
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11356-022-19329-1

RESEARCH ARTICLE

Spatiotemporal variability of drought/flood and its teleconnection 
with large-scale climate indices based on standard precipitation index: 
a case study of Taihu Basin, China

Dingkui Wang1 · Zengchuan Dong1   · Feiqing Jiang1 · Shengnan Zhu1 · Zihan Ling1 · Jiayi Ma1

Received: 15 October 2021 / Accepted: 17 February 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
With the intensification of global warming, frequency of floods and droughts has been increasing. Understanding their long-
term characteristics and possible relationship with large-scale meteorological factors is essential. In this study, we apply 
signal denoising, dimensionality reduction technique, and wavelet transform to study the spatiotemporal distribution pattern 
of drought/flood and its teleconnection with large-scale climate indices. Based on the precipitation data of 63 hydrological 
stations in the Taihu Lake Basin (TLB) for 54 years from 1965 to 2018, the standard precipitation index (SPI) was used 
as an indicator. The ensemble empirical mode decomposition (EEMD) and empirical orthogonal function (EOF) methods 
were used to explore the spatiotemporal evolution characteristics of droughts and floods. In addition, the cross-wavelet 
transform (XWT) method was used for teleconnection analysis. The results indicated that during 1965–2018, the SPI of the 
TLB showed quasiperiodic oscillations dominated by interannual oscillations (52.5%). Except for the trend of drought in 
spring, the basin showed a wetter trend at annual, summer, autumn, and winter scales. There were two main spatial modes 
(total 78.48% contribution) in the TLB, consistent across the region and reverse distributed from south to north. The dry 
areas were mainly in southern Zhexi and the northern Huxi sub-regions; the Hangjiahu and Yangchengdianmao sub-regions 
were prone to flooding. In addition, SPI was correlated with various large-scale meteorological factors, but the strength of 
the correlation had specific temporal and spatial heterogeneity. The research results can provide TLB reference values for 
water resource management and flood/drought disaster control.

Keywords  Meteorological drought/flood · Drought index · Multiple time scale · Climate variability · Teleconnection 
patterns · Cross-wavelet transform · Response analysis

Introduction

According to the AR6 report of the Intergovernmental Panel 
on Climate Change (IPCC), the global surface temperature 
has increased by 0.84–1.1 in the past 120 years (IPCC 2021), 
and there is a continuing trend. At the same time, this warm-
ing trend is accompanied by frequent extreme climate events 
(Pei et al. 2020). Drought lasts for a long time and affects 
a large area (AghaKouchak et al. 2015; Philip et al. 2017; 
Yu et al. 2021); floods are frequent and destructive (Khan 

et al. 2021). Drought and flood disasters have always had 
many adverse effects on the ecological environment and 
economic development worldwide and made up some of 
the most severe meteorological disasters (Arduino et al. 
2005; Salehnia et al. 2020). There have been many stud-
ies on the analysis of drought and flood characteristics in 
various regions of the world (Vasileios et al. 2018; Yang 
and Scanlon 2019). Both drought and flood are made up of 
imbalances in water availability (Paulo et al. 2016). Grasp-
ing the development laws and causes of drought and flood 
is of indelible significance to alleviate disasters, reduce eco-
nomic losses, and maintain sustainable development.

Based on the characteristics of drought and flood events, 
it is challenging to identify and evaluate the level of drought 
and floods (Wang et al. 2020a). Therefore, different indices 
have been proposed regularly to judge drought and flood 
grades. Currently, the commonly used indices include the 
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standardized precipitation index (SPI) (Mckee et al. 1993), 
Palmer drought severity index (PDSI) (Palmer 1965), and 
self-calibrating Palmer drought severity index (scPDSI) 
(Wells et al. 2004), standardized precipitation evapotran-
spiration index (SPEI) (Vicente-Serrano et al. 2010), effec-
tive drought index (EDI) (Byun and Wilhite 1999), etc. The 
advantages and disadvantages of various drought and flood 
indicators in use can be found described in previous studies 
(Hayes et al. 1999; Li et al. 2019). Compared with other 
indices, the SPI has the advantage of multiple timescales, 
which can better reflect the variation in drought and flood 
characteristics at different scales (Guttman 1999). The merit 
of the SPI is the ease of computation, which is reflected in 
data acquisition. By only considering the precipitation factor 
as space–time adaptive (Hui et al. 2014), the computation 
only needs to collect precipitation data, which is popular 
in areas where meteorological data are scarce , so the SPI 
is widely used throughout the world (Byun and Kim 2010; 
Salehnia and Ahn 2022). Much research has been done on 
the spatiotemporal characteristics of drought and flood in 
critical areas based on the SPI index (Dar and Dar 2021; 
Noorisameleh et al. 2021; Salehnia et al. 2017). Limited by 
the number of meteorological stations, the study selected 
SPI as the index to confirm the droughts and floods grade.

Previous studies of climate tendency generally focused 
on time series analysis (Zhao et al. 2019). In reality, dif-
ferent meteorological data often have different distribution 
functions. Therefore, many researchers use non-parametric 
method to study the trend of time series and other factors. 
Sen’s slope combined with Mann–Kendall trend test are 
the commonly used tools for detecting the trend value and 
significance of climate elements (Yilmaz and Tosunoglu 
2019). In recent years, many signal processing methods have 
emerged. In view of the nonlinearity and high signal-to-
noise ratio of time series, some denoising methods have been 
proposed one after another. Empirical mode decomposition 
(EMD) (Huang et al. 1998), as a method of adaptively pro-
cessing data, has proven to be a very useful non-parametric 
signal denoising method (Gao and Shang 2019). It can adapt 
to the analysis of nonlinear and nonstationary signals. The 
EEMD is improved on the former; white noise interference 
is introduced, which avoids the problem of modal aliasing to 
a certain extent (Wu and Huang 2011). A few scholars have 
applied this signal processing method to climate research 
(Franzke 2012; Zhou et al. 2014). The climate system is 
a typical chaotic and nonlinear system. Correspondingly, 
meteorological data is also a nonlinear and nonstationary 
time series. For this kind of sequence, the EEMD is used 
to decompose it into different frequency modes (Chang and 
Liu 2011) and the possible change rules, and the physical 
mechanism of different modes can be found. On the spa-
tial scale, the spatial changes of climate element trends in 
areas affected by humans have also attracted more and more 

attention. As a dimensionality reduction method, EOF sepa-
rates the time field and the space field to facilitate better 
identification of the spatial modalities of the elements and 
is widely used in meteorological research (Zveryaev 2006).

Meanwhile, hydrometeorological teleconnections play 
a vital role in hydrological processes (Shi et  al. 2021), 
because it can reflect the influence of large-scale circulation 
on meteorological elements. Based on it, additional studies 
are required to understand the transformation mechanisms 
of drought and flood characteristics, especially their pos-
sible relationship with large-scale climate indices. Cross-
wavelet transform is a new signal analysis technique. It is 
often used to study the correlation between two time series 
in time–frequency domain. Many scholars have carried out 
a large number of researches on the teleconnection of cli-
mate tendency and large-scale meteorological factors by this 
method (Liu et al. 2020; Voice and Hunt 1984). In the TLB, 
Yin et al. studied the relationship between flood and drought 
disasters and El Niño–Southern Oscillation (ENSO) from 
1857 to 2003 based on EOF and XWT methods (Yin et al. 
2009). Beyond that, there were no systematic study of the 
teleconnection between climate trends and large-scale cli-
mate factors in the TLB.

The Taihu Lake Basin (TLB) is one of the most important 
basins in China, which is located in the Yangtze River Delta. 
It is the most urbanized and economically developed region 
in China. Influenced by its subtropical monsoon climate and 
geographical location (Wang et al. 2020b), the basin has 
abundant rainfall and frequent flood disasters in the flood 
season. To effectively monitor and predict the occurrence 
of flood events and minimize extreme losses, many studies 
have been conducted on flood disasters in the TLB (Jiang 
et al. 2021; Luo et al. 2019). However, research on watershed 
drought is limited. Due to its topography and geographical 
location, among other reasons, the spatiotemporal distri-
bution of precipitation in the TLB is uneven, resulting in 
the existence of drought in the basin. So, it is necessary 
to study the spatiotemporal distribution characteristics of 
drought and flood in the TLB. Previous studies on the char-
acteristics of drought and flood mostly focused on a single 
scale of time series. Here, we used a new signal processing 
method (EEMD), which can more clearly analyze the multi-
time scale oscillation and spatiotemporal characteristics of 
droughts and floods. For the study of teleconnection rela-
tionships, previous studies only consider the teleconnec-
tion patterns. On this basis, this article takes into account 
sunspots, a factor that has an important impact on climate 
change.

Few works have been conducted on the spatiotemporal 
distribution of droughts/floods and systematic study of tel-
econnection in the TLB. To fill this gap, three specific goals 
were identified: (1) investigate the multiscale oscillation 
characteristics and variation trends of drought and flood in 

50118 Environmental Science and Pollution Research (2022) 29:50117–50134



1 3

the TLB, (2) explore the heterogeneity in the spatial distri-
bution of SPI trends and discover the main spatial modes 
that lead to such difference, and (3) understand the influence 
mechanism of large-scale climate indices on drought and 
floods and its predictability.

Study area and data

The TLB is located between 119°11′–121°53′ E and 
30°28′–32°15′ N, as shown in Fig. 1. It has a subtropical 
monsoon climate, with an annual average temperature of 
15.5 °C and an annual average rainfall of 1181 mm. The 
rainfall is distributed unevenly throughout the year, falling 
mainly from May to September, with a tremendous interan-
nual variation. The Yangtze River bounds the basin in the 
north, Hangzhou Bay in the south, the East China Sea in 
the east, and Maoshan, Jieling, and Tianmu Mountains in 
the west. The total area of the basin is approximately 36900 
km2. The terrain is high in the west and low in the east, high 
around, and low in the middle, with a disk-like distribution. 
The entire basin is dominated by plains, which account for 
two-thirds of the total basin. The basin is characterized by 

numerous lakes and a dense river network. The water sur-
face area of the basin is 2338 km2, and the water surface 
covers 17% of the whole basin. The river network density 
in the plain area is 3.2 km/km2, which constitutes a typical 
“southern Jiangnan water network.”

Based on the consistency and integrity of the data, daily 
precipitation data from 63 hydrological stations with uni-
form distribution in the TLB for 54 years (1965 to 2018) 
were selected in this study. The data were obtained from 
the China Meteorological Service Network (https://​data.​
cma.​cn/), and the data were verified by the Hydrologi-
cal Yearbook of the People’s Republic of China (1965 to 
2018). Large-scale meteorological indices included the 
Arctic Oscillation (AO), Pacific Oscillation (PDO), Indian 
Ocean Dipole (IOD), North Atlantic Decadal Oscillation 
(AMO), and El Niño–Southern Oscillation, which came 
from the Earth System Research Laboratory (ESRL) of 
the US National Oceanic and Atmospheric Administration 
(NOAA) (http://​www.​cpc.​ncep.​noaa.​gov/). The relative sun-
spot number came from the Data Centre of the Royal Bel-
gian Observatory (http://​www.​sidc.​be/​silso/​dataf​iles). The 
time span of the above large-scale meteorological indices 
was 1965–2018.

Fig. 1   Location of the study areas
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Methodology

Standardized precipitation index (SPI)

The SPI applies to monitoring and assessing drought and flood 
conditions monthly and above. This index assumed that the 
precipitation complied with the γ distribution, and combined 
with the reality that the precipitation conforms to the skewness 
distribution, it can be obtained after standard normalization. 
We used 54 years (1965–2018) of monthly precipitation over 
the case study area for calculating it. The details of the SPI 
calculation were as follows:

(1)	 Suppose the precipitation in a certain period of time is a 
random variable X, and its probability density function 
conforming to the Gamma distribution is

where β and γ are size and shape parameters, respectively, 
which can be obtained by maximum likelihood estimate:

(2)	 After the probability density function is determined, the 
probability that the random variable x is less than x0 can 
be obtained for the precipitation x0 in a certain year:

When the precipitation is 0, the event probability can be 
obtained by the following formula:

where m is the number of samples with precipitation of 0, n 
is the total number of samples.

(3)	 By normalizing the distribution probability and per-
forming an approximate solution, SPI can be obtained. 
The formula is as follows:
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1
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where P is the distribution probability of precipitation 
related to the Γ function, t is a function of P, and S is the 
positive and negative coefficient of probability density, 
which is related to P. When P ≤ 0.5, then S = 1; when P > 
0.5, sign reversal, and then S = −1, Cx and dx are the calcu-
lation parameters of the approximate solution formula, and 
their values are as follows: C0 = 2.515517, C1 = 0.802853, 
C2 = 0.010328, D1 = 1.432788, d2 =0.189269, and d3 = 
0.001308. More details about the SPI computation can be 
found from the study of Mckee et al. (1993) and Dogan et al. 
(2012).

In this study, the SPI values at 3 and 12 months were used 
to represent the drought/flood characteristics of the basin at 
seasonal and annual scales, respectively. The seasons were 
generally divided meteorologically as follows: spring (March 
to May), summer (June to August), autumn (September to 
November), and winter (December to February). Therefore, 
the 3-month SPI of May, August, November, and February 
of the following year was used to represent the seasonal SPI 
of spring, summer, autumn, and winter, respectively, while 
the 12-month SPI of December for each year was defined as 
the annual SPI. For computing the SPI, a software tool was 
used from National Drought Mitigation Center (https://​droug​
ht.​unl.​edu/​monit​oring/​SPI.​aspx).

Drought and flood types are divided into 9 grades based 
on SPI, and the classification of grades is shown in Table 1.

Ensemble empirical mode decomposition

The EEMD method used in this paper introduced Gauss-
ian white noise perturbation based on EMD and performed 
ensemble averaging which avoided the problem of modal 
mixing to some extent (Wu and Huang 2011). The original 
data sequence is reconstructed as multiple waves of a single 
frequency and a residual wave, the form is as follows:

where i is the number of IMFs, IMFi(t) is the ith IMF of the 
original data, Res(t) is the residual term, and x(t) is the SPI 
series on annual and seasonal scales. Each IMF reveals the 

(8)x(t) =

n∑

i=1

IMFi(t) + Res(t)

Table 1   Classification of grades of drought and wet for SPI

Classification SPI values Classification SPI values

Extreme drought SPI ≤ −2.0 Extreme flood SPI > 2.0
Severe drought −2 < SPI ≤ −1.5 Severe flood 1.5 < SPI ≤ 2
Moderate 

drought
−1.5 < SPI ≤ −1 Moderate flood 1 < SPI ≤ 1.5

Mild drought −1 < SPI ≤ −0.5 Mild flood 0.5 < SPI ≤ 1
Normal −0.5 < SPI ≤ 0.5
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oscillation characteristics of the original data series on dif-
ferent characteristic time scales, while Res is an extremely 
low frequency wave, which can be regarded as a trend line 
to reveal the change trend of the original data series.

In this paper, EEMD decomposition of SPI-3 and SPI-12 
was carried out to analyze the multi-time scale characteris-
tics of drought/flood evolution in the basin. In addition, the 
significance test is performed by the set disturbance of white 
noise; the specific calculation steps are as follows:

where‾Tk represents the average period of the kth IMF, N 
represents the length of IMF sequence, NPk is the peak num-
ber of IMF, Ek represents the energy density of the kth IMF, 
and Ik(i) represents the kth IMF to be tested with white noise 
by Monte Carlo method.

For the kth IMF with white noise added, the average of 
energy spectral density‾Ek and the average period‾Tk have 
the following relationship:

where α is the significance level.
Theoretically, the IMF of the white noise should be 

distributed on the line with the slope of −1 on the X-axis 
and Y-axis, but there is a deviation in practical application. 
Therefore, the confidence interval of the energy spectrum 
distribution of the white noise can be given as follows:

At the specified significance level, the energy distribu-
tion of IMF is above the confidence curve, indicating that 
the significance test is passed; that is, the actual physical 
significance is included in the selected confidence level. On 
the contrary, it is considered that it has not passed the confi-
dence test. All calculations in this section were implemented 
in MATLAB R2018a.

Empirical orthogonal function decomposition

Empirical orthogonal function decomposition was a 
method to analyze the data structure in the matrix and 
extract the primary data characteristic quantity (Lorenz 
1956). It divides the meteorological field into two parts: 
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spatial patterns and temporal patterns. Therefore, it is also 
called space–time decomposition. The specific calculation 
processes are as follows:

(1)	 For the preprocessed data, get the data matrix Xm×n, 
take the cross product of X and its transpose, and get 
the square matrix Am×m:

where m is the number of sites and n is the number of years.

(2)	 The eigenvalue (λ1,···, λm) of the square matrix A and 
the eigenvector Vm×m are given as follows, and the prin-
cipal components are calculated:

where Pm×m = diag(λ1,···,λm) and each row of data in PC 
corresponds to the time coefficient of each feature vector.

(3)	 Calculate the explanatory rate of each mode to the 
total variance, and the variance can be simplified to be 
replaced by the characteristic root. The explanatory rate 
of the jth mode to the total variance can be expressed as

If the symbols of modal coefficients are the same, it 
indicates that the variation trend of regional elements is 
basically the same, and the high absolute value is located 
in the center. If the modal coefficient is positive and nega-
tive, it indicates that there are two distribution types of 
elements in the region. All calculations in this section 
were implemented in SPSS Statistics 24.

Cross‑wavelet transform

Morlet wavelet has good time–frequency resolution, and 
its scale parameter is approximately equal to the Fou-
rier period (Hao et al. 2012). Therefore, this study chose 
Morlet wavelet as the basis function, and its form can be 
expressed by the following formula:

For the two known time series x(t) and y(t), the continu-
ous wavelet transform coefficient of x(t) is defined by the 
linear integral operator as

(13)Am×m =
1

n
X × XT

(14)Am×m × Vm×m = Vm×m × Pm×m

(15)PCm×n = VT
m×m × Xm×n

(16)
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× 100%
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with

where α and γ are scale parameters and time shift param-
eters, respectively, ψα, γ is wavelet clusters generated by con-
tinuous translation or expansion of the mother wavelet ψ(t), 
WX(α, γ) is the wavelet coefficient of time signal x(t), and 
* represents the conjugate operator. Similarly, the wavelet 
coefficient WY(α, γ) of the time signal y(t) can be obtained.

By analogy with Fourier cross-spectrum (Liu 1994), the 
cross-wavelet transform of two time series x (t) and y (t) is 
defined as:

where Wx(u) is the wavelet coefficient of time series x(t); 
Wy*(u) is the complex conjugate of the wavelet coefficients 
of y(t); and u is the function related to α and γ. The power of 
the cross-wavelet transform is defined as |Wxy(u)|; the larger 
the value is, the two have the same high energy region, and 
the more significant the correlation between them is. The 
complex parameter arg (WXY) can be used to explain the 
local relative phase of x(t) and y(t) in the time–frequency 
domain.

In this paper, cross-wavelet based on Morlet wavelet is 
used to study the teleconnection; monthly data from 1965 to 
2018 were used for both SPI and large-scale climate indices. 
This analysis was implemented by MATLAB R2018a. More 
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details on XWT can be obtained from the study of Torrence 
and Compo (1998) and Grinsted et al. (2004).

Climate propensity rate

A linear equation often expresses trends in climatic elements 
such as temperature or precipitation (Huang et al. 2021). In 
this study, Y represented the yearly scale SPI with sample 
size n, and t illustrated the corresponding time from 1965 to 
2018. Establish a linear regression equation with one vari-
able between Y and t, and the form is as follows:

The coefficients in the equation can be obtained by ordi-
nary least squares or empirical orthogonal polynomial, and 
10 times of the regression coefficient a0 is called the climate 
tendency rate.

Result and discussion

Temporal characteristics of drought and flood

In this paper, the SPI–12 series was chosen to analyze the 
temporal variation characteristics of drought and flood in the 
TLB. The corresponding 5-year moving average and trend 
line were calculated based on the annual SPI of 54 years 
(1965 to 2018). The results are shown in Fig. 2.

It can be seen from the yearly SPI that the drought/
flood index of the TLB in the last 54 years showed obvious 
oscillations, and the droughts alternated with the floods. 
Combined with the trend line, it can be found that the 
drought/flood index of the whole basin increased at a rate 
of 0.2 per decade (P < 0.01), indicating that TLB as a 

(22)Y = a0t + a1(t = 1, 2, 3, ⋯ n)

Fig. 2   Annual SPI sequence of 
Taihu Lake Basin
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whole developed in a humid direction. The periodic vari-
ation trend of the drought/flood index was obtained from 
the 5-year moving average curve. In 1977, 1982, 2002, 
and 2007, there was a clear turning point showing an 
“up-down-up-down-up” trend. Over the past 54 years, the 
entire river basin had two alternating stages of drought 
and flood, belonging to the flood stage at present. Accord-
ing to the analysis of each stage, the drought period was 
mainly concentrated in 1965–1982 and 2003–2007, with 
most of the years experiencing light drought. The SPI val-
ues in 1967, 1968, 1979, and 2003 were −1.19, −1.06, 
−1.11, and −1.23, respectively, indicating moderate 
drought. Severe drought was observed in 1978 when the 
SPI value reached −2.42. Years of relative flooding were 
mainly concentrated in 1977, 1983–1993, 1999–2002, 
and 2012–2018, most of which were considered normal 
or light floods. In 1993, 1999, and 2015, moderate flood 
years occurred, with SPI values of 1.27, 1.65, and 1.54, 
respectively. In 2016, the SPI reached 2.21, which was an 
extreme flood year.

Consulted Yearbook of Meteorological Disasters in 
China (2004–2019) can find the year of corresponding 
drought (flood) records. In 1978, there was a national 
drought. In 2016, the Yangtze River Delta region was 
subjected to several heavy rainfall events and convection 
flows, indicating that the calculated annual SPI results 
were reasonable. Over the past 54 years, the TLB gradu-
ally developed in a humid direction, the occurrence fre-
quency of drought events decreased, and the occurrence 
probability of flood events increased. Before 1979, the 
whole basin was in a primarily dry period; during the 
period spanning 1982–2002, it was in the dry–wet alter-
nation period; and during the 2003–2006 range, it was in 
the second dry period. In recent years, the whole basin has 
been trending in a flooding direction.

Multi‑time scale periodic oscillation characteristics

This study used the EEMD method to decompose the SPI 
series of 54 years from 1965 to 2018 to study the multi-
time scale periodic oscillation characteristics of drought and 
flood changes. All decomposition results from the annual 
SPI series can be found in Fig. 3. IMFs (IMF1–4) are shown 
in Fig. 3a. In addition, each IMF was reconstructed interan-
nually and interdecadally. The reconstructed results and the 
residual components (Res) are plotted together in Fig. 3b. 
Finally, the variance contribution rates of IMFs and Res to 
the original SPI series were calculated, and the oscillation 
period of each IMF was calculated. The calculation results 
can be found in Table 2.

As shown in Fig. 3a, each IMF decomposed from the 
annual SPI series reflects the fluctuation characteristics of 
different time scales from high frequency to low frequency. 
IMF1 had the highest fluctuation frequency and amplitude. 
With increasing order numbers, the amplitude and fre-
quency gradually decreased. At the same time, each IMF 
had a relatively stable quasiperiodicity. IMF1 and IMF2 
had 2.92-year (quasi-3-year) and 6.3-year (quasi-6-year) 
mean periods at the interannual scale, respectively. IMF3 
and IMF4 had 10.8-year (quasi-10-year) and 27-year mean 
periods at the interdecadal scale, respectively. According 
to the significance test results, only IMF3 passed the 95% 
confidence interval test, indicating that within the 95% confi-
dence interval, IMF3 contained more information with actual 
physical significance, and other components contained less 
information.

As shown in Table 2, the variance contribution rate of 
the quasi-3-year period represented by IMF1 was the larg-
est, reaching 27.4%. The amplitude showed a “decrease-
increase-decrease” trend. This was followed by IMF2 
(25.1%), IMF3 (19.8%), and IMF4 (17.2%). The interannual 

Fig. 3   Decomposition results of the annual SPI. a Four intrinsic mode functions (IMFs). b Comparison of interannual and interdecadal SPI 
changes with the original SPI anomaly

50123Environmental Science and Pollution Research (2022) 29:50117–50134



1 3

scale component had a 52.5% variance contribution rate to 
the annual SPI variation, occupying a dominant position. As 
seen in Fig. 2b, the reconstructed interannual SPI variation 
trend was almost completely consistent with the original SPI 
anomaly variation trend, indicating that interannual oscil-
lation played a dominant role in the SPI variation of the 
TLB. Reconstructed interdecadal variation can effectively 
describe the period characteristics of SPI variation; that is, 
before 2005, SPI was about to rise in volatility, while after 
2005, SPI was in a stage of rapid rise, revealing the climate 
modal transformation in the TLB circa 2005. The SPI fluctu-
ates alternately from the original positive/negative phases, 
and the mode dominated by the negative phase turns to the 
climate model with a significant positive phase. The trending 
term can reflect the overall variation trend of the SPI of TLB 
during 1965–2018. The residual of the annual SPI series of 
the TLB showed a nonlinear upward trend, and the rate of 
increase was increasing. This indicated that during 1965 to 
2018, the basin experienced a stage from drought to flood, 
with the degree of the flood still increasing. This is basically 
consistent with the results described above.

For each seasonal SPI series, the interannual scale IMFs 
(IMF1, IMF2) had oscillation characteristics similar to those 
of the annual SPI series. However, each season’s interdec-
adal scale components (IMF3 and IMF4) showed different 
oscillation characteristics from the annual SPI. For IMF3, 
as shown in Table 2 for all seasonal SPI series, the variance 
contribution rate of IMF1 was the largest among all IMFs, 
reaching 30% except winter (24.19%). The second was IMF2, 
which contributed more than 20% of the variance. On the 
other hand, the contribution of IMF3 and IMF4 to the vari-
ance was relatively small. The variance contribution rate of 
the interannual scale IMFs (IMF1 and IMF2) in all seasons 
was more than 50% (except 48.1% in winter), larger than the 
interdecadal scale IMFs. This indicates that the interannual 
scale components (IMF1 and IMF2) in seasonal series were 
still the main components, and interannual oscillation played 
a dominant role in SPI variation. This was the same as with 
the annual SPI sequence.

To illustrate multiscale oscillation characteristics of the 
SPI, seasonal SPI sequences were also decomposed. The 
results of the seasonal SPI series are plotted in Fig. 4.

Spring Res showed a downward trend from 1965 to 2005, 
decreasing to the minimum value in 2005. It showed an 
upward trend, indicating that the TLB experienced a drought 
process in spring from 1965 to 2005 and then conducted a 
wet trend. However, in the past 54 years, the overall Res 
has shown a downward trend. This result showed that the 
basin was experiencing a drought in spring. The summer 
Res showed an upward trend during 1965–1995, reached 
an extreme value in 1995, and then showed a downward 
trend, indicating that the basin in summer experienced a 
wet process before 1995 and then developed in the drought 
direction. The overall Res showed an upward trend, indicat-
ing that the whole basin was experiencing a wet process in 
summer. The variation trend of Res in autumn was similar to 
that in summer, but the maximum value appeared in 1990. 
Before that, the basin experienced a process of wetting in 
autumn, which was followed by the trend of drought devel-
oping. At the same time, the Res still showed an upward 
trend, indicating that the basin had a wetting tendency in 
autumn. The variation trend of Res in winter showed a linear 
rising trend, indicating that the overall trend of winter in the 
TLB was wet during the study period.

Compared with previous studies, this study used an 
improved EEMD method, which can suppress the end 
effect and mode mixing in the decomposition process com-
pared with the traditional EMD method. Previous research 
methods generally only considered the overall linear trend 
of drought and flood change, which often failed to reveal 
the phase trends of drought and flood variations. In con-
trast, the EEMD method performed better in this regard. 
The result indicated that the TLB showed a trend of wetting 
at the characteristic scales of year, summer, autumn, and 
winter and a trend of drying in spring. That is the same as 
the results of previous studies (Hu et al. 2021), which proved 
that the EEMD method was well used in the TLB. In addi-
tion, quasiperiodic oscillations with relatively stable drought 

Table 2   Period and variance 
contribution of components of 
SPI series in TLB

Time scale Index IMF1 IMF2 IMF3 IMF4 Res

Annual Period (year) 2.92 6.35 10.8 27
Variance contribution (%) 27.4 25.1 19.8 17.2 10.5

Spring Period (year) 3 6 15.43 27
Variance contribution (%) 30.7 23.4 19.9 15 11

Summer Period (year) 3.27 6 12 18
Variance contribution (%) 37.1 21.9 18.6 12.9 9.5

Autumn Period (year) 3.09 7.71 21.6 36
Variance contribution (%) 30.5 24.9 20.1 17 7.5

Winter Period (year) 3.09 6.35 15.43 27
Variance contribution (%) 24.9 23.2 20.3 18 13.6
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and flood characteristics in the TLB were also obtained by 
the EEMD method. It was observed that the SPI series in 
the TLB was a nonlinear and periodically oscillating pro-
cess from 1965 to 2018; the annual SPI series had quasi-3-
year (IMF1) and quasi-6-year (IMF2) oscillation periods on 
the interannual scale and quasi-10-year (IMF3) and 27-year 
(IMF4) oscillation periods on the interdecadal scale, respec-
tively. The seasonal SPI series had similar periods to the 
annual SPI series on the interannual scale but differed on the 
interdecadal scale. Meanwhile, in both SPI series, interan-
nual oscillation always played a more dominant role in the 
process of SPI variation than the interdecadal oscillation. 
The above results showed that EEMD, as a signal analysis 

technique, has obvious advantages in dealing with nonlinear 
and nonstationary time series and can reflect the variations 
in drought and flood characteristics in the Taihu Lake Basin 
excellently.

Spatial distribution characteristics of drought 
and flood

The annual and seasonal SPI climate propensity rate distri-
butions were plotted, and the results are shown in Fig. 5. The 
positive triangle indicates that the SPI tended to increase, 
and there was a tendency to become wetter; similarly, the 
inverted triangle indicates that there was a tendency towards 

Fig. 4   The IMF and Res of the 
seasonal SPI in Taihu Lake 
Basin (TLB) from 1965 to 2018 
by EEMD: a spring, b summer, 
c autumn, and d winter
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drought at this location. To make it easier to distinguish, 
the positive triangle was divided into two levels of display 
according to the degree of tendency, with the larger triangle 
indicating a greater degree of tendency.

As seen from the annual SPI climate propensity rate dis-
tribution (Fig. 5a), save for the mountainous areas within the 
southern Zhexi sub-region, all other basin regions showed 
a trend from dry to wet (P < 0.01), with the most apparent 
trend in the Yangchengdianmao and Hangjiahu sub-regions. 
Fig. 5b to e show the spatial distribution of the SPI climate 
tendency in different seasons in the TLB. Most of the basin 
showed a significant drought trend in spring (P < 0.05), 
expect for some localized areas in the Huxi sub-region. The 
spatial distribution of the propensity rate in summer was 
similar to that of the whole year, with the wetting centers 
mainly concentrated in the Yangchengdianmao and Hangji-
ahu sub-regions. The wetting trend gradually decreased from 
east to west, except for some areas in the mountainous areas 
of the Zhexi sub-region, and tended to become dry, and the 
whole basin had a tendency to become wet (P < 0.01). In 
autumn, the spatial distribution of the propensity rate was 
more complex, with a trend of wet to dry from east to west. 
The Yangchengdianmao and Hangjiahu sub-regions were 
still wet centers (P < 0.01), while the mountainous areas 
in the southern Zhexi sub-region also showed a non-signif-
icant wetting trend. The eastern and northeastern parts of 
the basin, including the Huxi sub-region and most of the 
Wuchengxiyu sub-regions, and the mountainous areas in 
the northern part of the Zhexi sub-region showed a non-
significant drying trend. In winter, the whole basin showed 
a wetting trend (P < 0.01), and the degree of tendency was 
the highest among the four seasons, with no trend towards 
drought in the basin.

To better reflect the spatial distribution characteristics of 
drought and flood in the TLB, the EOF method decomposed 
the annual SPI series to obtain the main spatial distribu-
tion modes of drought and flood. Table 3 shows the first 
five eigenvalues and contribution rates of the decomposi-
tion of the annual SPI series. The cumulative contribution 
rate of the first five eigenvectors reached 86.77%, and the 
cumulative contribution rate of the first two eigenvectors was 
78.48%. Therefore, the first two eigenvectors can explain the 
spatial distribution characteristics of drought and flood in 
the TLB in the past 54 years. The main spatial distribution 
modes of drought and flood in the TLB are shown in Fig. 6.

The variance contribution of the first mode eigenvector 
was 70.43%, which was much higher than that of the other 
modes and was the primary form of the spatial distribu-
tion of drought and flood variability in the TLB. As seen in 
Fig. 6a, the first spatial mode coefficients ranged from 0.57 
to 0.93 and were positive across the basin, indicating that the 
spatial distribution of drought and flood changes was con-
sistent during 1965–2018. In other words, the whole basin 
was either widespread drought or overall flood, which was 

Fig. 5   Spatial distribution of 
SPI climate propensity rate 
in TLB during 1965–2018: a 
annual, b spring, c summer, d 
autumn, and e winter

Table 3   Eigenvalues and contribution of EOF decomposition of 
annual SPI series of TLB

Modal Eigenvalue Variance contri-
bution/%

Cumulative 
variance contri-
bution/%

1 43.67 70.43 70.43
2 2.99 8.05 78.48
3 2.52 4.05 82.54
4 1.47 2.36 84.90
5 1.15 1.85 86.76
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mainly the result of the influence of large-scale meteorologi-
cal factors. However, the degree of drought (flood) varied 
from region to region. The high value centers were located 
in the central and western parts of the basin, including Taihu 
Lake, the northeastern Hangjiahu sub-region, the northern 
of Zhexi sub-region, and the south-eastern Yangchengdian-
mao sub-region, indicating that these areas were the most 
sensitive and had the most obvious changes in drought and 
flood. Meanwhile, the northern Huxi and southern Zhexi 
sub-regions were the main areas of low values, indicating 
that the differences in these areas were less pronounced and 
that the influence of the first mode was more negligible. The 
temporal coefficients showed a significant (P <0.05) upward 
trend over 54 years, indicating that the whole basin devel-
oped towards floods and alleviated the drought situation.

The variance contribution of the second mode eigenvector 
reached 8.05%, which was also the primary form of drought 
and flood distribution. As shown in Fig. 6b, the coefficients 
corresponding to this mode ranged from −0.39 to 0.6, with 
positive centers occurring in the northern part of the basin, 
including the northern parts of Huxi and Wuchengxiyu sub-
regions. Negative centers appeared in the southern part of 
the basin, mainly in the Hangjiahu sub-region, with an over-
all south-north reverse distribution, either, i.e., drought in 
the south and flooding in the north or flooding in the south 
or drought in the north at the same time. This was primar-
ily the result of the influence of geographical location and 
topography. The time coefficients show a non-significant 
increasing trend over the past 54 years, with predominantly 

negative values before 1990 and mostly positive values after-
wards. This suggests that that the TLB was characterized by 
drought in the north and flood in the south until 1990, after 
which the basin gradually changed to flood in the north and 
drought in the south.

As one of the most economically developed regions in 
China, the Taihu Lake Basin is also the region most affected 
by climate and is experiencing severe and frequent flooding 
periods. As one of the most studied basins in China, most 
studies have only considered aspects of the basin that suffer 
from flood disaster. Although drought is often neglected, the 
basin also faces a certain degree of influence of drought in 
different seasons due to topography and geographical loca-
tion. This study analyzed the spatial and temporal variations 
in drought and flood characteristics in the TLB over the past 
54 years and observed significant spatial and temporal het-
erogeneity using the SPI. At the same time, it made clear the 
drought-prone regions and flood-prone regions in the basin. 
The results can provide reference values for the basin’s flood 
control and drought resistance works in the basin.

Correlation analysis of drought and flood changes 
with sunspots and large‑scale meteorological 
factors

In this paper, the correlation between the SPI and several 
large-scale climate indices was investigated, and the trend 
lines of all indices save for sunspots were fitted by polynomi-
als. The results are shown in Fig. 7.

Fig. 6   Eigenvector distribution 
and time coefficients of vector 
field: a the first mode and b the 
second mode
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As shown in Fig. 7a, during the 65 years (1965 to 2018), 
the relative sunspot number had five maximum years (1968, 
1979, 1989, 2000, 2014) and six minimum years (1965, 
1976, 1986, 1996, 2008, 2018), maintaining a quasiperiodic 
variation of 11a, which was consistent with the 10.8-year 
(quasi-11-year) oscillation period possessed by the annual 
SPI in the TLB on the interdecadal scale. There was a clear 

negative correlation between the relative sunspot number 
and annual SPI. The higher the relative sunspot number, the 
lower the SPI and the drier the climate; the opposite was also 
found to be true. The extreme value of SPI was not synchro-
nized with the extreme value of relative sunspot number, 
and there was often a lag. The results of the analysis of the 
frequency of drought and flood in the basin in the years 

Fig. 7   Relationship between the variation trend of the SPI and large-scale climate indices: a sunspot; b ENSO; c Arctic Oscillation; d Pacific 
Decadal Oscillation; e Atlantic Multidecadal Oscillation; f Indian Ocean Dipole
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around the time of maximum (M) and minimum (m) sunspot 
values are shown in Table 4. During these years around the 
maximum sunspot, totaling 15 years, seven drought events 
(46.7%) and three flood events (20%) occurred, indicating 
that the frequency of drought events was greater than that of 
flood events before and after maximum sunspot year. Four 
drought events of medium drought and above occurred, 
and two flood events of medium flood and above occurred, 
accounting for 26.6% and 13.3% of the totaling 15 years. 
During the year before, during, and after the minimum 
sunspot (a total of 16 years), two drought events (12.5%) 
and five flood events (31.3%) occurred, indicating that the 
frequency of flood events was greater than that of drought 
events before and after the minimum sunspot year. Dur-
ing these periods, there were no drought events of medium 
drought and above (0% of the total) and two flood events of 
medium flood and above (12.5% of the total). On the other 
hand, there were 30 drought and flood events in 54 years 
(1965 to 2018), including 16 droughts and 14 floods, of 
which 5 years had moderate droughts and above, accounting 
for 9.3% of 54 years, and 4 years had moderate floods and 
above, accounting for 7.4% of 54 years. This indicates that 
extreme events occurred much more frequently in the vicin-
ity of extreme sunspot years than in other years, providing a 
theoretical basis for strengthening the prediction prevention 
and control of extreme events.

Fig. 7 b to f show the correlation between the SPI and 
various atmospheric circulation indices. From Fig. 7b, it 
can be seen that in the 54 years from 1965 to 2018, seven 
strong ENSO events occurred, including four El Niño events 
and three La Niña events. When the ENSO intensity was 
positive, the SPI values were mostly positive, indicating 
that when warm events occurred, the precipitation increased 
and tended to be flooded. Conversely, when cold events 
occurred, the SPI values were mostly negative, and the basin 
tended towards drought. From the trend lines of both, it can 
be found that the changes in ENSO intensity and SPI were 
not synchronous, and most extreme drought and flood events 
tended to occur within 1–3 years after the occurrence of 
strong ENSO events, indicating that there was a certain lag 
between the two, but the correlation was not clear.

As shown in Fig. 7c, the SPI index was positively cor-
related with the AO index. This was because when the AO 

intensity was high, the temperature in the middle and high 
latitudes of China was high, while precipitation increased 
and the basin developed in the direction of wetness; when 
its intensity was low, the temperature was low, precipita-
tion decreased, and the basin became dry. Figure 7d shows 
that there was a significant positive correlation between the 
SPI index and the PDO index in the TLB. The two trend 
lines changed in the same way. That is, when the PDO was 
in a warm phase, the basin was prone to flood events, and 
when the PDO was in a cold phase, the basin was prone to 
drought events; the greater the absolute value of its intensity 
was, the greater the intensity of extreme drought and flood 
events. The positive and negative phase shifts experienced 
by the PDO in 1976 and 2002 corresponded to the drought 
and flood shifts in 1980 and 2010 in the TLB, which proved 
that there was a lag between the two. Figure 7e shows the 
negative correlation between the SPI index and AMO index. 
In 1975–2010, the AMO exhibited an upward trend, the SPI 
index exhibited a downward trend, and the basin developed 
towards drought. After this, the AMO exhibited a downward 
trend, the SPI index was upward, and the basin developed 
towards flooding. The two extreme drought and flood events 
in the basin (1978 drought and 2016 flood) occurred several 
years after the extreme values of AMO, indicating that there 
was a hysteresis between the two. Figure 7f shows a negative 
correlation between the SPI index and the IOD index. The 
IOD was positive in most years, and when the IOD index 
increased, the basin tended to experience drought.

Analysis of driving forces of drought and flood 
variation in Taihu Lake Basin

The XWT can highlight the common frequency and phase 
relationship between the two series in time–frequency space, 
which was used to draw the cross-wavelet power spectrum 
between the SPI and various large-scale meteorological 
factors (Fig. 8). The thin black line was the cone of influ-
ence, with effective spectral regions within it. The thin black 
contours represented the significant region with a 5% sig-
nificance level by the red noise test. The color of the power 
spectrum ranged from blue to red, and a darker color indi-
cated a higher energy density. The relative phase between 
the SPI and the large-scale climate indices is indicated by 

Table 4   Statistics of drought 
and flood near sunspot extreme 
year in the TLB

M, maximum sunspot year, m, minimum sunspot year

Level m – 1 m m + 1 Sum M − 1 M M + 1 Sum

Moderate drought and above 0 0 0 0 2 2 0 4
Mild drought 0 1 1 2 1 1 1 3
Normal 4 3 2 9 1 1 3 5
Mild flood 1 1 1 3 0 1 0 1
Moderate flood and above 0 1 1 2 1 0 1 2
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arrows, the arrow to the right (left) indicates in-phase (anti-
phase), and up (down) indicates that the meteorological indi-
ces were in-phase ahead (lagging) of the SPI.

Figure 8a shows the XWT of the SPI and sunspots. There 
was a statistically significant relationship between sunspots 
and the SPI index in an 8- to 12-year period, mainly from 
1975 to 2005. The arrows in the cross-spectrum point to 
the right indicate an in-phase relationship between the two 
in time and frequency. The arrows point to the upper right 
from 1975 to 1990, indicating that the SPI lagged the sun-
spots by 1–1.5 months, a phase difference of 30–45°. From 
1990 to 2005, it began to point to the lower left, indicating 
that although the energy of the two series of cross-wavelets 
passed the red noise test, it did not form a stable relationship.

The XWT of the SPI and Niño 3.4 in Fig. 8b shows sig-
nificant typical power in the 3–4-year band from 1970 to 
1975, with the arrows pointing straight up, indicating that 

Niño 3.4 led the SPI by 90°, which meant a lag between 
the SPI and Niño 3.4 variations. There was also a 1–4-year 
band from 1980 to 1985, with the arrows pointed right up, 
indicating an in-phase relationship. The phase angles were 
between 45° and 60°, which meant that the SPI lagged 
Niño 3.4 by 1.5–2 months. In addition, there was 2–3-year 
band from 1996 to 1998. The arrows pointed to the left, 
indicating that the SPI and Niño 3.4 showed an anti-phase 
relationship during this period. Still the maintenance time 
was short, and a stable correlation could not be formed. 
There were also 8–14-year bands at higher time scales, 
concentrated in 1995–2010, with the arrows pointing to 
the lower left, indicating a negative phase between the 
SPI and Niño 3.4. The average phase angle was 30–45°, 
indicating that the variations in the SPI value were 1–1.5 
months ahead of the variations in Niño 3.4.

Fig. 8   XWT of SPI with 
sunspots and atmospheric 
circulation: a SPI sunspots, b 
SPI-El Niño–Southern Oscilla-
tion, c SPI-Arctic Oscillation, d 
SPI-Pacific Decadal Oscillation, 
e SPI-Indian Ocean Dipole, 
f SPI-Atlantic Multidecadal 
Oscillation
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The XWT of the SPI and AO (Fig. 8c) shows that the 
SPI and AO had significant common power in the 3–4-
year band from 1977 to 1983, with the arrows pointed to 
the upper left and the average phase angle difference of 
30–45°, which indicated that the SPI and AO were in an 
anti-phase relationship and AO activity was 1–1.5 months 
ahead of the SPI change at this scale. In addition, another 
significant common power was still observed in the 8–10-
year band in the high-frequency region. This was concen-
trated in 1975–2000, with the arrows pointed to the right, 
indicating an in-phase relationship between the SPI and 
AO.

Figure 8d shows the XWT of the SPI and PDO. From the 
above figure, it can be seen that the SPI and PDO showed 
significant common power in the 2–4-year band from1975 
to 1985, in the 1–3-year band from 1990 to 1998, and in the 
8–12-year band from 1990 to 2010. Higher common powers 
were observed in the high time scale band than in the low 
time scale band. In the 2–4-year band, arrows pointed to the 
right, indicating an obvious in-phase relationship between 
the SPI and PDO, which meant that they changed in the 
same direction. In the 1–3-year band, arrows pointed straight 
up, which indicated that the phase of the PDO was 90° ahead 
of the SPI during this period. At higher time scales (> 8 
years), arrows pointed to the upper left, and the mean phase 
angle was 30–45°, which indicated that the SPI lagged the 
PDO by 1–1.5 months.

Figure 8e shows the XWT of the SPI and IOD. There 
were two significant common power zones in which the 
SPI and IOD were shared with the 2–4-year band from 
1975–1982 and 1990–2000. The two zones were not consist-
ent; in the 2–4-year band of 1975–1982, the arrow pointed 
straight up, implying that IOD led the SPI by 90°, which 
meant that the SPI lagged approximately 3 months behind 
the IOD. Meanwhile, the common powers were higher in 
the 2–4-year band from 1990 to 2000. In this region, arrows 
pointed to the lower left, and the phase angle was 30–45° 
ahead, implying that the SPI and IOD were in an anti-phase 
relationship, while the change in SPI was ahead of the IOD 
by 1–1.5 months.

From the XWT of the SPI and AMO (Fig.  8f), the 
power spectrum energy of the two series was mainly con-
centrated in the cycles of 3–4-year (1980–2000), 0–4-year 
(1993–2005), and 8–10-year (1990–1995). The common 
energy frequency was lower on the two lower time scales 
(0–4-year and 3–4-year). The arrows pointed to the right 
in the 3–4-year cycle from 1980 to 1985, which meant 
that the SPI was in-phase with AMO during this period. In 
the 0–4-year cycle from 1993 to 2005, the arrows pointed 
straight up, indicating that the phase difference between the 
two was 90°. As the time scale increased, in the 8–10-year 
cycle from 1990 to 1995, arrows pointed to the upper left, 
with an average phase angle of 45–60°. This revealed an 

anti-phase relationship between the SPI and AMO, while 
the SPI lagged the AMO by 1.5–2 months.

The TLB is in the lower reaches of the Yangtze River 
basin with a typical subtropical monsoon climate influenced 
by a variety of atmospheric circulations. Previous studies 
often only considered the correlation between atmospheric 
circulation and drought/flood indices, while sunspots, as an 
important factor of climate change on a global scale, were 
also included in this study. In terms of the degree of influ-
ence on the variations in SPI, sunspots were dominant, and 
they maintained a very high common frequency with SPI 
throughout the study period, which affected the global cli-
mate by influencing temperature and atmospheric circula-
tion. In addition, with respect to the atmospheric circula-
tion, the SPI was mainly negatively correlated with IOD, 
PDO, and Niño 3.4 and positively correlated with AO and 
AMO, all had different scale resonance cycles. Since the 
twenty first century, the main large-scale climate indices 
affecting the SPI in the TLB have changed from sunspots, 
AO, and IOD to sunspots, PDO, and Niño 3.4. In general, 
the SPI in the TLB was temporally correlated with all the 
above mentioned large-scale meteorological indices during 
the study period but was also divergent. Using ENSO as an 
example, this paper expressed the strength of ENSO events 
through Niño 3.4, which had an important influence on the 
variation in drought and flood characteristics in the TLB 
as the main air–sea interaction phenomenon in the eastern 
Pacific. When the ENSO warm event (El Niño) occurred, 
precipitation increased, and the basin evolved towards wet-
ness. When the ENSO cold event (La Niña) occurred, pre-
cipitation decreased, which may lead to drought, and ENSO 
was positively correlated with the SPI in the TLB, which 
was consistent with the results of previous studies (Yin et al. 
2009). There were also different correlations between other 
indices and the SPI. This part of the paper can provide a 
better understanding of the response relationships between 
drought and flood characteristics and various large-scale cli-
mate indices in the TLB to prevent and warn against possible 
extreme drought and flood events.

Conclusion

In this study, the spatiotemporal variation characteristics of 
drought and flood in the TLB for a total of 54 years from 
1965 to 2018 were analyzed though the use of the EEMD 
method, EOF method, and climate propensity rate index, 
with SPI as a quantitative indicator. In addition, the relation-
ship between the SPI and large-scale climate indices in the 
TLB was investigated by the cross-wavelet transform method 
to explore the response relationship between drought and 
flood variations characteristics and each climate indices. The 
main conclusions are as follows:
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(1)	 The yearly scale SPI showed a relatively stable quasi-
periodic oscillation, and the overall trend is to become 
flood. The interannual variation played a dominant 
role in drought and flood variation in the TLB, the sum 
contribution rate of the interannual scale components 
reached 52.5%, verifying this view. This was also true 
at the seasonal scale.

(2)	 Over the past 54 years, the TLB gradually developed 
from drought to flood at the annual and seasonal scales. 
Except for spring, which tended to become progres-
sively drought. The variation trends of different regions 
in the basin were different. There were two modes of 
drought and flood in the TLB. The first mode was con-
sistent across the basin, and the high value center was 
located in the Hangjiahu sub-region. The second was 
the south-north inverse distribution, with a high value 
center in the northern part of the basin and a low value 
center in the southern part.

(3)	 Extreme drought and flood events were likely to occur 
near the extreme point of the relative sunspot number 
affected by solar activity. While there was a resonance 
period of 8–12a between the SPI and relative sunspot 
number, the two have been positively correlated for the 
past 54 years. In addition to the dominant influence 
of sunspots on the SPI, there were also correlations 
between the SPI and various atmospheric circulations. 
The SPI was mainly negatively correlated with IOD, 
PDO, and Niño 3.4 and positively correlated with AO 
and AMO, although there was still obvious heterogene-
ity in the strength of the correlation between various 
atmospheric circulations and the SPI.

On the basis of the traditional method to make improve-
ments, the spatiotemporal characteristics of drought and 
floods in the TLB were studied at the same time. This pro-
vides a practical basis and guidance for flood and drought 
prevention in the TLB while analyzing their teleconnec-
tions with large-scale meteorological factors to clarify the 
influence mechanism of climate change on the droughts 
and floods to provide references for the effective utilization 
of water resources. It should be pointed out that only the 
role of natural factors was considered in the analysis of 
the causes of drought and flood characteristics in the TLB, 
but the mechanism of drought and flood events was very 
complex. As one of the fastest growing urbanized areas in 
China, the influence of human activities on drought and 
flood variations cannot be ignored. In subsequent studies, 
the combination of human activities and natural factors 
should be considered to analyze their response relation-
ships to the drought and flood variation characteristics of 
the Taihu Lake Basin in an integrated manner.
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