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Abstract
Increasing evidence suggests an association between fine particulate matter  (PM2.5) exposure and type 2 diabetes mellitus. 
However, there is still a lack of comparative evaluation regarding diabetes burden due to ambient and indoor  PM2.5 pollu-
tion at a global scale. This study attempts to provide a systematic and comprehensive profile for  PM2.5-attributable burden 
of diabetes and its spatiotemporal trends, globally and regionally. Comparative estimates of diabetes attributable to ambient 
 PM2.5 and household air pollution (HAP) from solid fuels for 204 countries and territories were derived from the Global 
Burden of Disease Study 2019. Globally, 292.5 (95% uncertainty interval: 207.1, 373.4) thousand deaths and 13.0 (9.1, 17.2) 
million disability-adjusted life years (DALYs) from diabetes were attributed to  PM2.5 pollution in 2019, wherein more than 
two-thirds (67.3% deaths and 69.7% DALYs) were contributed by ambient  PM2.5. Compared to 1990, age-standardized DALY 
rate (ASDR) in 2019 attributable to ambient  PM2.5 increased by 85.9% (APC: 2.21% [2.15, 2.27]), while HAP-associated 
ASDR decreased by 37.9% (APC: − 1.66% [− 1.82, − 1.50]). We observed a negative correlation between SDI and APC in 
ASMR (rs =  − 0.5, p < 0.001) and ASDR (rs = -0.4, p < 0.001) among 204 countries and territories. HAP-related diabetes 
experienced a sharp decline during 1990–2019, while global burden of diabetes attributable to ambient  PM2.5 was rising 
rapidly. The elderly and people in low-SDI countries suffered from the greatest burden of diabetes due to  PM2.5 pollution. 
More targeted interventions should be taken by governments to reduce  PM2.5 exposure and related diabetes burden.

Keywords Diabetes · Ambient particulate matter pollution · Household air pollution from solid fuels · Disease burden · 
Disability-adjusted life years

Introduction

Diabetes is a chronic metabolic disease that poses a seri-
ous threat to global health. Type 2 diabetes is the most 
common type of diabetes, which occurs when the body 
is resistant to insulin or does not produce enough insulin 
(Paul et al. 2020). Diabetes and associated complications, 
such as heart disease, chronic kidney disease, retinopathy, 
and neuropathy, will reduce the quality of life, life expec-
tancy and rise healthcare costs (Faselis et al. 2020; Lin 
et al. 2020). The Global Burden of Diseases Study 2019 
(GDB 2019) estimated that diabetes ranked as the eighth 
leading cause of disability-adjusted life years (DALYs) 
in 2019 (Vos et al. 2020). According to the evaluation of 
the International Diabetes Federation, global direct health 
expenditure on diabetes in 2019 reached 760 billion dol-
lars and is expected to grow (Williams et al. 2020). The 
incidence of diabetes has increased significantly and will 
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continue to surge in the future. In 2021, it was reported 
that there were 537 million people with diabetes, and the 
number is estimated to go up to 643 million by 2030, 
more than three-quarters of whom live in low- and mid-
dle-income countries (Sun et al. 2022). Governments and 
international organizations are urged to figure out more 
causes and make targeted interventions to reduce diabetes.

Diabetes is generally related to behavioral (e.g., alcohol 
use and smoking), environmental and occupational (e.g., 
ambient particulate matter and occupational injury), and 
metabolic (e.g., high systolic blood pressure and high 
body-mass index) risk factors. Behavioural risk factors 
for diabetes have been well examined (Glechner et al. 
2018). As the process of industrialization and urbaniza-
tion was accelerated, environmental risk factors for diabe-
tes recently popped into public view (Yang et al. 2020b). 
Air pollution, especially fine particulate matter  (PM2.5), is 
an important environmental risk factor, resulting in many 
health problems and even death because of its adverse 
effect caused by toxic compounds (Kermani et al. 2021; 
Liu et al. 2022). A large body of studies indicated that 
long-term exposure to  PM2.5 is related to chronic diseases, 
including hypertension, cognitive aging, and cardiovas-
cular (Leili et al. 2021; Li et al. 2022; Yao et al. 2022). 
Growing epidemiological studies indicated that exposure 
to  PM2.5 is linked to elevated mortalities (Farzad et al. 
2020; Hajizadeh et al. 2021; Zhang 2021). These increased 
risks of diabetes caused by  PM2.5 may be related to sys-
temic inflammation and oxidative stress, which may ulti-
mately lead to the development of insulin resistance and 
beta-cell dysfunction (Buxton et al. 2019; Gangwar et al. 
2020).

The associations between air pollutants and the incidence 
of diabetes have been universally established. Systematic 
reviews and meta-analysis have established the association 
between short- and long-term exposure to ambient particu-
late air pollution and the risk of diabetes (Liu et al. 2019a; 
Yang et al. 2020a), and a limited number of studies have 
evaluated an association between indoor air pollution and 
diabetes (Juntarawijit and Juntarawijit 2020; Mishra et al. 
2020). Existing epidemiological evidence conducted in 
several countries, consisting of Italy, Mexico, and China, 
reinforced this link (Cheng et al. 2022; Chilian-Herrera et al. 
2021; Meroni et al. 2021). However, these individual dis-
ease evaluations for  PM2.5-related diabetes may show great 
heterogeneities in exposure assessments and analytic strate-
gies, thus resulting in substantial uncertainty when com-
paring estimates across study sites and periods (Suryadhi 
et al. 2020; Zhang et al. 2021). It is still warranted to utilize 
a uniform and standardized analytic strategy to provide a 
systematic and comprehensive profile for  PM2.5-attributable 
burden of diabetes on the disease and its spatiotemporal 
trends, globally and regionally.

Therefore, in this study, we attempt to systematically 
and comprehensively estimate the global burden of diabe-
tes caused by ambient and indoor  PM2.5 from 1990 to 2019 
by different ages, sex, regions, and SDI, which may help 
governments and international organizations make targeted 
interventions to reduce  PM2.5-attributable diabetes burden.

Materials and methods

Study data

We derived the up-to-date estimates of diabetes burden due 
to particulate matter pollution on the GBD website (http:// 
ghdx. healt hdata. org/ gbd- resul ts- tool, assessed on February 
17, 2022). The GBD 2019 conducted a systematic and com-
parative assessment of the global burden for 369 diseases 
and injuries and 87 risk factors in 204 countries and ter-
ritories from 1990 to 2019. Here, this current study only 
focused on the trends of diabetes burden attributable to 
ambient  PM2.5 and household air pollution (HAP). The GBD 
2019 estimation methods for attributable burden of disease 
have been detailed elsewhere (Murray et al. 2020b; Vos et al. 
2020). Briefly, GBD 2019 evaluated exposure comprised of 
ambient  PM2.5 and HAP: (1) Ambient  PM2.5 exposure was 
based on satellite data which was estimated at 0.1° × 0.1° 
(11 km × 11 km at the equator) resolution (Cohen et al. 
2017) and (2) assessment of HAP exposure was calculated 
by the proportion of individuals who use a specific solid-fuel 
type (wood, coal, charcoal, agricultural residues, or dung) 
through the spatio-temporal Gaussian Process Regression 
(Bennitt et al. 2021). Type 2 diabetes mellitus is defined 
based on the International Statistical Classification of Dis-
eases and estimated by using vital registration data, verbal 
autopsy, censuses, disease registries, and other sources (Vos 
et al. 2020).

Measures for diabetes burden

Burden of diabetes attributable to  PM2.5 was assessed using 
metrics including numbers and population attributable frac-
tions (PAF) of deaths and DALYs, socio-demographic Index 
(SDI), age-standardized mortality rate (ASMR), and age-
standardized DALY rate (ASDR).

PAF defines the proportional reduction in population dis-
ease or mortality that would occur if exposure to a risk factor 
was reduced to an alternative ideal exposure scenario (Vos 
et al. 2020). DALYs were calculated as the sum of years of 
life lost (YLLs) due to premature death and years lived with 
disability (YLDs), based on a reference maximum observed 
life expectancy and standardized disability weights for each 
health state (Murray et al. 2020b; Vos et al. 2020). Disabil-
ity weights adopted for YLL calculation were derived from 
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general population-based surveys (Salomon et al. 2015). 
SDI comprehensively evaluates the development level and is 
strongly correlated with health outcomes. In summary, SDI 
ranges from 0 to 1 and encompasses three different aspects 
which combine information on a gross domestic product, 
average schooling years among individuals over 15 years 
old, and the total fertility rate among females under 25 years 
old (Murray et al. 2020a).

To eliminate the influence of heterogeneity caused by dif-
ferences in population age structures, GBD 2019 calculated 
the percentage change based on the point estimates of the 
age-standardized rates (ASR, per 100,000 population). Esti-
mates in this paper are presented in absolute numbers and 
ASR with 95% uncertainty intervals (95% UIs), which were 
defined as the ordinal 25th and 975th draws for each measure 
in the 1000 estimations (Lozano et al. 2020). All rates were 
age-standardized via the direct method applying the GBD 
global-age structure.

Stratified analyses

Diabetes burden due to ambient  PM2.5 and HAP were per-
formed by sex, age, 21 GBD regions, and 204 countries and 
territories during 1990–2019. Age groups were divided into 
16 categories (all-ages, 5-year age intervals between 25 and 
94 years, and ≥ 95 years). We described the ASMR and 
ASDR trends of diabetes attributable to ambient  PM2.5 and 
HAP, respectively. In addition, all the countries and regions 
were grouped into 21 GBD regions according to a geo-
graphic hierarchy. According to SDI, 204 countries and ter-
ritories were categorized into five regions: low SDI (< 0.46), 
low-middle SDI (0.46–0.60), middle SDI (0.61–0.69), high-
middle SDI (0.70–0.81), and high SDI (> 0.81) (Roth et al. 
2018).

Statistical analysis

Percentage change and annual percentage change (APC) 
were estimated to depict the spatiotemporal trends of the 
ASMR and ASDR (Liu et al. 2019b). The trend of ASR can 
be measured over a time interval by APC; it can be obtained 
from a log-linear model:

where X was the calendar year, β1 represents the annual 
change, and ε refers to the error term. ASR in log trans-
formation is assumed to be normally distributed; APC was 
calculated as (exp(β1) − 1) × 100 (Hankey et al. 2000). If the 
lower boundary of the APC’s 95% UIs were > 0, the ASR 
was considered to increase. Conversely, if the upper bound-
ary of the APC’s 95% UIs were < 0, the ASR was thought to 
decrease. Otherwise, it was considered to be steady. Finally, 

ln(ASR) = �
0
+ �

1
X + �

we used the Spearman correlation coefficient to examine the 
correlation between SDI and ASR, and APC.

All analyses were performed using the R version 4.0.2 
(R Foundation for Statistical Computing, Vienna, Austria). 
A 2-sided p-value less than 0.05 is considered to be statisti-
cally significant.

Results

Overall diabetes burden attributable to  PM2.5 
from 1990 to 2019

Globally, deaths and DALYs of diabetes attributed to ambi-
ent  PM2.5 and HAP saw a continuous increase from 1990 to 
2019 (Tables S1 and S2). In 2019, 292.5 (95% UI: 207.1, 
373.4) thousand diabetes deaths were attributed to  PM2.5 
exposure, representing a 124% increase compared with 
130.6 (91.4, 182.0) thousand in 1990.  PM2.5-attributable 
DALYs rose substantially from 5.5 (3.7, 7.8) million in 
1990 to 13.0 (9.1, 17.2) million in 2019. However, ASMR 
changed slightly from 3.6 (2.5, 4.9) in 1990 to 3.7 (2.6, 4.7) 
per 100,000 in 2019, and ASDR scaled up from 134.2 (92.0, 
188.9) in 1990 to 156.1 (109.6, 207.3) per 100,000 in 2019.

The absolute numbers of diabetes deaths and DALYs due 
to ambient  PM2.5 and HAP were higher in females, while 
males had larger ASMR and ASDR in 1990 and 2019. 
Deaths and DALYs were highly variable across regions, 
where estimates of ASDR were lowest in Australasia (18.5 
[4.1, 39.1] per 100,000) and highest in Oceania (764.1 
[499.7, 1073.8] per 100,000) in 2019.

Global diabetes burdens attributable to ambient 
 PM2.5 and HAP

Figure 1 shows APC in ASDR of diabetes attributable to 
ambient  PM2.5 and HAP by country between 1990 and 2019. 
Over 30 years, the numbers of diabetes deaths attributable to 
ambient  PM2.5 surged 2.5-fold (55.8 thousand in 1990 versus 
196.8 thousand in 2019), and DALYs followed a faster pattern 
of growth (2.3 versus 9.0 million). In terms of HAP-related 
diabetes, both deaths and DALYs exhibited an upward trend 
from 1990–2019. Deaths reach 95.7 thousand in 2019, rising 
28.0% from 74.8 thousand in 1990, while DALYs soared by 
25.4% from 3.1 to 3.9 million during the same period.

Figure 2 reveals the ASDR distribution of diabetes 
due to ambient  PM2.5 and HAP in 2019. ASMR due to 
ambient  PM2.5 increased by 57.3% from 1.6 to 2.5 per 
100,000, with an APC of 1.5% (1.4, 1.6); ASDR increased 
by 86.7% from 58.4 in 1990 to 109.0 per 100,000 in 2019, 
with an APC of 2.21% (2.15, 2.27). By contrast, HAP-
related ASMR dropped dramatically by 39.9% from 2.0 in 
1990 to 1.2 per 100,000 in 2019, with an APC of − 1.69% 

52846 Environmental Science and Pollution Research  (2022) 29:52844–52856

1 3



(− 1.89, − 1.49); ASDR scaled down from 75.9 in 1990 
to 47.1 per 100,000 in 2019 on a slump by 37.9%, with 
an APC of − 1.66% (− 1.82, − 1.50). In 2019, ASMR and 
ASDR ascribed to ambient  PM2.5 were 2.1- and 2.3-fold 
higher than those ascribed to HAP, respectively; (Figs. S1 
and S2).

Diabetes burden attributable to ambient  PM2.5 
and HAP by sex and age

Figure 3 presents a different sex-specific tendency of diabe-
tes attributable to ambient  PM2.5 and HAP over the past three 
decades. Males suffered from greater ASMR and ASDR 
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Fig. 1  Annual percentage changes in age-standardized DALY rate of 
diabetes attributable to ambient  PM2.5 and HAP by country between 
1990 and 2019. A APC in ASDR of diabetes attributable to ambi-

ent  PM2.5. B APC in ASDR of diabetes attributable to HAP. DALY 
disability-adjusted life years, ASMR age-standardized mortality rate, 
ASDR age-standardized DALY rate
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attributed to ambient  PM2.5 over 30 years, with 2.8 and 
122.2 per 100,000 in 2019, respectively. Males had larger 
HAP-related ASMR and ASDR in 1990 (2.1 versus 1.9, 77.0 
versus 75.3 per 100,000), while females were at a slightly 
larger burden in 2019, with 1.2 and 48.6 per 100,000 ASMR 
and ASDR (versus 1.2 and 45.6 per 100,000 in males).

Figure 4 illustrates PAF of DALYs for diabetes caused by 
ambient  PM2.5 and HAP in age groups from 1990 to 2019. 
Generally, in all age groups, ambient  PM2.5-related PAF of 
DALYs saw a considerable increase during the 30 years from 
9.2% to 13.6%, while PAF of DALYs caused by HAP was off 
52.0% from 12.3% to 5.9%. In 2019, people aged 25–49 years 
accounted for the largest PAF of DALYs related to ambient 
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Fig. 2  Age-standardized DALY rate of diabetes attributable to ambi-
ent  PM2.5 and HAP by country in 2019. A Age-standardized DALY 
rate of diabetes attributable to ambient  PM2.5. B Age-standardized 

DALY rate of diabetes attributable to HAP. DALY disability-adjusted 
life years, ASMR age-standardized mortality rate, ASDR age-stand-
ardized DALY rate
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 PM2.5 and HAP at respectively 14.1% and 6.9%, suggesting 
that  PM2.5 pollution played as one of the leading risk factors 
of diabetes in young adults.

Diabetes burden attributable to ambient  PM2.5 
and HAP by countries and regions

Figure 5 exhibits the burden of diabetes attributable to ambi-
ent  PM2.5 and HAP between GBD regions in 1990 and 2019. 
As can be seen, ASMR and ASDR varied spatially in 2019. 
Southern Sub-Saharan Africa had the largest ASDR caused 
by ambient  PM2.5 at 280.4 per 100,000, with an APC of 

3.3% (2.9, 3.6) during 1990–2019, followed by Central Latin 
America (246.5 per 100,000), and North Africa and Middle 
East (220.6 per 100,000). By contrast, in 2019, the lowest 
ASDR attributable to ambient  PM2.5 occurred in Australasia 
(18.3 per 100,000), with an APC of − 0.8% (− 1.0, − 0.5), 
followed by Eastern Europe (40.0 per 100,000) and Eastern 
Sub-Saharan Africa (40.2 per 100,000). ASMR attributed to 
ambient  PM2.5 had a similar pattern (Fig. S3).

In 2019, Bahrain was the top-ranked country in ambi-
ent  PM2.5-related ASMR and ASDR, with estimates of 30.3 
and 770.2 per 100,000, followed by Qatar (29.7 and 722.1 
per 100,000), while ASMR and ASDR in Iceland were the 
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Fig. 3  Sex-specific global burden of diabetes attributable to ambi-
ent  PM2.5 and HAP from 1990 to 2019. A Age-standardized mortal-
ity rate of diabetes attributable to ambient  PM2.5. B Age-standardized 
DALY rate of diabetes attributable to ambient  PM2.5. C Age-stand-

ardized mortality rate of diabetes attributable to HAP. D Age-stand-
ardized DALY rate of diabetes attributable to HAP. ASMR age-stand-
ardized mortality rate, ASDR age-standardized DALY rate
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lowest at 0.1 and 11.0 per 100,000. In parallel, the largest 
HAP-related ASDR were in Kiribati (1000.7 per 100,000) 
(Fig. 3), while United Arab Emirates occupied the lowest 
ASDR at 0.02 per 100,000.

Diabetes burden attributable to ambient  PM2.5 
and HAP by SDI

Figure 6 indicates ASDR of diabetes attributable to ambi-
ent  PM2.5 and HAP, grouped by SDI quintiles from 1990 to 
2019. Diabetes burden varied substantially from low SDI to 
high SDI, showing a gentle downward trend. In 2019, the 
largest ASMR and ASDR (3.8 and 150.1 per 100,000) due 
to ambient  PM2.5 were observed in the middle SDI coun-
tries, while the lowest burden was estimated in countries 
with high SDI, at 0.9 and 58.6 per 100,000. From 1990 to 
2019, ASMR and ASDR attributable to ambient  PM2.5 in all 
countries increased slightly or remained still except for high 
SDI countries. HAP-related ASMR and ASDR showed a 
significant negative association with SDI from 1990 to 2019, 
suggesting high SDI countries shared the lowest ASMR and 
ASDR (0.01 and 0.4 per 100,000), while low SDI countries 
were experiencing the greatest diabetes burden from HAP 
(6.0 and 195.2 per 100,000).

We observed a significant negative correlation between 
SDI and APC of ASR (ASMR [rs = -0.5, p < 0.001], ASDR 
[rs = -0.4, p < 0.001]) among 204 countries, suggesting high-
SDI countries were associated with lower APC estimates 
in ASMR and ASDR (Fig. S4). Figure 7 describes the cor-
relation between SDI and ASDR of diabetes attributable to 
ambient  PM2.5 and HAP by region from 1990 to 2019. A 
nonlinear association was observed between SDI and ASR. 
Globally, ambient  PM2.5-related ASMR and ASDR climbed 
slightly and then dipped sharply, showing an inverted 
U-shaped relation with a peak at middle SDI; while HAP-
related ASMR and ASDR started at a gentle hill and then 
scaled down, presenting a near negative association between 
ASR and SDI (Figs. 7 and S5).

Discussion

Based on GBD 2019, this study described the temporal and 
spatial distribution of diabetes burden due to ambient  PM2.5 
and HAP in 204 countries and territories, indicating a great 
discrepancy across regions from 1990 to 2019. The absolute 
number of deaths and DALYs caused by ambient  PM2.5 and 
HAP were at a rapidly upward trend over the past three dec-
ades, while ASMR and ASDR attributed to ambient  PM2.5 

Fig. 4  Population attributable 
fractions of DALYs for diabetes 
caused by ambient  PM2.5 and 
HAP in age groups from 1990 
to 2019. A PAF of diabetes 
attributable to ambient  PM2.5. B 
PAF on diabetes attributable to 
HAP. DALY disability-adjusted 
life years, ASMR age-stand-
ardized mortality rate, ASDR 
age-standardized DALY rate
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and HAP showed an opposite pattern. ASMR and ASDR 
attributed to ambient  PM2.5 soared considerably from 1990 
to 2019, and were more pronounced in males, the elderly, 
and middle SDI countries, while HAP-related ASMR and 
ASDR experienced a sharp decline at the same period. A 
negative association was found between SDI and APC of 
ASR from 1990 to 2019, and nonlinear correlations were 
observed between SDI and ASR.

This study found that, globally, a continuous climb and 
a dramatic drop remained in the diabetes burden attributed 
to ambient  PM2.5 and HAP, respectively. As prior epide-
miological studies presented, people were more prone to 
suffer from diabetes when exposed to high concentrations 
of ambient  PM2.5 (Wu et al. 2021). It is natural that sub-
stantial attributable burdens were caused by ambient  PM2.5 
with rapid acceleration of urbanization and fast growth in 

fossil fuel combustion (Shi et al. 2021). The increment in 
consumption of fossil fuels involved a role in the growth 
ambient  PM2.5-related burden. HAP from solid fuels is one 
of the primary environmental health risks (Rosário Filho 
et al. 2021). Our study illustrated that low SDI countries 
was responsible for a large diabetes burden (e.g., ASMR 
and ASDR in 2019: 6.0 and 195.2 per 100,000). However, 
HAP-related ASMD and ASDR experienced a sharp decline 
by 39.9% and 37.9% during 1990–2019, respectively, which 
may be driven by energy transition toward clean fuels gradu-
ally (Snider et al. 2018).

Stratified analysis by sex illustrated that burden of 
diabetes attributable to ambient  PM2.5 was considerably 
greater in males, which may be related to individual activ-
ity patterns or occupations (Shin et al. 2021). Males had 
more access to exposure in ambient  PM2.5 and higher 

Fig. 5  Age-standardized DALY 
rate of diabetes attributable 
to ambient  PM2.5 and HAP in 
GBD regions in 1990 and 2019. 
A ASDR of diabetes attributa-
ble to paticulate matter in 1990. 
B ASDR of diabetes attributable 
to particulate matter in 2019. 
DALY disability-adjusted life 
years, ASMR age-standardized 
mortality rate, ASDR age-
standardized DALY rate
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smoking rates (Peng et al. 2020), resulting in more diabe-
tes risk caused by ambient  PM2.5. We found females were 
at slightly larger HAP-related ASMR and ASDR in 2019. 
People spent roughly 90% of their lifetime indoors (Kle-
peis et al. 2001), and had great chances of being exposed 
to HAP. Given more time spent cleaning, cooking, and 
caring for children, women were usually at a high expo-
sure to indoor residential emissions (James et al. 2020), 
thus suffering from a higher HAP-related burden (Mishra 
et al. 2020).

PAF of deaths and DALYs attributed to ambient  PM2.5 
or HAP varied greatly by age groups (e.g., DALYs in 2019: 
14.3% in 30–34 yrs, 4.7% in 80 + years). Our analysis 
showed that in 2019, there are around one-seventh DALYs 
on diabetes attributed to ambient  PM2.5 in 25–49 group, sug-
gesting a great proportion of diabetes burden would dimin-
ish if concentration of  PM2.5 were reduced (Murray et al. 
2020b). The absolute numbers of deaths and DALYs were 
much higher in the elderly because of the high prevalence 
(Sun et al. 2022), while a greater PAF attributed to  PM2.5 
was observed in the young group than the elderly. The rea-
son for relative low PAF of  PM2.5 in older persons correlated 

to that they are more susceptible to cardiovascular diseases, 
which was closely interlinked with diabetes (Petrie et al. 
2018). Therefore,  PM2.5 accounted for a relatively less pro-
portion in the old group with diabetes (Chen et al. 2016). 
Nevertheless, considering the biological degradation and 
ageing (e.g., a higher decline of immunologic and lung func-
tion) (Liu et al. 2018), the elderly are of high vulnerability 
to air pollution and should thus avoid  PM2.5-related health 
loss by taking more protective measures (Qiu et al. 2018).

We found that, in 2019, ASMR and ASDR of diabetes 
attributable to ambient  PM2.5 was highest in middle SDI 
countries (3.8 and 150.1 per 100,000), particularly in the 
Southern Sub-Saharan Africa, where residents were exposed 
to heavy ambient  PM2.5 pollution (Shaddick et al. 2018). It 
may be caused by the fact that undeveloped countries are 
experiencing worse ambient air quality and have greater 
risks of  PM2.5-related diseases (Hystad et al. 2020). Mean-
while, due to more solid fuels consumed (Rajkumar et al. 
2018), and less ventilation used (Yu et al. 2020), low SDI 
countries contributed the largest HAP-related diabetes bur-
den (with ASMR and ASDR of 6.0 and 195.2 per 100,000 
in 2019) (McCarron et al. 2020). Stricter ambient air quality 
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criteria promulgated by policymakers and energy transfor-
mation to cleaner fuels were needed in undeveloped and 
developing countries to reduce  PM2.5-related health loss 
(Huang et al. 2018). The association between SDI and ASR 
presents an inverted U-shaped relation with a peak in mid-
dle SDI countries, suggesting that in low- and middle-SDI 
countries, rapid economic growth contributed to a significant 
amount of  PM2.5 pollution (Shan et al. 2020). HAP-related 
ASR shows a nearly linear association with SDI, indicat-
ing that high-SDI countries, benefiting from cessation of 
solid fuel use or replacing them with cleaner fuels, had lower 
ASRs (Shaddick et al. 2018).

The major advantage of this study was that we system-
atically and comprehensively estimated the global bur-
den of diabetes caused by ambient  PM2.5 and HAP from 
1990 to 2019 by different ages, sex, regions, and SDI. 

This should significantly help to provide a comparable 
reference for policymakers to take targeted measures to 
diminish air pollution and related diabetes. Meanwhile, 
we acknowledged this analysis has a few limitations. 
First, we may underestimate burden of diabetes due to air 
pollution with regard to utilizing GBD data, which were 
highly relied on existing but insufficient epidemiological 
studies (Cohen et al. 2017; Murray et al. 2020b). Second, 
assessments for undeveloped countries with high levels of 
air pollution may be inaccurate, because sparse evidence 
based on prospective cohort studies was available in low 
SDI countries to date (Yin et al. 2020). Third, estimates of 
ambient  PM2.5 exposure was still of great uncertainty at a 
global scale, and estimates of HAP from other sources was 
absent (such as estimates on heating and indoor second-
hand smoke) (Deng et al. 2020), which may result in high 
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possibility of exposure misclassification (Turner et al. 
2014; Yang et al. 2018). Fourth, we only estimated the 
diabetes burden attributable to ambient  PM2.5 and HAP 
additivity; however, burden may multiply or more complex 
interact regarding joint effects (Yin et al. 2020). Further-
more, high-quality epidemiological research in undevel-
oped countries with high ambient  PM2.5 and HAP levels 
is still warranted.

Conclusions

In conclusion, this study illustrated that HAP-related dia-
betes experienced a sharp decline during 1990–2019, while 
global burden of diabetes attributable to ambient  PM2.5 was 
rising rapidly. The elderly and people in low-SDI countries 
suffered from the greatest burden of diabetes due to  PM2.5 
pollution. Our study suggested that active interventions 
should be taken to get a further decline in  PM2.5 exposure 
and related diabetes burden.
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