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Abstract
Agricultural carbon mitigation is critical for China to encourage the sustainable development of agriculture and achieve the 
carbon peak by 2030 and carbon neutrality by 2060. By exploring the impact mechanism of the carbon emission intensity 
(CEI) of grain production, we can effectively promote the low-carbon transformation of agricultural production and ensure 
the sustainable development of the food supply. This article analyzes the temporal and spatial evolution of the total carbon 
emission (TCE) and CEI of staple crops and adopts a dynamic spatial model to explore the influence mechanism and spatial 
spillover effects of the CEI of grain production based on evidence from China’s major grain-producing provinces from 2002 
to 2018. The results indicate that the TCEs of rice, wheat, and maize fluctuate upward and that the CEI in most producing 
areas decreases with low-low agglomeration (or high-high agglomeration). Among the influencing factors, technology is 
the main factor reducing CEI. Technical efficiency, urbanization, industrial structure, agricultural agglomeration, and agri-
cultural trade openness can be transmitted to neighboring areas through spatial spillover mechanisms. The spatial spillover 
mechanisms are resource flow, technology spillover, and policy learning, producing the demonstration effect and siphon 
effect. Based on our findings, agricultural technology innovation and popularization, urbanization, optimization of the 
agricultural structure, financial payments, and factor flow among regions should be improved to encourage the low carbon 
transformation of grain production.

Keywords Carbon emission intensity · Influence mechanism · Spatial spillover effect · Dynamic spatial model · 
Agricultural sustainable supply · Agricultural carbon mitigation

Introduction

The outbreak of the global food crisis in the 1970s, the 
reappearance of the international food crisis in 2008, and 
the food trade protection measures triggered by COVID-19 
in 2020 have deepened the reflection on the national food 
security system. How to use resources efficiently, reduce 
agricultural carbon emissions (ACE), and increase the sus-
tainability of food production is particularly important (Fan 
and Brzeska 2014). The agricultural sector interacts with 
the natural environment, and this industry’s carbon emis-
sions have become an important source of global carbon 
emissions (Gan et al. 2014; Davis et al. 2015; Dogan et al. 
2016). Agriculture accounts for approximately 9–11% of 
China’s total greenhouse gas emissions (Nayak et al. 2015). 
China’s traditional food security concept has maximum 
output as the main goal. The extensive production method 
simply pursues high grain yields and has seriously damaged 
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the ecological environment, leading to poor sustainability 
of food security. According to China’s National Bureau of 
Statistics, China’s grain output increased from 462,175 to 
669,490 kt in 2000–2020, which is related to China’s tradi-
tional food security concept with the main goal of maximiz-
ing production. This extensive mode of grain production 
leads to increasing energy consumption and carbon emis-
sions. As the most populous country, China needs sustain-
able food production. The food security concept of sustain-
able development emphasizes the shift to the enhancement 
of development capabilities. This shift not only accentuates 
the improvement in comprehensive food production capac-
ity but also focuses on long-term development, sustainable 
use of natural resources, and protection of the ecological 
environment. Therefore, China should analyze the carbon 
emissions of grain and study its influence mechanism, which 
would encourage sustainable agricultural development and 
help achieve the carbon peak by 2030 and carbon neutrality 
by 2060.

Scholars focus on the production, supply, and consumption 
of sustainable grain development. Resource utilization 
(Allouche 2011), modern agrotechnologies (Spiertz 
2010), and farming systems (Thomasa et al., 2010; Marra 
and kaval 2000) are considered to be important issues in 
planting. In the food supply sector, scholars focus on the 
sustainability of storage facilities (Essien et al. 2018), the 
certification of markets (Arthur and Peter 2015), and short 
food supply chains (Vitters et al. 2019). Some studies also 
explore the impact of knowledge gaps regarding food safety 
(Mohammad et al. 2019), risk sharing, and the drivers to 
participate (Marianne et al. 2017) on shaping sustainable 
food supply systems. Price (Kaczorowska et  al. 2019), 
visual imperfections (Gracia and Gómez 2020), residents’ 
sustainable behavior (Bar et al. 2011), food waste-based 
biogas, and biofertilizers (Hervé Corvellec 2016) are research 
focuses regarding food consumption. Creating a learning 
environment, limiting the consumption of ultra-processed 
foods and guiding the consumption of seasonal, and organic 
and local production are considered to promote sustainable 
food consumption (Emma et al. 2013; Fardet and rock 2020).

Scholars have focused on the temporal characteristics of 
ACE at the national level and the spatial differences in ACE 
at the regional level. Regarding temporal evolution, scholars 
have demonstrated that China’s ACE continues to increase 
(Huang et al. 2019). China’s total ACE in 2016 was 272.022 
million tons (Wang et al. 2020). Some scholars suggest that 
the trend of China’s ACE has an inverted U shape (Liu et al. 
2020). Other scholars propose that China’s ACE has expe-
rienced three stages: fluctuating growth, slow decline, and 
new growth (Xu and Bai 2013). Regarding spatial differ-
ences, the coupling degree between ACE and agricultural 
economic growth in central China was higher than that in 
the western regions (Han et al. 2018). The areas with higher 

total carbon emissions were concentrated in the central 
provinces and large agricultural provinces, and the east-
ern coastal provinces had higher carbon intensity (Bo et al. 
2011). A specific analysis of different grain types is required 
because of their unique growth cycles and farming meth-
ods. The carbon emission efficiency of rice showed a rising 
trend, and the efficiency of single cropping was significantly 
higher than that of double cropping (Yong et al. 2018). The 
carbon emissions per unit area of rice and wheat were found 
to be 8.80 ± 5.71 and 4.18 ± 1.13 t CO2eq/ha, respectively 
(Kashyap and Agarwal 2021). It was also found that maize 
not only had higher grain yields but also possessed much 
smaller carbon emissions than wheat (Hou et al. 2021). Low-
carbon agricultural technologies should be adapted to local 
grain farming methods and form a regionally differentiated 
system (Xiong et al. 2021).

In addition to measuring ACE, scholars have used empiri-
cal methods to investigate the influencing factors of ACE, 
mainly the resource environment, population, economy, 
mode of production, and policy systems. Different soil and 
water resources, land use patterns, weather, and climate con-
ditions have different effects on regional agricultural carbon 
emissions. The provinces with high soil–water compatibility 
were more efficient at curbing ACE than those with low 
soil–water compatibility (Zhao et al. 2018). The replace-
ment of forests by farmland or pastures resulted in signifi-
cant carbon emissions, which can account for up to 68% of 
total carbon emissions (Baumann et al. 2016). Additionally, 
weather and seasonal climate can significantly affect ACE 
(Bai et al. 2018). Economic and demographic factors are 
positive determinants of regional ACE (Xiong et al. 2016; 
Chen et al. 2020). In addition, industrial structure, energy 
efficiency, and labor transfer have a significant impact on 
ACE (Li and Zhao 2013). However, scholars have different 
views on the degree of influence of the population and econ-
omy on ACE (Xiong et al. 2020; Liu et al. 2019). Agricul-
tural technology investment can result in widespread influ-
ences on ACE (Zhang et al. 2013; Xu et al. 2020), but the 
results of studies considering the influence direction do not 
offer a unanimous conclusion (Cui et al. 2018; Zhang and 
Fang 2013). Fertilizer has been considered the main carbon 
source of ACE (Yu 2016), and the variation of 92.51% has 
been explained by the two main factors of average nitrogen 
application per ha and urbanization rate (Tian et al. 2016). 
Therefore, effective nitrogen fertilizer management practices 
should be improved (Wang et al. 2014). Policy and institu-
tional factors are also drivers affecting ACE (Girija et al. 
2015). Policy measures to implement land-saving strategies 
have the technical potential to significantly reduce net ACE 
(Lamb et al. 2016). The establishment of temporary certified 
emission reductions could partially internalize the carbon 
sequestration function of forests, thereby reducing regional 
ACE (Galinato and Uchida 2010).
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Although many studies have achieved positive results 
in the fields of ACE measurement and influencing factors, 
the research remains insufficient. Research achievements 
in estimating the TCE of grain have been observed, but 
research on the measurement of CEI by considering dif-
ferent grain types remains scant. Many studies have ana-
lyzed the influence mechanism and spatial effect of TCE 
on grain production. However, there is a gap in analyses on 
the influence mechanism and spatial effect of the CEI. To 
promote the low carbon transformation of grain produc-
tion and ensure the sustainability of grain production, it is 
important to explore the influence mechanism of the CEI 
of different types of grain. This paper differs from exist-
ing studies in two respects. First, this paper uses China’s 
rice, wheat, and maize as examples, improves upon the 
calculation method of grain carbon emissions used in the 
literature, more accurately measures the TCE and CEI of 
grain production, and analyzes the evolution of tempo-
ral and spatial patterns. Rice, wheat, and maize are the 
three major grain varieties in China and are widely dis-
tributed in most provinces of China. According to Chi-
na’s National Bureau of Statistics in 2020, the output of 
rice, wheat, and maize were 211,860 kt, 134,250 kt, and 
260,670 kt, respectively, accounting for 31.64%, 20.05%, 
and 38.94% of China’s total grain output,. Second, this 
paper uses spatial econometrics methods to analyze the 
influence mechanism and spatial spillover effect of the CEI 
of grain production. In the context of China’s food secu-
rity policy, there is a Kuznets curve effect between grain 
production and carbon emissions (environmental Kuznets 
curve, EKC); that is, the increase in grain production leads 
to an increase in TCE in the short term. As it studies the 
influence mechanism of the CEI of grain production rather 
than the TCE, the study is more in line with the develop-
ment concept of promoting low carbon transformation and 
ensuring the sustainability of grain production. Therefore, 
this paper divides grain crops into rice, wheat, and maize; 
calculates the carbon emissions of grain types in their pro-
duction area; depicts their spatial and temporal evolution 
characteristics; and focuses on the influence mechanism 
and spatial spillover effect. This study will facilitate the 
creation of a set of more informed adaptation policies of 
agricultural emission reduction for different categories and 
regions.

The rest of this paper is arranged as follows. The next 
section presents the methodology, data, and econometric 
model. The “Empirical results” section empirically ana-
lyzes the temporal and spatial evolution of the total carbon 
emission (TCE) and CEI of staple crops and adopts the 
dynamic spatial model to explore the influence mechanism 
and spatial spillover effects of the CEI of grain production 
based on the evidence from China’s major grain-producing 

provinces in 2002–2018. The last section is the discussion 
and policy implications.

Methodology and data

Total carbon emissions and carbon emissions 
intensity

The main sources of TCE include carbon sources from 
grain production and  CH4 emissions from rice planting 
(Liu et al. 2020; Min and Hu 2012). The carbon sources 
from grain production include the consumption of 
chemical fertilizers, pesticides, plastic films, and diesel 
fuels, as well as agricultural irrigation and plowing 
activities (Wu et al. 2020; Liu et al. 2018; Zhang et al. 
2020). Therefore, the TCE of grain production can be 
expressed as:

where Etol
i

 is the TCE of grain i (include wheat, maize, and 
rice); Ei,� is the carbon emission of carbon source � ; Ti,� 
is the amount of carbon source � ; �i,� is the carbon emis-
sion coefficient of carbon source � ; � consists of four ele-
ments: fertilizer, agricultural plastic film, diesel fuel, and 
plowing; EACH

i
 represents the pesticide consumption carbon 

emissions; EICR
i

 represents the carbon emissions of agricul-
tural irrigation; ECH4

 represents the carbon emissions of CH4 
from rice planting; �CH4

i
 is selectivity coefficient, �CH4

i
= 1 ( i 

represents rice), or �CH4

i
= 0 ( i represents wheat or maize). 

The carbon emission coefficient of chemical fertilizer con-
sumption is 0.8956 kg/kg (Oak Ridge National Laboratory, 
ORNL); the carbon emission coefficient of plastic film con-
sumption is 5.1800 kg/kg (Institute of Resource, Ecosystem 
and Environment of Agriculture, IREEA); the carbon emis-
sion coefficient of diesel fuel consumption is 0.5927 kg/kg 
(IPCC); and the carbon emission coefficient of plowing is 
3.1260 kg/hm2 (College of Agronomy and Biotechnology, 
China Agricultural University, CAB). Based on the classi-
fication of grain, this paper calculates the carbon emissions 
of rice, wheat, and maize in each main production province, 
respectively.

In particular, this paper focuses on the carbon emission effi-
ciency of the consumption of resources (such as fertilizers, 
pesticides, diesel, plastic film, plowing, and electricity) and 
the impact mechanism in grain production, rather than life 
cycle carbon footprint measurement (excluding the biological 
carbon sequestration of different food varieties). When calcu-
lating the carbon emissions of different grain varieties (wheat, 
rice, and maize), this paper draws on the research approaches 

(1)

Etol
i

=
∑

�=1

Ei,� =
∑

�=1

(�i,� ⋅ Ti,� ) + EACH
i

+ EICR
i

+ �
CH4

i
ECH4
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of Zhang et al. (2019) and Liu and Yang (2021) and mainly 
examines the carbon emissions caused by the consumption of 
resources, such as fertilizers, pesticides, diesel, plastic film, 
plowing, and electricity, in grain production. It is assumed 
that these resources have a fixed carbon emission coefficient 
when they are provided. Therefore, this paper adopts the same 
emission coefficient when examining the temporal and spatial 
differences in carbon emission efficiency and the mechanism 
of grain production.

This paper uses Francesco et al. (2012) and Dumortier 
and Elobeid (2021) to calculate the carbon emissions intensity 
of agricultural production and uses the carbon emissions per 
unit grain production to express the carbon emissions intensity:

where CEIi represents the carbon emissions intensity of 
grain i ; Yi represents the production of grain i.

The carbon emissions of pesticide consumption can be 
expressed as

where EACH
ij

 represents the pesticide consumption carbon 
emissions of grain i in j province; COSCH

ij
 is the pesticide 

cost per ha of grain i in j province; P
CH

ij
 represents the pes-

ticides average price of grain i in j province; AREij repre-
sents the planting area of grain i in j province; and �ACH 
represents the carbon emission coefficient of pesticide con-
sumption, which is 4.9341 kg/kg (ORNL).

The carbon emissions of agricultural irrigation can be 
expressed as

where EIRC
ij

 represents the carbon emissions of agricultural 
irrigation; EIRij represents the electricity consumption for 
agricultural irrigation of grain i in j province; COSij is the 
agricultural irrigation cost per ha; WARij is the agricultural 
water cost per ha; PELj represents the average cost of elec-
tricity for agricultural irrigation; IRCij represents the carbon 
emissions for agricultural irrigation of grain i in j province; 
PVj represents the proportion of thermal power generation; 
�ce represents the carbon emissions coefficient of coal equiv-
alent, with the value of 0.69 kg/kg (EIA); �IRC is the conver-
sion coefficient between electric power and coal equivalent, 
with the value of 0.1229 kgce/kWh, which comes from 
China Electric Power statistical yearbook; AREij represents 
the planting area of grain i in j province.

(2)CEIi = Etol
i
∕Yi

(3)EACH
ij

= �ACH ⋅ (COSCH
ij

/

P
CH

ij
) ⋅ AREij

(4)EIRij = [(COSij−WARij)
/

PELj] ⋅ AREij

(5)EIRC
ij

= �IRC ⋅ PVj ⋅ EIRij ⋅ �ce

The carbon emissions of CH4 from rice planting can be 
expressed as:

where ECH4
 represents the carbon emissions of CH4 from rice 

planting; � is the mass specific gravity of C atom in CH4 , 
which is 0.75; �CH4

j
 represents the carbon emissions coeffi-

cient of CH4 , and the data derived from the study of Min and 
Hu (2012), showed in Table 1.

Spatial panel model

Before building a spatial model for empirical analysis, we 
should measure the spatial autocorrelation of variables at 
first. When measuring spatial autocorrelation, the Global 
Moran Index (GMI) is used to analyze the overall spatial 
agglomeration, while the Local Moran Index (LMI) focuses 
on the spatial agglomeration around a region. The GMI can 
be expressed as:

S0 =
∑n

i=1

∑n

j=1
wi,j ; ZI =

I−E[I]
√

V[I]
.

E[I] = −1∕(n − 1) ; V[I] = E
[

I2
]

− E(I)2.where wi,j repre-
sents the spatial weight. The value range of GMI is [−1, 1] , 
greater than zero means positive correlation, less than zero 
means negative correlation, equal to zero means no correla-
tion, close to 1 means the same attribute aggregation, and 
close to − 1 means different attribute aggregation. The LMI 
can be expressed as

where wi,j represents the spatial weight. The LMI greater 
than zero indicates that the high value (low value) of the area 
is surrounded by the surrounding high value (low value), and 
it also means that it is surrounded by the same attribute. The 
LMI less than zero means that the high value (low value) of 
the area is surrounded by the surrounding low value (high 
value), and it also means that it is surrounded by different 
attributes.

When constructing the spatial panel model, the ordinary 
static spatial model ignores the lag effect of the dependent 
variable in the previous period. In fact, the current results 
of the CEI of grain production are often affected by the 
carbon emissions level of the previous period, and this 
effect always has Matthew effect. Therefore, based on the 

(6)ECH4
= � ⋅ �

CH4

j
⋅ ARErice,j

(7)

GMI =
n

S0

∑n

i=1

∑n

j=1
Wi,jZiZj

∑n

i=1
Z2

i

;zi =
�

xi − x
�

, zj =
�

xj − x
�

(8)LMI =

(

xi − x
)

S2

∑n

j=1
wi,j

(

xj − x
)

S2 =
∑n

i=1

(

xi − x
)2
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research of Elhorst et al. (2012), this paper constructs a 
spatial panel model including dynamic effects:

where Xi,j,t is the factor j in a module of area i ; wi is the i-th 
row of the spatial weight matrix W , and W includes distance 
weight, economic weight, and carbon emissions weight; �t 
represents the time effect; (�i + �it) represents the compound 
interference terms; and mi represents the i-th row of spatial 
weighting matrix M of compound interference terms.

When � = 0 and � = 0 , Eq. 9 is a static spatial panel 
model; if � = 0 , Eq. 9 becomes a spatial Durbin model 
(SDM); if � = 0 and � = 0 , Eq. 9 becomes a spatial autore-
gressive model (SAR); if � = 0 and � = 0 , Eq. 9 becomes a 
spatial autocorrelation model (SAC); and if � = � = 0 and 
� = 0 , Eq. 9 becomes a spatial error model (SEM).

Geographical distance weight matrix can be expressed 
as

where dij represents the geographical distance between i and 
j , which measured by Euclidean distance between the provin-
cial capital cities (Zhang et al., 2020), and coefficient � (the 
reciprocal of the minimum distance between provincial capital 

(9)
�

Fit = a + �Fi,t−1 + �wiFit + �wiFi,t−1 + �i
∑k

j=1
Xi,j,t + �iwi

∑k

j=1
Xi,j,t + �t + �i + �it

�it = �mi�i + �it

(10)Wdis
ij

= e−�ij

cities) is used to quantify the variables without dimension, and 
the measurement unit has no influence on the empirical results.

Economic weight matrix can be expressed as:

where Yi represents the average GDP of geographical unit 
i . During 2002–2018; Y  represents the average GDP of all 
regions.

Carbon emissions weight matrix can be expressed as

where Ri represents the average carbon emission of grain 
production of geographical unit i during 2002–2018; R rep-
resents the average carbon emission of grain production of 
all regions.

(11)Weco
ij

= Wdis
ij
diag

(

Y1

/

Y , Y2

/

Y ,⋯ ,Yn

/

Y
)

(12)Wres
ij

= Wdis
ij
diag

(

R1

/

R,R2

/

R,⋯ ,Rn

/

R
)

Table 1  Methane emission factors of rice cultivation in different provinces

Note: “—” represent no data

Province Emission factors (g/m2) Province Emission factors (g/m2)

Early rice 
(single-season 
Rice)

Late rice In-season rice ( single-sea-
son late rice, rice of winter 
paddy, and wheat stubble)

Early rice 
(single-season 
rice)

Late rice In-season rice ( single-sea-
son late rice, rice of winter 
paddy, and wheat stubble)

Beijing — — 13.23 Hubei 17.51 39 58.17
Tianji — — 11.34 Hainan 14.71 34.1 56.28
Hebei — — 15.33 Guangdong 15.05 51.6 57.02
Shanxi — — 6.62 Guangxi 12.41 49.1 47.78
Inner Mongolia — — 8.93 Hainan 13.43 49.4 52.29
Liaoning — — 9.24 Chongqing 6.55 18.5 25.73
Jilin — — 5.57 Sichuan 6.55 18.5 25.73
Heilongjiang — — 8.31 Guizhou 5.1 21 22.05
Shanghai 12.41 27.5 53.87 Yunnan 2.38 7.6 7.25
Jiangsu 16.07 27.6 53.55 Tibet — — 6.83
Zhejiang 14.37 34.5 57.96 Shaanxi — — 12.51
Anhui 16.75 27.6 51.24 Gansu — — 6.83
Fujian 7.74 52.6 43.47 Qinghai — — —
Jiangxi 15.47 45.8 65.42 Ningxia — — 7.35
Shandong — — 21 Xinjiang — — 10.5
Henan — — 17.85
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Variable selection and data sources

Analysis of influencing factors

Production technology is a key factor affecting ACE (Zhang 
et al. 2013; Xu et al. 2020; Cui et al. 2018; Zhang and Fang 
2013); therefore, the technical efficiency of grain production 
(PE) is used. Using grain planting area, direct cost, indirect 
cost, and labor quantity as four input indices and grain out-
put as the output index, the production technical efficiency 
of rice, wheat, and maize is calculated. This paper uses 
the EBM model to measure technical efficiency. Tone and 
Tsutsui (2010) proposed an epsilon-based measure (EBM) 
model containing both radial and nonradial distance func-
tions. Under the assumption of constant returns to scale, the 
input-oriented EBM model is as follows:

where �∗ represents the PE under the EBM model; xik and 
yrk represent the i input and the r output of the k decision-
making unit, respectively; m and s represent the number of 
inputs and outputs, respectively; � represents the linear com-
bination coefficient of the decision-making unit; � represents 
the planning parameter of the radial part; S−

i
 represents the 

relaxation value of input elements; w−
i
 represents the rela-

tive importance of each input index and meets 
∑m

i=1
w−
i
= 1 , 

(w−
i
≥ 0) ; �x represents the importance of the nonradial part 

in the efficiency value calculation; and 0 ≤ �x ≤ 1 . The 
advantage of this model is that it relaxes the assumption of 
“factor input changes in the same proportion” in the tradi-
tional data envelopment analysis (DEA) method, making the 
measurement results more realistic.

Some studies have shown that economic factors are sig-
nificant influencing factors of ACE (Xiong et al. 2016). 
Therefore, per capita agricultural output value (PAV) and 
agricultural trade openness (ATO) are used and calculated by 
dividing the total agricultural output value by the number of 
employees in the primary industry and the proportion of the 
actual total agricultural import and export in the agricultural 
added value, respectively.

Per capita agricultural output value (PAV):

(13)�∗ = min � − �x

m
∑

i=1

w−
i
s−
i

xik

s.t.

n
∑

j=1

xij�j + s−
i
= �xik, i = 1,⋯ ,m

n
∑

j=1

yrj�j ≥ yrk, r = 1,⋯ , s

�j ≥ 0, s−
i
≥ 0

where AVi represents total agricultural output value of region 
i ; NFIEi represents the number of employees in the primary 
industry of region i.

Agricultural trade openness (ATO):

where TATi represents the gross value of grain import 
and export and ADAi represents the added value of grain 
industry.

Because urbanization and industrial structure have sig-
nificant impacts on ACE (Liu et al. 2019), the urbaniza-
tion level (UL), grain industrial structure (INS), and grain 
production agglomeration degree (ADG) are used and are 
calculated by the proportion of the urban population in the 
total population, the proportion of planting output value in 
the total output value of agriculture, and the location quo-
tient method, respectively.

Urbanization level (UL):

where UPi represents the urban population and TPi repre-
sents the total population.

Grain industrial structure (INS):

where PIVi represents the grain output value and AVi repre-
sents total agricultural output value.

Agglomeration degree of grain production (ADG):

where PIVi represents the grain output value of region i ; 
GDPi represents the GDP of region i;PIVT represents the 
grain output value of all regions; and GDPT represents the 
GDP of all regions.

Studies have shown that weather and seasonal climate 
change can significantly affect ACE. Therefore, the propor-
tion of agricultural disaster area (DSA) is used and calcu-
lated by the proportion of disaster area in the sown area of 
grain.

Proportion of agricultural disaster area (DSA):

where SAi represents the agricultural disaster area and PAi 
represents the agricultural planting area.

In addition, policy and institutional factors affect ACE 
(Girija et al. 2015); thus, this paper uses the proportion of 
agricultural financial expenditure (AFP) and the propor-
tion of financial expenditure on environmental protection 
(EFP) as variables, which are calculated by the proportion of 

(14)PAVi = AVi∕NFIEi

(15)ATOi = TATi∕ADAi

(16)ULi = UPi∕TPi

(17)INSi = PIVi∕AVi

(18)ADGi = (PIVi∕GDPi)∕(PIVT∕GDPT )

(19)DSAi = SAi∕PAi
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agricultural financial expenditure in the total regional finan-
cial expenditure and the proportion of financial expenditure 
on environmental protection in the total regional financial 
expenditure, respectively.

Proportion of agricultural financial expenditure (AFP):

where AFi represents the agricultural financial expenditure 
of region i and TFi represents the total financial expenditure 
of region i.

Proportion of financial expenditure on environmental 
protection (EFP):

where EFi represents the financial expenditure on environ-
mental protection of region i and TFi represents the total 
financial expenditure of region i.

Impact mechanism

This study selects the following factors to explain the impact 
mechanism of CEI (Fig. 1). These factors can influence the 
CEI directly or through spatial spillover effects. First, we 
analyze the direct impact of various factors on the CEI. The 
improvement in technical efficiency improves the efficiency 
of input factors, reduces their input amount, and reduces 
carbon emission intensity. A decrease in agricultural disaster 
area means an increase in effective production and leads to 
a reduction in the CEI of these regions. The improvement 
in agricultural trade openness means increasing the import 
of grain from countries with high agricultural production 

(20)AFPi = AFi∕TFi

(21)EFPi = EFi∕TFi

efficiency. On the basis of comparative advantage theory, 
importing grain from countries with comparative advan-
tages in production is conducive to reducing China’s grain 
carbon emission intensity. The improvement in agglomera-
tion means that the agricultural structure tends toward grain 
planting. In these areas, specialized production forms the 
accumulation and innovation of grain production technol-
ogy, reducing the carbon emission intensity. The improve-
ment in the grain industrial structure leads to an increasing 
proportion of the planting industry in the total agricultural 
output value, and the intensive tendency of agricultural 
production produces economies of scale to improve the 
efficiency of resource utilization. Therefore, the innovation 
and application of grain production technology can focus on 
grain planting and improve the efficiency of resource utili-
zation, reducing carbon emissions intensity. The increase 
in agricultural output per capita means that the demand 
for low carbon development is increasing, which promotes 
the application of agricultural low carbon technology and 
thus reduces the carbon emission intensity of grain. With 
the advancement of urbanization and the reduction in rural 
labor, agricultural scale management has become a realistic 
choice. The efficient utilization of agricultural inputs has 
promoted the reduction of grain carbon emission intensity in 
this period. The increase in agricultural financial expenditure 
can increase the funds for agricultural production and sig-
nificantly improve the agricultural production infrastructure 
and equipment to reduce the carbon emission intensity of 
grain. The increase in financial expenditure on environmen-
tal protection can reduce CEI by increasing investment in the 
research and development (R&D) of low-carbon technology 
and increasing the institutional cost of carbon emissions.

Fig. 1  Analysis framework of the impact mechanism of grain’s CEI
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These factors also have significant spatial spillover 
effects. They can be transmitted to neighboring areas 
through spatial spillover mechanisms, for example, factor 
flow, technology spillover, policy learning, and the demon-
stration effect (positive spatial spillover effect) and siphon 
effect (Zhang et al. 2020). Specifically, higher technical 
efficiency, through the mechanisms of technology spillover 
and policy emulation, can pass the advanced technology of 
breeding, planting, purchasing, storage, and processing to 
areas with small economic gaps, and this approach promotes 
the optimization and upgrading of production equipment, 
technology, and management in these areas to reduce their 
CEI. When the industrial agglomeration degree of grain is 
relatively high, it reflects the high level of specialization of 
grain production in the region, and it can attract the related 
resources in the surrounding areas and eventually increase 
the surrounding areas’ CEI through resource flow. A higher 
level of economic development means a better working envi-
ronment and salary conditions, stronger consumer demand, 
employment opportunities, and investment opportunities; it 
can further attract capital, talent, technology, data, and other 
production factors in the surrounding areas, thereby increas-
ing the surrounding areas’ CEI. Policy is one of the impor-
tant tools for the government to intervene in the development 
of industries. The improved agricultural emission reduction 
policies implemented in some provinces can play a role in 
inducing agricultural production entities to adopt green pro-
duction technologies, thereby promoting green agricultural 
development; this policy experience is then recognized by 
other regions and incorporated into the regional policy of 
agricultural emission reduction. It creates a spillover effect 
of the supporting policy.

After selecting the influencing factors of CEI, the 
dynamic spatial panel model of the CEI of grain production 
can be expressed as

(22)
CEIit = a + �CEIi,t−1 + �wiCEIit + �wiCEIi,t−1 + �1PEit + �2PAVit + �3ULit + �4DSAit + �5INSit

+�6OWDit + �7AILit + �8AFPit + �9EFPit + �1wPEit + �2wPAVit + �3wULit + �4wDSAit

+�5wINSit + �6wOWDit + �7wAILit + �8wAFPit + �9wEFPit + �t + �i + �it

Data sources

In this paper, rice, wheat and maize were selected as the 
research objects, and the data were taken from 2002 to 
2018. The rice, wheat, and maize TCEs and CEIs in 31 
Chinese provinces (excluding Hong Kong, Macao, and 
Taiwan) were measured. Then, three main grain-producing 
areas (Table 2) were selected to build a dynamic spatial 
model to explore the influence mechanism and spatial 
spillover effect of the CEI of grain production. Among 
the variables involved in this paper, the data of grain plant-
ing area, grain output, total population, urban population, 
agricultural disaster area, regional financial expenditure, 
regional agricultural financial expenditure, and regional 
financial expenditure on environmental protection are 
from the National Bureau of Statistics of China. The data 
of direct cost, indirect cost, labor quantity, agricultural 
plastic film consumption, fuel cost, fertilizer consumption, 
pesticide cost, total irrigation cost, and irrigation water 
cost are from the Compilation of Cost–Benefit Data of 
Agricultural Products in China. The data of total agri-
cultural output value and the number of employees in the 
primary industry come from the statistical yearbooks of 
various provinces. The grain output value and food output 
value data are from the China Rural Statistical Yearbook. 
The data on the import and export of grain and agricultural 
products are from the database of the General Adminis-
tration of Customs of China. The guidance for the use of 
pesticides in rice, wheat, and maize is from the Ministry 
of Agriculture and Rural Affairs of China, and the price 
data of various pesticides are from Shijinongyao (web-
site: www. nongy ao001. com). The electricity price data for 
agricultural irrigation are from the State Grid Corporation 
of China (website: www. sgcc. com. cn). The diesel price 
data are from the Wind database.

The price of pesticides is adjusted by the price index 
of pesticides and their means of production to obtain the 

Table 2  Three main grain-producing areas

Varieties Regions

Rice Hebei, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, 
Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou, Yunnan, Ningxia

Wheat Hebei, Shanxi, Inner Mongolia, Heilongjiang, Jiangsu, Anhui, Shandong, Henan, Hubei, Sichuan, Yunnan, Shaanxi, Gansu, Ningxia, 
Xinjiang

Maize Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Shandong, Henan, Hubei, Guangxi, Chongqing, 
Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Xinjiang
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current price of each year. The electricity price for agricul-
tural irrigation is adjusted according to the electricity con-
sumption price index of rural residents, and the current price 
of each year is obtained. The direct cost and indirect cost of 
grain production were reduced by the price index of agricul-
tural production based on 2002. Other data are original data.

Empirical results

Analysis of the temporal and spatial pattern 
evolution of grain carbon emissions

From 2002 to 2018, the TCE of rice, wheat, and maize 
increased from 32,365.920 to 45,558.268 kt. Specifically, 
the TCE increased rapidly in 2008–2015 with an annual 
growth rate of 4.594%, and the TCE fell back to 45,000 kt in 
2015–2018. The evolution of carbon emissions is analyzed 
in the following sections.

Evolution of rice carbon emissions

From 2002 to 2018, China’s TCE of rice increased from 
16,158.459 to 17,938.854 kt, and the agglomeration area of 
TCE shifted from Central and South China to Central and 
Northeast China (Fig. 2 a and b). In 2018, the top five prov-
inces in terms of the TCE from rice production were Jiangxi, 

Hunan, Jiangsu, Heilongjiang, and Anhui; their combined 
carbon emissions accounted for 53.859% of China’s rice 
TCE. From 2002 to 2018, the CEI of rice in more than 70% 
of the provinces showed a decreasing trend. In 2018, the spa-
tial pattern of CEI showed a trend of decreasing from coastal 
areas to inland areas. The CEI of the main producing areas 
in Central China and South China was significantly higher 
than that of the main producing areas in Northeast China. 
From 2002 to 2018, the CEI of Heilongjiang decreased the 
most, from 80.943 to 60.010 kg/t; the CEI of Jiangxi had the 
smallest change, with a reduction of 5.310 kg/t; the CEIs 
of Jiangsu and Anhui were relatively high and increased 
by 9.748 kg/t and 9.287 kg/t, respectively. The calculation 
results show that the TCE and CEI of the main producing 
areas in Central China, East China, and South China are 
relatively high, while the main production areas in Northeast 
China have relatively high TCE and low CEI.

Evolution of wheat carbon emissions

From 2002 to 2018, China’s TCE of wheat increased from 
8384.411 to 10,396.460 kt, and the agglomeration area 
of TCE was in the Huang-Huai-Hai Plain and Northwest 
China (Fig. 3 a and b). In 2018, the top five provinces 
in terms of the TCE from wheat production were Henan, 
Shandong, Hebei, Anhui, and Jiangsu, and their combined 
carbon emissions accounted for 65.901% of China’s wheat 

Fig. 2  Distribution of total carbon emissions and carbon emission intensity of rice in 2002 and 2018

Fig. 3  Distribution of total carbon emissions and carbon emission intensity of wheat in 2002 and 2018
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TCE. From 2002 to 2018, the CEI of wheat decreased in 
more than 60% of the provinces. In 2018, the spatial pat-
tern of CEI was high in the north and south and low in 
the middle. The CEI of the main producing areas in the 
Huang-Huai-Hai Plain (3H Plain), Sichuan, Shaanxi, and 
Hubeiwas lower than that of South China and the main 
producing area in Northeast China. The CEI of Henan 
was the lowest, 62.191 kg/t in 2018, which was at a low 
level from 2002 to 2018. The CEI of Hebei decreased the 
most, from 112.920 to 88.099 kg/t. The calculation results 
demonstrate that the TCEs of the main producing areas in 
Northeast Chinaare low and the CEIs are relatively high, 

while the main producing areas in the Huang-Huai-Hai 
Plain have relatively high TCE and low CEI.

Evolution of maize carbon emissions

From 2002 to 2018, China’s TCE of maize increased from 
7823.050 to 17,222.954 kt, and the agglomeration area of 
TCE was in Northeast and North China (Fig. 4 a and b). 
In 2018, the top five provinces in terms of the TCE from 
maize production were Heilongjiang, Inner Mongolia, Jilin, 
Shandong, and Henan, and their combined carbon emissions 
accounted for 51.106% of China’s maize TCE. In 2018, the 
spatial pattern of CEI showed the characteristic of I-shaped 

Fig. 4  Distribution of total carbon emissions and carbon emission intensity of maize in 2002 and 2018

Table 3  Global Moran Index 
of carbon emission intensity of 
rice, wheat, and maize

Note: Matrix A, B, and C represent the distance weight matrix, economic weight matrix, and carbon emis-
sions weight matrix respectively. “*,” “**,” and “***” represent the significance levels of 10%, 5%, and 1% 
respectively

Rice model Wheat model Maize model

Matrix A Matrix B Matrix C Matrix A Matrix B Matrix C Matrix A Matrix B Matrix C

2002 0.884*** 0.867*** 0.601*** 0.915*** 0.881*** 0.791*** 0.888*** 0.871*** 0.775***
2003 0.881*** 0.858*** 0.628*** 0.919*** 0.883*** 0.799*** 0.873*** 0.833*** 0.688***
2004 0.898*** 0.863*** 0.594*** 0.921*** 0.894*** 0.812*** 0.885*** 0.869*** 0.739***
2005 0.923*** 0.881*** 0.649*** 0.916*** 0.886*** 0.829*** 0.871*** 0.847*** 0.685***
2006 0.894*** 0.869*** 0.629*** 0.894*** 0.875*** 0.777*** 0.86*** 0.86*** 0.743***
2007 0.902*** 0.865*** 0.617*** 0.898*** 0.871*** 0.759*** 0.847*** 0.824*** 0.622***
2008 0.841*** 0.734*** 0.199** 0.922*** 0.892*** 0.763*** 0.857*** 0.845*** 0.69***
2009 0.905*** 0.869*** 0.629*** 0.919*** 0.89*** 0.728*** 0.858*** 0.844*** 0.689***
2010 0.916*** 0.873*** 0.637*** 0.921*** 0.893*** 0.75*** 0.856*** 0.843*** 0.671***
2011 0.920*** 0.873*** 0.640*** 0.925*** 0.905*** 0.702*** 0.882*** 0.882*** 0.771***
2012 0.896*** 0.857*** 0.618*** 0.923*** 0.888*** 0.691*** 0.851*** 0.846*** 0.711***
2013 0.903*** 0.861*** 0.575*** 0.916*** 0.873*** 0.679*** 0.874*** 0.865*** 0.737***
2014 0.883*** 0.849*** 0.571*** 0.928*** 0.895*** 0.663*** 0.893*** 0.813*** 0.604***
2015 0.866*** 0.837*** 0.580*** 0.927*** 0.889*** 0.676*** 0.939*** 0.897*** 0.789***
2016 0.873*** 0.838*** 0.569*** 0.933*** 0.902*** 0.685*** 0.888*** 0.835*** 0.672***
2017 0.891*** 0.849*** 0.611*** 0.905*** 0.858*** 0.449*** 0.893*** 0.848*** 0.713***
2018 0.894*** 0.846*** 0.586*** 0.881*** 0.824*** 0.302*** 0.886*** 0.84*** 0.697***
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prominence, and the CEI of Northeast, Southwest, and 
North China was lower than that of Southeast, Central, and 
Northwest China. From 2002 to 2018, the ECI of Heilongji-
ang was at a low level (54.011 kg/t in 2018), decreasing 
by 2.791 kg/t. From 2002 to 2018, the CEI of Shandong 
decreased by 8.977 kg/t, but the CEI of Inner Mongolia was 
relatively high, with an increase of 0.964 kg/t. The calcula-
tion results demonstrate that the TCE and CEI of the main 
producing areas in Northwest China are relatively high and 
that the main producing areas in Northeast and North China 
have relatively high TCE and low CEI.

Analysis of impact factors on carbon emission 
intensity

Before using the spatial panel model for empirical analysis, 
the spatial correlation of the CEI of rice, wheat, and maize in 
China is tested. In this paper, the spatial correlation is tested 
by using the GMI, and the results are shown in Table 3. 
Under the distance matrix, economic matrix, and carbon 
emission matrix, the spatial correlation of the rice, wheat, 
and maize CEIs is significant. Grain planting depends on 
regional agricultural resources, showing a significant spa-
tial agglomeration effect. Grain carbon emissions are the 
unexpected output of grain planting, so they are also likely 
to show a strong spatial correlation. Therefore, this paper 
builds the spatial panel model of the distance matrix, eco-
nomic matrix, and carbon emission matrix for analysis.

When the spatial panel econometric analysis is con-
ducted, the spatial panel model should be selected. This 
paper draws on the testing method of Elhorst (2014) to 
assess the form of the spatial panel model (SAR, SAC, SEM, 
SDM) and determines whether it has fixed effects or random 
effects according to the Hausman test (Table 4). Therefore, 
the dynamic SDM is used for the rice, wheat, and maize 
CEIs. With the help of Stata software, this paper analyses 

the factors and spillover effects of the CEIs of rice, wheat, 
and maize through a distance matrix, economic matrix, and 
carbon emission matrix (Table 5).

The estimated results of the rice model demonstrate that 
the spatial autoregressive coefficients are significant (1% 
level), indicating that the rice model has a significant spa-
tial autoregressive effect in the distance matrix, economic 
matrix, or carbon emission matrix (Table 5). Considering R2 
and log-likelihood, the dynamic SDM under the economic 
matrix is used to analyze the factors and spillover effect on 
rice’s CEI. With the same judgment basis, the dynamic SDM 
under the economic matrix is also used to analyze wheat and 
maize (Table 5).

Technical efficiency has a meaningful negative impact 
on the CEI of grain production, and this negative impact 
is the largest, reflecting that improving technical efficiency 
is the most important factor in reducing the CEI (Table 5). 
The improvement in technical efficiency is manifested in 
the application of advanced production technology and 
the management mode, which improves the efficiency of 
input factors, reduces their input amount, and reduces the 
CEI. Regarding the difference in technical efficiency, the 
improvement in technical efficiency had the largest nega-
tive impact on the CEI of maize (− 4.3485), followed by 
rice (− 2.1682), and the smallest negative impact on wheat 
(− 2.1489). The policies implemented by the Chinese gov-
ernment, such as the temporary storage system of maize 
(2008–2015), improved seed subsidies, and agricultural 
machinery purchase subsidies, encouraged farmers to adopt 
new technologies, equipment, and processes. For instance, 
the mechanization levels of Heilongjiang and Jilin are sig-
nificantly higher than those of other parts of the country. 
Because the improvement in mechanization level increases 
technical efficiency, the CEI of maize in these areas is low. 
Additionally, the Chinese government has implemented the 
reform of “market pricing + subsidy” for maize since 2016, 

Table 4  Applicability test of spatial panel model

Note: “*,” “**,” and “***”represent the significance levels of 10%, 5%, and 1% respectively

Rice model Wheat model Maize model

Matrix 1 Matrix 2 Matrix 3 Matrix 1 Matrix 2 Matrix 3 Matrix 1 Matrix 2 Matrix 3

LM-lag 31.89*** 50.39*** 20.18*** 14.13*** 23.05*** 10.67*** 10.99*** 21.38*** 9.58***
R-LM-lag 28.18*** 36.64*** 21.68*** 12.45*** 21.81*** 4.53** 8.81*** 8.76*** 17.56***
LM-err 6.40** 11.19*** 4.75** 6.69*** 11.21*** 5.23** 0.31 19.61*** 4.32**
R-LM-err 4.54** 7.26*** 3.25* 3.77** 7.98*** 0.94 1.11 6.01** 0.86
LR-SAR 46.45*** 54.09*** 50.07*** 59.08*** 62.41*** 57.93*** 44.38*** 51.58*** 47.88***
Wald-SAR 17.51*** 38.42*** 33.49*** 23.64*** 44.97*** 39.48*** 19.53*** 40.88*** 35.89***
LR-SEM 45.89*** 52.99*** 48.55*** 58.40*** 61.19*** 56.24*** 48.26*** 55.62*** 51.13***
Wald-SEM 22.52*** 43.11*** 36.97*** 29.77*** 50.20*** 43.36*** 22.37*** 41.48*** 35.83***
Hausman 52.23*** 59.41*** 97.64*** 45.65*** 50.36*** 61.05*** 53.76*** 60.05*** 73.67***
LR-SDM 9.05*** 7.01** 5.43* 7.69** 6.91** 3.70 6.85** 5.52* 4.80*
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which has gradually increased the impact of the market on 
maize production. Under market regulation, the development 
of green maize planting and silage technology shortens the 
planting cycle of maize and improves the utilization rate of 
maize plants, thus reducing the CEI of maize.

Agricultural output per capita has a negative impact on 
the CEI of grain production. The increase in agricultural 
output per capita means that the demand for low carbon 
development is increasing, which promotes the applica-
tion of agricultural low carbon technology and thus reduces 
the CEI of grain production. The increase in agricultural 

output per capita had the largest negative impact on maize 
(− 1.4945), followed by rice (− 0.8714), and the smallest 
negative impact on wheat (− 0.7930). Inner Mongolia, 
Gansu, Xinjiang, Yunnan, and other western provinces that 
produce maize have a worse ecological environment; thus, 
they must pay additional attention to the protection of the 
agricultural ecology. This causes a more extensive applica-
tion of low carbon technology in agriculture, which leads to 
the greatest negative impact on the CEI of maize.

The urbanization level has a negative impact on the CEI 
of grain production. With the advancement of urbanization 

Table 5  Dynamic SDM regression results of rice, wheat, and Maize

Note: Matrix 1, 2, and 3 represent distance matrix, economic matrix, and carbon emission matrix, respectively; the standard error of coefficient 
estimation is shown in brackets, and “*,” “**,” and “***”represent the significance levels of 10%, 5%, and 1%, respectively; “—” represent no 
data

Variable Rice model Wheat model Maize model

Matrix 1 Matrix 2 Matrix 3 Matrix 1 Matrix 2 Matrix 3 Matrix 1 Matrix 2 Matrix 3

CEI(−1) 0.0886***
(0.0259)

0.1185***
(0.0401)

0.1208**
(0.0492)

0.8878***
(0.1217)

0.8786***
(0.0733)

0.9086***
(0.0446)

0.1535***
(0.0524)

0.2041***
(0.0783)

0.1909**
(0.0752)

PE  − 2.1814*
(1.1189)

 − 2.1682**
(1.0162)

 − 2.3778**
(0.9952)

 − 2.8919*
(1.6383)

 − 2.1489**
(1.1412)

 − 2.7457**
(1.3012)

 − 3.2398***
(1.0526)

 − 4.3485***
(1.5933)

 − 4.2452***
(1.5775)

PAV 0.5218*
(0.2834)

 − 0.8714*
(0.5113)

 − 1.6583*
(0.9332)

 − 0.9892*
(0.5254)

 − 0.7930**
(0.4317)

 − 0.5325
(1.0665)

0.3473
(0.3392)

 − 1.4945*
(0.8604)

 − 2.5682***
(0.9768)

UL  − 1.6890
(1.6188)

 − 2.6343*
(1.5706)

 − 2.5183*
(1.4949)

3.4222*
(1.8512)

4.4104*
(2.4639)

6.0338
(3.9361)

0.9922
(0.8869)

1.2741
(1.0762)

0.9058
(1.007)

DSA 0.0256**
(0.0122)

0.2785***
(0.0923)

0.0537*
(0.0300)

0.0254
(0.0255)

0.1329*
(0.0702)

0.1091
(0.2301)

0.0425**
(0.0202)

0.0571**
(0.0248)

0.0635**
(0.0297)

INS  − 1.6552*
(0.9399)

 − 1.9786*
(1.1751)

0.5058
(1.1561)

 − 1.2204*
(0.7054)

 − 2.3955
(1.3767)

 − 3.4269
(2.8197)

 − 0.4490
(0.4347)

0.4689
(3.6400)

 − 1.0163*
(0.5949)

ATO  − 0.1662
(1.1072)

 − 1.9919**
(0.9076)

 − 1.2048*
(0.6432)

 − 2.2525
(3.6785)

0.0890
(1.5691)

 − 1.0132
(1.4663)

 − 2.9247**
(1.4415)

 − 3.1013*
(1.7479)

 − 4.5458*
(2.3931)

ADG  − 0.8733
(0.5877)

 − 1.8831*
(1.0981)

 − 1.8780*
(1.0814)

 − 0.5759
(0.4813)

 − 0.7946**
(0.3909)

 − 0.8407**
(0.3953)

0.4022
(0.7168)

 − 1.1678*
(0.6458)

0.4979
(0.9450)

AFP  − 0.0149
(0.0577)

 − 0.0610*
(0.0351)

 − 0.0739
(0.1029)

03,938*
(0.2276)

0.2968*
(0.1367)

0.3679**
(0.1566)

0.9471
(0.9747)

 − 0.4896
(0.7927)

0.3755
(1.0122)

EFP  − 1.0787*
(0.6044)

 − 1.1041**
(0.5559)

 − 1.4247*
(0.8629)

 − 1.8567
(1.2439)

 − 0.2953*
(0.17384)

 − 0.3247*
(0.1939)

 − 2.6693
(2.6002)

 − 1.1392*
(0.6517)

 − 1.6244*
(0.8791)

W ∗ CEI(−1) 0.2507
(0.3128)

0.6348**
(0.2904)

0.2586*
(0.1507)

 − 0.4279**
(0.1962)

 − 0.5814***
(0.1675)

 − 0.4975***
(0.1429)

0.1776*
(0.1025)

0.1199*
(0.0632)

0.2141**
(0.1066)

W ∗ PE 2.8090**
(1.4130)

2.0477**
(0.9280)

1.1374
(1.0633)

— — — — — —

W ∗ PAV — — 2.8837*
(1.7259)

— — — — 2.3488**
(1.1135)

3.3004***
(1.4565)

W ∗ DSA —  − 0.2496***
(0.0946)

— — — — — — —

W ∗ AFP — — — 0.3841
(0.2972)

— —  − 0.7571
(0.9696)

0.7860*
(0.4157)

0.1955*
(0.1132)

W ∗ EFP 1.6363*
(0.9312)

1.6716*
(0.8588)

2.2092*
(1.1463)

1.4420*
(0.8529)

— — 2.5414*
(1.3086)

1.9747**
(0.8719)

2.4529*
(1.4231)

Spatial 0.7898***
(0.0750)

0.6106***
(0.1596)

0.5984***
(0.2170)

0.4221**
(0.1962)

0.6310***
(0.1442)

0.4859***
(0.1582)

0.6884***
(0.1091)

0.5733***
(0.1630)

0.5783***
(0.1737)

R2 0.7569 0.7706 0.7576 0.8052 0.8061 0.8064 0.7166 0.7942 0.7721
Log−likehood  − 121.5627  − 116.5962  − 116.9400  − 96.529  − 81.9728  − 83.5309  − 112.0497  − 107.7004  − 107. 8642
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and the reduction in rural labor, agricultural scale manage-
ment has become a realistic choice. The efficient utilization 
of agricultural inputs has promoted the reduction of grain 
CEI in this period. The increase in urbanization had a mean-
ingful negative impact on the CEI of rice (− 2.6343), but 
the impact on wheat was positive (4.4104), and the impact 
on maize was not significant. Jiangxi, Hunan, Jiangsu, 
Heilongjiang, and other main rice-producing provinces in 
China’s eastern region have a high urbanization rate, while 
Henan, Hebei, Anhui, and other main wheat-producing prov-
inces in China’s central region have a low urbanization rate. 
Therefore, urbanization has different effects on regions in 
different stages.

The proportion of agricultural disaster area has a 
positive impact on the CEI of grain production. An 
increase in agricultural disaster area means a decrease 
in effective production area; thus, the regions implement 
necessary measures to increase the expected yield per unit. 
The excessive use of agricultural resources then occurs, 
which leads to an increase in the CEI of these regions. 
The increase in agricultural disaster area had the greatest 
positive impact on rice (0.2785), followed by wheat 
(0.1329) and maize (0.0571). Because the Yangtze River 
Basin is often affected by floods, the southeast coast is 
often affected by typhoons, and the northeast is often 
affected by freezing, and the rice cultivation in these areas 
is more affected by disasters. Therefore, the agricultural 
disaster area has the largest impact on rice.

The grain industrial structure has a negative impact on the 
CEI of grain production. The improvement in the grain indus-
trial structure means an increasing proportion of the planting 
industry in the total agricultural output, and the grain tendency 
of agricultural production is obvious. Therefore, the innovation 
and application of grain production technology can focus on 
grain planting and improve the efficiency of resource utiliza-
tion, reducing carbon emissions intensity. The improvement 
in grain industrial structure had the greatest negative impact 
on rice (− 1.9786), but the impact on wheat and maize was 
not significant. Because the agricultural production in rice-
producing areas is mainly oriented to grain, the CEI of grain 
can be significantly reduced through the accumulation of agri-
cultural production technology.

Agricultural trade openness has a negative impact on the 
CEI of grain production. China mainly imports grain from 
the USA, Ukraine, Canada, and other countries with high 
agricultural production efficiency. On the basis of comparative 
advantage theory, importing grain from these countries is 
conducive to reducing China’s grain CEI. The increase in 
agricultural trade openness had the greatest negative impact on 
maize (− 3.1013), followed by rice (− 1.9919), but the impact 
on wheat was not significant. The reason for this finding is 
that, on the one hand, the proportion of wheat imports relative 
to the total output is low, and the increase in imports cannot 

significantly reduce the CEI of wheat. The main wheat-
producing areas belong to Central China, and the provinces 
that import wheat are, for example, Beijing, Guangdong, 
Fujian, and Zhejiang. The mismatch between grain production 
and trade leads to the insignificant impact of agricultural trade 
openness on wheat.

The agglomeration of grain production has a negative 
impact on the CEI of grain production. The improvement 
in agglomeration means that the agricultural structure 
tends toward grain planting. In these areas, specialized 
production forms the accumulation and innovation of 
grain production technology, reducing the CEI. The 
increasing agglomeration of grain production had the 
greatest negative impact on rice (− 1.8831), followed by 
the negative impact on maize (− 1.1678), and the least 
negative impact on wheat (− 0.7946).

Agricultural financial expenditure has a negative impact 
on the CEI of grain production. The increase in agricultural 
financial expenditure can increase the funds for agricultural 
production and significantly improve the agricultural 
production infrastructure and equipment, reducing the CEI 
of grain. The increase in agricultural financial expenditure 
had a significant negative impact on the CEI of rice 
(− 0.0610), but the impact on wheat was positive (0.2968), 
and the impact on maize was not significant. Since 2005, 
the minimum purchase price policy of wheat has been 
implemented, which is beneficial to increasing grain yield 
and farmers’ income and cannot facilitate an increase in 
productivity (Tong et al. 2019; Jia et al. 2019). The improved 
seed subsidies and agricultural machinery purchase 
subsidies for rice improve production efficiency. Therefore, 
agricultural financial expenditure has different effects on 
rice and wheat. The proportion of financial expenditure 
directly related to maize production is relatively low; thus, 
the impact of agricultural financial expenditure on maize is 
not significant.

Financial expenditure on environmental protection has a 
negative impact on the CEI of grain production. The increase 
in financial expenditure on environmental protection can 
reduce the CEI of grain by increasing the investment in the 
research and development (R&D) of low carbon technology 
and increasing the institutional cost of carbon emissions. 
The increase in financial expenditure on environmental pro-
tection had the greatest negative impact on maize (− 1.1392), 
followed by rice (− 1.1041) and wheat (− 0.2953). The main 
maize-producing areas belong to Central and Western China. 
In these areas, the environment and resources are worse, and 
low carbon agricultural technology is more widely used than 
in other areas, leading to the greatest negative impact on 
maize. The regions with high CEIs of wheat include Shanxi, 
Jilin, and Fujian. The financial expenditure on environmen-
tal protection of these provinces is low; thus, the impact on 
wheat is not significant.
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In addition, the lagged CEI of grain production CEI (− 1) 
had the greatest positive impact on wheat (0.8786), followed 
by maize (0.2041) and rice (0.1185). The difference in the 
natural endowment of resources and the growth attributes 
of grain, shown by CEI (− 1), helps explain why the CEI of 
wheat is higher than that of rice and maize.

Spatial spillover effect analysis

Although the influencing factors directly affect the intensity 
of grain carbon emissions, they can also be transmitted to 
neighboring areas through spatial spillover mechanisms, for 
example, factor flow, technology spillover, and policy learn-
ing and the demonstration effect (positive spatial spillover 
effect) and siphon effect (Zhang et al. 2020). In this paper, 
the partial differential effect decomposition method is used 
to calculate the direct effects and spillover effect of influenc-
ing factors on the CEI of rice, wheat, and maize (Table 6).

From the perspective of the spatial effect decomposition of 
the factors affecting the CEI of rice, technical efficiency has a 
demonstration effect, and urbanization, grain industrial struc-
ture, and agglomeration have a siphon effect. Regions with 
higher technical efficiency, through the mechanisms of tech-
nology spillover and policy emulation, can pass the advanced 
technology of breeding, planting, purchasing, storage, and pro-
cessing to areas with small economic gaps (hereinafter referred 

to as the surrounding area).1 This promotes the optimization and 
upgrading of production equipment, technology, and manage-
ment in these areas and then reduces their CEI. Urbanization 
enables regions to have a better working environment and salary 
conditions and stronger consumer demand, employment oppor-
tunities, and investment opportunities. It further attracts capital, 
talent, technology, data, and other production factors in the sur-
rounding areas, thereby increasing the surrounding areas’ CEI. 
When the industrial structure and agglomeration of rice are rela-
tively high, it reflects the high level of specialization of rice pro-
duction in the region. Higher specialization attracts the related 
resources in the surrounding areas and eventually increases the 

Table 6  Decomposition of spatial effects on carbon emission intensity of rice, wheat and maize

Note: the standard error of coefficient estimation is shown in brackets; “*,” “**,” and “***” represent the significance levels of 10%, 5%, and 
1%, respectively

Variable Rice model Wheat model Maize model

Direct effects Spatial spillo-
ver effects

Total effects Direct effects Spatial spillo-
ver effects

Total effects Direct effects Spatial spillo-
ver effects

Total effects

CEI(−1) 0.3641***
(0.1089)

0.0618
(0.2162)

0.4260*
(0.2477)

0.8126***
(0.2038)

 − 0.0638
(0.3496)

0.7488
(0.6234)

0.3434***
(0.0802)

0.0471
(0.2077)

0.3905***
(0.1073)

PE 2.3660
(4.8877)

2.4740**
(1.083)

4.8400
(7.2884)

 − 6.1059
(4.9507)

2.0403*
(1.1901)

 − 4.0656
(3.3254)

 − 5.7732
(9.5582)

4.5897*
(2.4894)

 − 1.1835
(2.0253)

PAV 1.9556*
(1.1278)

0.2884
(1.667)

2.2440
(2.4455)

 − 1.9137
(2.2396)

 − 0.0472
(0.0556)

 − 1.9609
(2.2135)

0.1756
(0.6826)

0.8896
(1.0344)

1.0652
(3.4653)

UL  − 5.4922
(4.0844)

 − 1.0291**
(0.4277)

 − 6.5213*
(3.8038)

6.9948
(8.8480)

 − 1.006**
(0.4849)

5.9888
(4.6741)

4.0481
(3.0386)

 − 1.5936*
(0.8419)

2.4545**
(1.1697)

DSA 0.1193***
(0.0446)

 − 0.0412
(0.0770)

0.0781
(0.1107)

0.0381
(0.1023)

0.0411
(0.0532)

0.0792*
(0.0417)

0.1101***
(0.0329)

0.0156
(0.0351)

0.1258*
(0.0734)

INS  − 3.8890
(4.486)

 − 1.1174**
(0.5375)

 − 5.006**
(2.2918)

 − 3.3266
(5.1808)

 − 2.0983
(2.7923)

 − 5.4249
(5.5463)

 − 2.7687
(3.6797)

 − 3.5534
(3.0710)

 − 6.3221
(5.3174)

ATO  − 1.2826
(1.0221)

 − 0.5601
(0.3833)

 − 1.8427
(3.598)

 − 0.2772
(3.7877)

0.3236
(1.2899)

0.0464
(0.4949)

 − 4.6188
(3.4711)

 − 2.9582**
(1.2776)

 − 7.5771
(8.8740)

ADG  − 3.9407
(4.1154)

 − 0.3664*
(0.2126)

 − 4.3071
(6.9299)

 − 2.2398***
(0.5826)

 − 0.3897
(0.4361)

 − 2.6295**
(1.2814)

3.0754
(3.8718)

0.4161
(1.8314)

3.4915
(5.4844)

AFP  − 0.0675
(0.3166)

0.0940
(0.3518)

0.0265
(0.6181)

0.8153
(1.4982)

0.0584
(0.4697)

0.8737*
(0.4611)

0.4784
(0.4373)

0.1102
(0.3110)

0.5886
(0.6182)

EFP 0.7199
(0.9542)

 − 0.6761
(1.1033)

0.0438
(1.4725)

 − 0.7943**
(0.3454)

0.0152
(0.5661)

 − 0.7791
(1.1493)

 − 0.5292
(0.8742)

0.0125
(0.0281)

 − 0.5166
(0.4595)

1  Note: The abscissa represents the deviation between the sample 
value and the mean value, and the ordinate represents the spatial lag 
value; if the abscissa value is greater than 0 and the ordinate value is 
greater than 0, it means the high/high (H-H) positive spatial associa-
tion (SA); if the abscissa value is less than 0 and the ordinate value is 
greater than 0, it means the low/high (L-H) negative SA; if the abscissa 
value is less than 0 and the ordinate value is less than 0, it means the 
low/low (L-L) positive SA; if the abscissa value is greater than 0 and 
the ordinate value is less than 0, it means the high/low (H-L) negative 
SA; 1, Beijing; 2, Tianjing; 3, Hebei; 4, Shanxi; 5, Inner Mongolia; 6, 
Liaoning; 7, Jilin; 8, Heilongjiang; 9, Shanghai; 10, Jiangsu; 11, Zhe-
jiang; 12, Anhui; 13, Fujian; 14, Jiangxi; 15, Shandong; 16, Henan; 
17, Hubei; 18, Hunan; 19, Guangdong; 20, Guangxi; 21, Hainan; 22, 
Chongqing; 23, Sichuan; 24, Guizhou; 25, Yunnan; 26, Tibet; 27, 
Shaanxi; 28, Gansu; 29, Qinghai; 30, Ningxia; 31, Xinjiang
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surrounding areas’ CEI through resource flow. Combined with 
the local spatial agglomeration of rice represented by the local 
Moran’s I, the main rice-producing areas in Northeast China 
(Heilongjiang, Liaoning and Jilin) show LL (low-low) agglom-
eration, indicating a significant demonstration effect on the CEI 
of surrounding areas (Fig. 5a). In addition, the CEI of the main 
rice-producing areas (e.g., Hubei, Hunan, Jiangxi, and Fujian) 
presents HH (high-high) agglomeration, and the level is higher 
than that of the northeastern region. This is an important reason 
for the continuous northward shift of China’s rice production 
center (Xu et al. 2013).

From the decomposition of the spatial effect of factors 
relevant to wheat, technical efficiency has a demonstration 
effect, and urbanization has a siphon effect. There is a dem-
onstration effect of technology in the main wheat-producing 
areas due to the mechanism of technology spillover and pol-
icy emulation, and there is a siphon effect of urbanization 
due to the advantages of urbanization in capital, labor, and 
technology. Combined with the local spatial agglomeration 
of wheat, the main wheat-producing areas (e.g., Shandong, 
Hebei, Henan, Jiangsu, and Anhui) show LL (low-low) 
agglomeration, and they have significant demonstration 
effects on surrounding areas (Fig. 5b). This also reflects 
that the increase in wheat production efficiency is the main 
reason for the lower CEI of the Huang-Huai-Hai Plain.

The decomposition of the spatial effect of the factors relevant 
to maize demonstrates that technical efficiency has a demonstra-
tion effect, and urbanization and agricultural trade openness have 
a siphon effect. The technology of the main maize-producing 
areas has a demonstration effect due to the high mechanization 
and high plant utilization rate, and the urbanization of the main 
maize-producing areas has a siphon effect due to the advanced 
production technology and complete service conditions. As non-
main maize-producing areas, the maize import provinces (e.g., 
Guangdong, Yunnan, Jiangsu, and Anhui) have strong agricul-
tural trade competitiveness. This attracts capital and information 

in the surrounding areas, which creates a siphon effect. Combined 
with the local spatial agglomeration of maize, the main producing 
areas (e.g., Hebei, Inner Mongolia, Jilin, Liaoning, Heilongjiang, 
Shandong, and Henan) show LL (low-low) agglomeration, and 
they have significant demonstration effects on the surrounding 
areas (Fig. 5c). It also reflects that the increase in maize produc-
tion efficiency is the main reason for the lower CEI of Northeast 
and North China.

Discussion and policy implications

Discussion

This paper used rice, wheat, and maize as examples, adjusted 
the calculation method of grain carbon emissions, measured 
the TCE and CEI of grains in China, and analyzed the evo-
lution of the spatial and temporal pattern. Next, the paper 
explored the influence mechanism and spillover effect of 
CEI by using the dynamic spatial model. This article has two 
main contributions. (1) This paper uses China’s rice, wheat, 
and maize as examples, improves the calculation method 
of grain carbon emissions in the literature, more accurately 
measures the TCE and CEI of grain production, and analyses 
the evolution of temporal and spatial patterns. (2) This paper 
uses spatial econometrics methods to analyze the influence 
mechanism and spatial spillover effect of the CEI of grain 
production.

From the temporal and spatial pattern evolution, the TCE 
of the grains showed a fluctuating upward trend, and the CEI 
in the main producing areas decreased. This is consistent 
with Wang et al. (2020) and Xu and Bai (2013). The main 
reason for the increase in TCE was the increase in sow-
ing area and total yield. Both the TCE and CEI of rice in 
Central, East, and South China were high, while the TCE 
of Northeast China was high, and the CEI was low. The 

Fig. 5  Local Moran index of the carbon emission intensity of rice, wheat, and maize in 2018
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TCE of wheat in Northeast China was low and the CEI was 
relatively high, while the Huang-Huai-Hai Plain had rela-
tively high TCEs and low CEI. The TCE and CEI of maize 
in Northwest China were high, while the TCE of Northeast 
and North China was high, and the CEI was low.

From the influence mechanism, different factors have 
significant heterogeneous effects, which are caused by pro-
duction technology and the regional economic and resource 
endowments of the main producing areas. This result is 
consistent with Zhao et al. (2018), Xiong et al. (2016), and 
Zhang et al. (2013). The results show that technical effi-
ciency has the greatest negative impact on the CEI of grain 
production, reflecting that the improvement in technical 
efficiency is the main measure of grain carbon emission 
reduction. The agricultural output per capita has a negative 
impact on the CEI of grain production. Urbanization has a 
significant negative impact on the CEI of rice and a positive 
impact on the CEI of wheat, while the impact on maize is 
not significant. The proportion of disaster area has a posi-
tive impact on the CEI of grain. The industrial structure and 
agglomeration of grain production have a negative impact 
on the CEI of grain production, and they are realized by 
gathering production technology, knowledge, and capital. 
Agricultural trade openness has a negative impact on the 
CEI of maize and rice, but the impact on wheat is not sig-
nificant. Agricultural financial expenditure has a significant 
negative impact on rice and a significant positive impact on 
the CEI of wheat, while the impact on maize is not signifi-
cant. The financial expenditure of environmental protection 
has a negative impact on the CEI of grain production. The 
difference in natural endowment and growth attributes helps 
explain why the CEI of wheat is higher than that of rice and 
maize.

The factors (e.g., technical efficiency, urbanization, grain 
industrial structure and agglomeration, and agricultural 
trade openness) can be transmitted to neighboring areas. 
This result is consistent with Wu et al. (2020). The spatial 
spillover mechanisms are resource flow, technology 
spillover, and policy learning, producing the demonstration 
effect and siphon effect. Spatial effect decomposition of 
the rice model demonstrates that technical efficiency 
has a demonstration effect and that urbanization, grain 
industrial structure, and grain production agglomeration 
have a siphon effect. Spatial effect decomposition of the 
wheat model demonstrates that technical efficiency has a 
demonstration effect and that urbanization has a siphon 
effect. Spatial effect decomposition of the maize model 
demonstrates that technical efficiency has a demonstration 
effect and that urbanization and agricultural trade openness 
have a siphon effect. These spatial spillover effects are also 
important reasons for the northward transfer of the grain 
production center and the agglomeration of low carbon 
emission areas.

Policy implications

The results show that improvements in grain technical effi-
ciency, urbanization, agricultural structure, agricultural trade 
openness, and agricultural policies have significant implica-
tions for the CEI of grain production and that these influ-
encing factors have spatial spillover effects. Therefore, the 
following recommendations are proposed. First, we should 
strengthen the innovation and popularity of agricultural tech-
nology by constructing a grain technology service system, 
popularizing high-efficiency and energy-saving agricul-
tural machinery, cultivating grain seeds of high quality, and 
improving the utilization efficiency of agricultural inputs. 
We should accelerate the upgrading of agricultural machin-
ery and technology, eliminate backward agricultural machin-
ery, promote advanced agricultural technologies, and reduce 
carbon emissions from the use of agricultural machinery. 
Taking saving fertilizer and pesticides as the starting point, 
energy-saving agricultural technology, and biological con-
trol technology should be popularized and applied, the use 
of pesticides should be reduced and the utilization rate of 
pesticides should be improved. We should increase the cov-
erage of soil testing and formula fertilization, improve the 
efficiency of chemical fertilizer, and reduce agricultural car-
bon emissions from the source. Second, we should promote 
orderly urbanization by implementing a reasonable urbaniza-
tion policy. We should prevent the excessive expansion of 
urban space caused by recklessly pursuing the urbanization 
rate, coordinate the process of urbanization and the optimi-
zation of agricultural industry distribution, and give full play 
to the positive role of urbanization in agricultural carbon 
emission reduction. Third, the agricultural structure should 
be optimized by reorganizing and improving the efficiency 
of agricultural resources in major grain-producing areas. 
On the premise of ensuring food security, the agricultural 
industrial structure should be further adjusted, the regional 
distribution and planting structure of grains should be opti-
mized, the planting of crops with high resource consump-
tion should be reduced, and the planting of high-yield and 
stress-resistant crops should be increased. Fourth, the trans-
fer payments for energy conservation and emission reduc-
tion technology should be improved through the assess-
ment responsibility system of emission reduction and the 
ecological compensation technology system of low carbon 
agriculture. We should increase agricultural investment in 
energy conservation, emission reduction and environmen-
tal protection; formulate medium- and long-term plans for 
carbon emission reduction of different types of grain; and 
establish agricultural emission reduction policies, laws, and 
regulations. Fifth, we should strengthen the flow and shar-
ing of production factors among regions and establish the 
coordination and governance mechanism of agricultural 
emission reduction across regions. We should focus on the 
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changes in agricultural carbon emission reduction policies 
in adjacent areas; strengthen regional cooperation and infor-
mation sharing; use the external spillover effect of technol-
ogy, agricultural policies, and other influencing factors; and 
apply agricultural low-carbon technologies in a wider range 
through regional linkage.
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