significant differences at P < 0.05)
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Phylogenetic analysis of the bacterial community 
in water and sediment

A total of 702 bacterial and archaeal genera were identified 
in the 24 samples. At the genus level, strong clustering of 
bacterial (Fig. 3) communities according to sample source 
(water/sediment) and area type (PL/CK) was revealed. 
Samples from sediment clustered into one branch and were 
divided into group I and group II; samples from water clus-
tered into another branch and were divided into group III 
and group IV (Fig. 3).

Variation in bacterial communities between water 
and sediment

A total of 30 genera differentially contributing to the bacte-
rial community in sediment between PL and CK were identi-
fied via iTOL, including 17 genera which were significantly 

more abundant in PL than in CK and 13 genera which 
showed the opposite trend (Fig. 4a, Table S1).

A total of 29 genera differentially contributing to the 
bacterial community in water between PL and CK were 
identified via iTOL, including 26 genera which were sig-
nificantly more abundant in PL than in CK (e.g., Limno-
habitans, Algoriphagus, Dinghuibacter) and 3 genera (e.g., 
Omnitrophus, Terrimonas) which showed the opposite trend 
(Fig. 4b, Table S2).

Environmental factors influencing bacterial 
communities’ structure

The RDA results are shown in Fig. 5. The first two axes 
together explained 84.07% (Fig. 5a) and 84.62% (Fig. 5b) 
of the variance in bacterial community structure in the sedi-
ment and water samples, respectively. The distances between 
the PL and CK samples were large, indicating that bacterial 
community structure significantly differed between CK and 
PL in both sediment (Fig. 5a) and water (Fig. 5b). In the 
water samples, the diversity of the bacterial community was 
positively correlated with the TP (P = 0.033) content in PL; 
such a pattern was not observed in CK (Fig. 5b).

The bacterial community in PL was affected by TK and 
NO3

− (Fig. 5a). In CK sediment samples, OM and TK were 
primarily distributed in the same group of taxa in the bacte-
rial communities (Fig. 5a).

Discussion

P. lucens Linn. decreased the concentrations of NO3
− 

and NO2
− in water and TK in sediment

In this study, P. lucens Linn. removed nutrients from 
the water, significantly decreasing the concentrations of 
NO3

− and NO2
− (P < 0.05) (Table 1). This founding is 

consistent with the previous finding that P. lucens Linn. 
can remove N from water (Huo et al. 2010). However, P. 

Table 2   Bacterial α-diversity in different groups

Values are mean ± standard deviation (N = 6). Values within the same column followed by the different letters indicate significant difference 
(P < 0.05)

Estimators PL-water CK-water P value (CKW-
PLW)

PL-sediment CK-sediment P value 
(PCS-
PLS)

Shannon 4.64 ± 0.17 a 4.49 ± 0.15 a 0.1409 6.38 ± 0.18 a 6.42 ± 0.2 a 0.7204
Simpson 0.02 ± 0.01 a 0.04 ± 0.01 b 0.0007 0.01 ± 0 a 0.01 ± 0 a 0.1927
Ace 879.14 ± 180.35 a 1112.7 ± 223.55 a 0.0744 2379 ± 46.29 a 2472.5 ± 28.42 b 0.0018
Chao 887.93 ± 153.36 a 1156.4 ± 209.15 b 0.0296 2420.7 ± 57.64 a 2520.9 ± 22.58 b 0.0027
Shannoneven 0.71 ± 0.02 b 0.67 ± 0.02 a 0.0039 0.83 ± 0.02a 0.83 ± 0.02 a 0.9001
Simpsoneven 0.06 ± 0.01 b 0.03 ± 0.01 a 0.00001 0.08 ± 0.02a 0.06 ± 0.02 a 0.0878

Fig. 3   Hierarchical clustering analysis of bacterial community from 
different sampling site in Nansi Lake at genus level
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lucens Linn. did not substantially reduce N in sediment, 
which may have resulted from the effect of root exudation 
on bacterial communities, and P. lucens Linn. was in a 
declining phase (Yin et al. 2020; He et al. 2020). Further-
more, P. lucens Linn. did not reduce the concentration of 
TP in water or sediment, which may have been due to the 
fact that P. lucens Linn. was in a declining phase (He et al. 
2020), and their yellow leaves may release more P into 
the water when we collected samples. Zhang et al. (2019) 
found that rising temperature significantly increased the 
growth of P. lucens Linn; we collected our samples in late 

autumn, so the performance of these plants was reduced. 
Jin et al. (2017) confirmed that the synergistic purifica-
tion effect of P. maackianus and four other macrophytes 
was much greater than the individual uptake effects in 
water purification. Most likely, the slightly weaker water 
purification capacity observed in our study was due to the 
presence of only the single submerged macrophyte spe-
cies at our sampling sites. Liu and Chen (2018) similarly 
demonstrated that single plant types show poorer purifica-
tion effects than several submerged macrophytes in lake 
systems.

Fig. 4   Bacterial genera statistically different between PLS and CKS 
(a) and PLW and CKW (b). Colored circles represent the relative 
abundance of each genus. Taxonomic dendrogram shows the inferred 
evolutionary relationship of the enriched microbiota of each sample. 
Total relative abundances of all genera and significant effects across 

organic and conventional managements are listed in Table  S1 and 
Table S2. PLW, water samples in Potamogeton lucens Linn.; CKW, 
water samples in CK; PLS, sediment samples in Potamogeton lucens 
Linn.; CKS, sediment samples in CK

Fig. 5   RDA of bacterial communities and environmental factor for 
individual samples. Environmental factor include TP (total phospho-
rus), NH4

+ (concentration of NH4
+), NO3

− (concentration of NO3
−), 

TN (total nitrogen), OM (organic matter), and TK (total potassium). a 

Sediment samples and b water samples. PLW, water samples in Pota-
mogeton lucens Linn.; CKW, water samples in CK; PLS, sediment 
samples in Potamogeton lucens Linn.; CKS, sediment samples in CK
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Significant correlation between 16S rRNA gene copy 
number and P. lucens Linn.

The significant correlation between 16S rRNA gene copy 
number and PL also indicated that P. lucens Linn. could 
have a substantial effect on the population sizes of bacteria. 
The concentration of NO3

− in the CK water samples was 
decreased by 58 times compared with that in the PL water 
samples. These results may demonstrate that P. lucens Linn. 
plays an important role in N removal (i.e., NO3

− and NO2
−) 

in wetlands (Chang et al. 2006) and that N removal stimu-
lated the growth of some bacterial taxa and subsequently 
increased the number of 16S rRNA gene copies (Yan et al. 
2018). In sediment, the number of 16S rRNA gene copies 
was obviously different between PL and CK. This result is 
consistent with the finding that the number of bacteria was 
negatively correlated with the total organic acid concentra-
tion secreted from the roots of P. maackianus, a congener of 
P. lucens Linn. (Yin et al. 2020).

P. lucens Linn. increased bacterial alpha‑diversity 
in water but decreased it in sediment

Our results showed that P. lucens Linn. can improve bac-
terial evenness (Shannoneven, Simpsoneven) and decrease 
bacterial richness (Chao1 index) in water (Table 2). The 
lower Chao1 index in PL water was likely due to the fact 
that sampling was conducted during the declining period 
(November) of this plant (He et al. 2020). A previous study 
indicated that P. maackianus can release organic acids (Yin 
et al. 2020). The amount of organic acids has been indicated 
to be negatively correlated with the diversity of DNA-based 
bacterial communities (Weisskopf et al. 2008). In contrast, 
higher organic acid root exudation from some plants (e.g., 
soybean) has been shown to increase the diversity of the 
microbial community (Yang et al. 2012). This inconsistency 
may be due to the different types and amounts of organic 
acids produced by different plants. In this study, P. lucens 
Linn. may have produced similar organic acids, leading to a 
locally weakly acidic environment in the rhizosphere sedi-
ment unconducive to the survival of some acid-sensitive 
bacteria, thus reducing the alpha-diversity of bacterial com-
munity. However, this hypothesis needs to be tested in future 
experiments by in situ GC–MS and related metagenomics 
techniques to investigate the composition of root exudates.

P. lucens Linn. changed the bacterial community 
composition in water and sediment

The differences between PL and CK in microbial com-
munity structure in water may be explained by the lower 
concentrations of NO3

− and NO2
− in PL water than in CK 

water (Table 1). These results are consistent with previous 

studies (He et al. 2007; Jorquera et al. 2014). In PL water, 
there was a higher abundance of Limnohabitans, which are 
aerobic anoxygenic phototrophs that can supplement their 
mostly heterotrophic metabolism with harvested light energy 
(Kasalický et al. 2018). This result may suggest that P. 
lucens Linn. can purify and improve the light transmittance 
of the surrounding water, leading to an increase in the num-
ber of such microorganisms. Han et al. (2019) reported that 
Chloroflexi and Bacteroidota played a dominant role when 
P. malaianus was in the decline period, and we found that 
the abundances of the phyla Chloroflexi and Bacteroidota 
(0.04%) were higher in PL water than in CK water (Fig. 4b). 
These results suggest that P. lucens Linn. may provide suit-
able conditions for the growth and reproduction of micro-
organisms in Chloroflexi and Bacteroidota. Desulfatiglans 
and Ignavibacterium have been shown to contribute to meth-
ane oxidation by nitrite and sulfate reduction (Jochum et al. 
2018), and Sulfuritalea plays an important role in the deg-
radation of aromatic pollutants (Sperfeld et al. 2019). The 
higher proportions of these three taxa in PL sediment than in 
CK sediment indicated that P. lucens significantly promoted 
carbon metabolism in its rhizosphere sediments. We found 
higher proportions of Cyanobacteria and Firmicutes, which 
are abundant under heavy metal stress (Huang et al. 2020), 
in CK sediment than in PL sediment.

Responses of the bacterial community 
to environmental conditions in water and sediment

The RDA results showed that N and P were the most impor-
tant factors related to bacterial community structure. Hu 
et al. (2020) reported that the concentrations of NH4

+ and 
NO3

− were two important factors affecting the abundances 
of anammox bacteria and denitrifying bacteria, and these 
two microbial groups compete in many ecological envi-
ronments. In the sediment samples of this study, we found 
that these two ions substantially affected the bacterial com-
munity, but whether these functional microorganisms are 
affected at the DNA and RNA levels requires experimental 
investigation. Yin et al. (2020) showed that the composition 
of the bacterial community is likely related to variation in 
NH4 

+ content and thus the rhizosphere states of aquatic 
plants. However, in this study, the diversity of the bacte-
rial community in water was negatively correlated with the 
concentration of NH4

+-N.
In this study, the sediment in the unplanted CK area had sig-

nificantly higher concentrations of TP than PL sediment, and in 
PL sediment, the diversity of the bacterial community was posi-
tively correlated with the concentration of TP (Fig. 5a). These 
results were similar to those of previous studies (Chen et al. 
2014; Dai et al. 2019). In Guanting Reservoir, China, TP con-
centration was shown to directly affect the number of phosphate-
dissolving and/or phosphate-decomposing bacteria in sediment 
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(Li et al. 2005). Furthermore, the TP concentration was found to 
shape the variation in bacterial community composition within 
two different drainage areas (Lindström and Bergström 2005). 
Therefore, the removal of TP from the rhizosphere by P. lucens 
Linn. strongly affected microorganisms involved in phosphorus 
metabolism and thus the entire bacterial community.

Conclusion

In this study, we showed that P. lucens Linn. has strong effects 
on the chemical characteristics and bacterial communities 
in water and rhizosphere sediment in Nansi Lake, China. P. 
lucens Linn. can alter the environment by affecting the quality 
of water, which affects the composition of the bacterial commu-
nity. The results of this study clarify the effect of P. lucens Linn. 
in lake ecosystems, especially in structuring the composition of 
the bacterial community. An optimal purification effect for sew-
age treatment may be achieved with two or more plant types. 
However, the relationship between submerged macrophytes and 
the bacterial community require further study.
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