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Abstract
Drug residues, including various antibiotics, are being increasingly detected in aqueous environments. Ofloxacin (OFX) 
is one such antibiotic that is widely used in the treatment of several bacterial infections; however, chronic exposure to this 
antibiotic can have adverse impacts on human health. Hence, the identification of an effective OFX degradation method is 
essential. Thus, in this study, the degradation performance of OFX using potassium ferrate (Fe(VI)) under the influence of 
different initial concentrations, pH, temperature, and common ions in water was investigated. OFX degradation by Fe(VI) 
was directly proportional to the concentration of Fe(VI) and temperature and inversely proportional to the pH. Among the 
common ions in water, Fe3+ and NH4

+ could significantly promote the degradation of OFX by Fe(IV), while humic acid (HA) 
significantly inhibited it. Under the conditions of [Fe(VI)]:[OFX] = 15:1, T = 25℃, and pH = 7.0, the removal efficiency of 
8 μM OFX reached more than 90% in 4 min. Seven intermediates were identified by quadrupole time-of-flight tandem ultra-
performance liquid chromatography mass spectrometry (Q-TOF LC/MS), and two possible pathways for the degradation of 
OFX by Fe(VI) were proposed. Overall, the results suggest that advanced oxidation technology using Fe(VI) is effective for 
treating wastewater containing OFX.
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Introduction

With the increasing awareness of people’s environmental 
protection and increasing attention to health, drug residues 
in the environment have received increasing attention from 
researchers as well as the public. With the increasing use 
of antibiotics, high antibiotic concentrations have been 
detected in wastewater, as well as on the surface waters, 
drinking water, soil, and other environments now (Huang 
et al. 2019; Sanganyado and Gwenzi 2019; Cerqueira et al. 
2019; Tong et al. 2019). In addition to ecotoxicity, they may 
cause increased bacterial resistance (Zhang et al. 2015; Hu 
et al. 2007). It has been reported that the proportion of 

drug-resistant bacteria in various poultry and livestock has 
also increased greatly in recent years (Van Boeckel et al. 
2019).

Fluoroquinolones (FQs) have been widely used to treat 
a broad spectrum of bacterial infections over the past few 
decades (Zhang et al. 2015; Liu et al. 2016; Zhao et al. 
2016). Ofloxacin (OFX), a popular FQ antibiotic, is a 
third-generation quinolone, which is mainly used in the 
treatment of acute and chronic infections of the respiratory 
tract, throat, and tonsils caused by gram-negative bacteria 
(Watanabe et al. 2001). OFX is discharged in non-metabolic 
form mainly through wastewater produced by the industries 
such as pharmaceuticals and waste generated by humans and 
livestock, enter into municipal wastewater treatment plants 
through sewer networks, and finally enter into the natural 
environment (Zhang et al. 2015; Jara et al. 2020; Radjenovic 
et al. 2007). However, existing sewage treatment facilities 
have low processing efficiency with regard to antibiotics (Jia 
et al. 2012). According to reports, various antibiotic resi-
dues have been detected in sewage treatment plants around 
the world, such as the average content of OFX in the efflu-
ent of sewage treatment plants has reached an astonishing 
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97.0 ng/L (Wang et al. 2020a). Hence, finding an effective 
antibiotics degradation method is essential.

Various technologies have been developed for the removal 
of various antibiotics from the water now, such as adsorp-
tion, advanced oxidation processes (AOPs), biodegrada-
tion/photodegradation/sonic degradation, and membrane 
separation (Peng et al. 2012; Jiang et al. 2016; Gorito et al. 
2018; Elmolla and Chaudhuri 2010; Wang and Wang 2019a; 
2018a). However, they have not been widely applied due to 
their low removal efficiency and high operational cost. By 
contrast, advanced oxidation technology mainly generates 
highly active oxidation species through a series of chemi-
cal oxidation processes for the degradation of antibiotics or 
converts them to small molecule substances, which could 
enhance their biodegradability and the removal rate (Zhou 
et al. 2021; Sharma et al. 2016; Wilde et al. 2013; Wang and 
Wang 2019b; 2018b). AOPs use strong oxidation agents to 
degrade organic pollutants. According to the different ways 
used to produce oxidation agents, AOPs can be classified 
into many different types (Wang and Zhuan 2020; Wang and 
Chen 2020). Among them, Fe(VI) advanced oxidation is a 
promising technology for the degradation of organic pollut-
ants in wastewater (Pi et al. 2021; Shin et al. 2018; Wang 
et al. 2020 b). It is characterized by rapid degradation of pol-
lutants and high pollutant removal efficiency; hence, it can 
be regarded as green technology and has been widely used 
in wastewater treatment (Gong et al. 2020; Li et al. 2005).

In this work, K2FeO4 (Fe(VI)) was selected as the oxi-
dant and OFX was selected as the target contaminant. The 
degradation efficiency and kinetics of OFX by Fe(VI) under 
different reaction conditions were investigated. In addition, 
on the basis of the intermediate products identified, a pos-
sible degradation pathway of OFX by Fe(VI) was proposed. 
This research provides theoretical support for the treatment 
of OFX-containing wastewater using an Fe(VI) advanced 
oxidation process.

Materials and methods

Reagents

All standards of the pharmaceuticals used (sodium hydrox-
ide (NaOH), hydrochloric acid (HCl), sodium thiosulfate 
(Na2S2O3), ammonium acetate (CH3COONH4), phosphoric 
acid (H3PO4), tert-butanol (TBA), isopropanol (IPA), 
sodium bicarbonate (NaHCO3), sodium nitrate (NaNO3), 
sodium sulfate (Na2SO4), sodium chloride (NaCl), ammo-
nium chloride (NH4Cl), ferric chloride (FeCl3), potassium 
chloride (KCl), and humic acid (HA)) were of analytical 
purity grade and purchased from Sinopharm Chemical 
Reagents (Shanghai, China). The solvent (methanol) was 
HPLC grade and was purchased from Merck (Darmstadt, 

Germany). OFX was obtained from Aladdin (Shanghai, 
China). The water was produced using a UPH purification 
system (ULUP-I, Ulpure, China, resistivity ≥ 18.2 MΩcm).

Experimental procedures

Fe(VI) was prepared using a hypochlorite oxidation 
method (Li et al. 2005). The reaction was carried out in 
a 250 mL glass conical flask under a constant stirring rate 
of 400 rpm at 25℃ in a water bath using a thermostatic 
magnetic stirrer. The reaction between OFX (8.0 μM) and 
Fe(VI) (40.0–160.0 μM) was initiated by mixing them in 
equal volumes of 100.0 mL; the pH of the reaction mix-
tures was adjusted using 1.0 mM HCl or NaOH buffer. The 
reaction was quenched completely at certain reaction times 
(i.e., 0–5 min) using 200.0 μL of 1.0 mM Na2S2O3 solution. 
Samples were filtered using 0.45 μm polytetrafluoroethyl-
ene syringe filters (Fisherbrand, Fisher Scientific) and trans-
ferred into 2.0 mL high-performance liquid chromatography 
(HPLC) vials for analysis. All experiments took an average 
of three parallel samples.

Analytical methods

The concentrations of OFX in the samples were measured 
by HPLC (LC-2030PLUS, Shimadzu, Japan) equipped with 
a SinChrom ODS-B column (5 μm, 4.6 mm × 250 mm), 
and the detection was performed using a G1365MWD UV 
detector at 293 nm. The mobile phase was composed of 60% 
ammonium acetate (1% phosphoric acid adjusted to pH 2.7) 
and 40% methanol. Samples were analyzed at a flow rate of 
1.0 mL/min, the injection volume was set to 20 μL, and the 
column temperature was set at 25℃.

The intermediates of OFX were measured using a quad-
rupole time-of-flight (Q-TOF) liquid chromatography/mass 
spectrometry (LC/MS) (6545Q-TOF, Agilent, USA). Iso-
cratic elution was performed at a flow rate of 0.3 mL/min 
with 0.1% (v/v) ammonium acetate (A) and methanol (B). 
The mass spectra with electrospray ionization (ESI) source 
were recorded across the range of 50–500 m/z in positive 
scan mode.

Results and discussion

Influence of initial oxidant concentration 
and degradation kinetics

The effect of the initial Fe(VI) concentration on OFX deg-
radation is shown in Fig. 1a. It can be observed that the 
pseudo-first-order rate constants for OFX degradation (Kobs) 
increased from 0.0031 to 0.0125 s−1 when the Fe(VI) con-
centration increased from 40 to 160 μM. Then, Ln[Fe(VI)]0 
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and LnKobs were fitted by linear regression, and the results 
are shown in Fig. 1b. The correlation coefficient R2 was 
greater than 0.99, which means that the degradation of OFX 
by Fe(VI) follows the second-order reaction kinetics equa-
tion. The rate equations under different initial concentrations 
of Fe(VI) are shown in Table 1.

As shown in Table 1, the average value of the second-
ary reaction rate constant (Kapp) for the degradation of OFX 
by Fe(VI) was 78.28 M−1 s−1. As the initial concentration 
of Fe(VI) increased from 40 to 160 μM, the half-life t1/2 
decreased from 224 to 55 s. The results showed that with an 
increase in the initial concentration of [Fe(VI)], the degra-
dation rate of OFX gradually increased; similar results have 
been reported by Wang et al. (2019) and Liu et al. (2019).

Influence of pH and the corresponding kinetics

The degradation of OFX by Fe(VI) under different pH con-
ditions was measured, and the results are shown in Fig. 2a. 
When the pH increased from 5 to 10, the Kobs decreased 
from 0.0168 to 0.0039 s, implying that the degradation rate 
of OFX by Fe(VI) increased with a decrease in the pH value; 

similar results have been reported by Zheng et al. (2020) and 
Han et al. (2018).

Because OFX and Fe(VI) have various ionisable groups, 
their final ionization morphologies can be determined based 
on different pH values (Huang et al. 2017; Peterson et al. 
2015). Therefore, the kinetic equations of the pH and Kapp 
values were simulated using Eq. (1)

where αi and βj represent the distribution coefficients of 
OFX and Fe(VI), respectively. When the OFX dissociation 
constants pKa1 and pKa2 are 6.11 and 8.18, respectively, α1, 
α2, and α3 refer to the fractions of OFX+, OFX0, and OFX−, 
respectively (Peterson et al. 2015). For Fe(VI) (pKa = 7.23, 
pH ≥ 5 in the experiment), β1 and β2 refer to the fractions of 
HFeO4

− and FeO4
2−, respectively (Han et al. 2018; Zajicek 

et al. 2015). Under alkaline conditions, the reaction between 
FeO4

2− and OFX− was very slow (Zheng et al. 2020; Han 
et al. 2018; Huang et al. 2017); therefore, the reaction could 
be ignored in the model calculation. In addition, because it 
was difficult for HFeO4

− and OFX− (or FeO4
2− and OFX+) 

(1)
Kapp[Fe(VI)][OFX] =

∑

i=1,2,3,j=1,2
Kijai�j[Fe(VI)][OFX]

Fig. 1   Changes in OFX as a function of initial Fe(VI) concentra-
tions. (a) Degradation of OFX under different initial concentra-
tions of Fe(VI). (b) Linear fitting of Ln[Fe(VI)]0 and LnKobs at dif-

ferent Fe(VI) concentrations. Reaction conditions: [OFX]0 = 8  μM, 
[Fe(VI)]0 = 40–160 μM, T = 25℃, pH = 7.0

Table 1   Kinetic equation of the 
degradation of OFX by Fe(VI)

[Fe(VI)]0 (μM) Kinetic equation t1/2 (s) R2 Kapp (M−1 s−1)

40 Ln([OFX]/[OFX]0) =  − 0.0031t–0.0541 224 0.9913 77.5
80 Ln([OFX]/[OFX]0) =  − 0.0064t–0.1248 108 0.9897 80.0
120 Ln([OFX]/[OFX]0) =  − 0.0093t–0.1978 75 0.9905 77.5
160 Ln([OFX]/[OFX]0) =  − 0.0125t–0.2352 55 0.9898 78.1
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to exist at the same time under certain pH conditions, their 
reaction could also be ignored in the model calculation; 
therefore, the effect of pH on the Kapp value of Fe(VI) can 
be further simplified as Eq. (2):

The experimental values of Kapp (Meas Kapp) under dif-
ferent pH conditions were fitted with Eq. (2), and the results 
are shown in Fig. 2b; it can be seen that they exhibited a 
significant curve correlation (R2 ≥ 0.99).

The results showed that K11, K21, and K22 were 
150.23 M−1S−1, 94.7 M−1S−1, and 45.1 M−1S−1, respec-
tively. Among them, K11 or K21 was > K22, indicating that 
HFeO4

− was more oxidizing than FeO4
2−, and with the grad-

ual decrease in pH (when PH ≥ 5), HFeO4
− would become 

more dominant in the system. Moreover, K11 > K21 or K22 
implied that HFeO4

− showed higher reactivity toward OFX+ 
than OFX0 or OFX−. In conclusion, the degradation rate of 
OFX gradually increased with a continuous decrease in pH.

Influence of temperature and the corresponding 
kinetics

The degradation of OFX was measured as the temperature 
increased from 10 to 30℃; Kobs correspondingly increased 
from 0.0055 to 0.0110  s (Fig.  3a). This illustrates that 
the degradation rate of OFX gradually increases with an 
increase in temperature (Han et al. 2018). Figure 3b shows 
the results of fitting LnKapp and 1000/T, and a good linear 
relationship (R2 ≥ 0.99) can be observed. This shows that the 
degradation of OFX with temperature change satisfies the 

(2)Kapp = K11a1�1 + K21a2�1 + K22a2�2

Arrhenius equation as follows (Luo et al. 2015; Han et al. 
2018):

Here, the molar gas constant R is 8.314 J·mol−1·k−1, and 
hence, the reaction activation energy Ea can be calculated 
to be 24.2 kJ·mol−1. The results suggest that the reaction 
between Fe(VI) and OFX could occur even when the activa-
tion energy was relatively low.

In Fig. 3c, the results of fitting Ln(Kapp/T) and 1/T are 
shown; a good linear relationship (R2 ≥ 0.99) is observed. 
This implies that the degradation of OFX with temperature 
change satisfies the Eying equation as follows (Luo et al. 
2015):

where the Boltzmann constant kB is 1.38 × 10−23  J·k−1 
and the Planck constant h is 6.626 × 10−34  J·s; there-
fore, ΔH and ΔS can be calculated as 21.319 kJ·mol−1 
and − 135.62 J·mol−1·k−1, respectively. The results show 
that the degradation of OFX by Fe(VI) was an endothermic 
reaction. With an increase in temperature, the number of 
effective collisions between the polymers increased, result-
ing in an acceleration of the reaction rate.

Influence of free radicals in reaction system

Studies have shown that the degradation of organic pollut-
ants by Fe(VI) includes the direct oxidation by Fe(VI) and 
the indirect oxidation by generated free radicals (Zhang 

(3)LnKapp = −(Ea∕R) × (1∕T) + LnA

(4)
Ln

(

Kapp∕T
)

= −(ΔH∕R) × (1∕T) + Ln
(

KB∕h
)

+ ΔS∕R

Fig. 2   Changes in OFX as a function of pH. (a) Degradation of OFX at different pH. (b) Relationship between pH value and apparent second-
order reaction kinetic constant (Kapp). Reaction conditions: [OFX]0 = 8 μM, [Fe(VI)]0 = 120 μM, T = 25℃, pH = 5–10
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et al. 2012). And Fe(VI) and its intermediates (Fe(V) and 
Fe(IV)) can generate highly reactive hydroxyl radicals 
(OH•) during their self-decomposition process (Zhang 
et al. 2012; Noorhasan et al. 2010). In traditional advanced 
oxidation process experiments, OH• plays a significant 
role (Wang et al. 2018; Chen et al. 2020, 2019; Wang and 
Wang 2020). Therefore, in order to verify the contribution 
of ROS, TBA and IPA were used as free radical scavengers 
of OH•. As shown in Fig. 4, the OFX degradation rate 
decreased by 4.57% and 5.82% with the addition of TBA 
and IPA to the reaction system, respectively. Thus, it can 
be concluded that Fe(VI) does exist OH• in the experi-
ments of degrading OFX, and OH• contributed little to the 
degradation of OFX. Therefore, it can be considered that 
the degradation of OFX is mainly due to the oxidation by 

high-valent iron-based. Similar results have been reported 
by Shao et al. (2019) and Jin et al. (2021).

Influence of anions, cations, and organic matter

The common anions, cations, and organics in water were 
selected to investigate their influence on the degradation of 
OFX by Fe(IV). K+, Na+, Cl−, SO4

2−, and NO3
− had almost 

no effect; Fe3+ and NH4
+ greatly promoted OFX degrada-

tion; while HCO3
− only had a small inhibitory effect on 

OFX degradation in the reaction system (Fig. 5). In addition, 
organic matter, represented by HA, significantly inhibited 
the degradation of OFX by Fe(IV) (Fig. 5).

In water, HCO3
− can slightly inhibit the degrada-

tion of OFX by Fe(VI). On the one hand, the presence of 

Fig. 3   Changes in OFX as a function of temperature. (a) Degradation of OFX at different temperatures. (b) Linear fitting of LnKapp and 1000/T. 
(c) Linear fitting of Ln(Kapp/T) and 1/T. Reaction conditions: [OFX]0 = 8 μM, [Fe(VI)]0 = 120 μM, pH = 7.0; T = 10–30℃
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bicarbonate can increase the solution pH, which in turn 
affects the stability of the oxidant. As shown in Fig. 2, the 
degradation rate of OFX by Fe(VI) decreases with increas-
ing pH. The reason is that Fe(VI) is more present in the 
form of FeO4

2− under alkaline conditions, and the reaction 
between FeO4

2− and OFX− is very slow (Zheng et al. 2020; 
Han et al. 2018; Huang et al. 2017). On the other hand, the 
HCO3

− will react with OH•, thereby depleting free radicals 
in solution and reducing the reaction rate (Wang and Wang 
2021).

However, the pH of the solution raised after bicarbo-
nate hydrolysis is limited, and Fig. 4 also proves that the 

contribution of OH• is small. Therefore, HCO3
− has only a 

small inhibitory effect on OFX degradation in the reaction 
system.

Fe3+ enhanced the OFX removal by Fe(VI) mostly via 
self-catalysis of Fe(VI) to generate more Fe(IV) or Fe(V) 
(Jiang et al. 2016; Ma et al. 2016; Zhao et al. 2018a). Moreo-
ver, NH4

+ was reductive, which could promote the genera-
tion of Fe(IV) or Fe(V) from Fe(VI), thus improving the 
removal rate of OFX (Zhao et al. 2018b). Since HA and 
OFX compete with Fe(VI), HA has a significant inhibitory 
effect on the Fe(VI) degradation of OFX (Sharma et al. 
2016; Horst et al. 2013).

Intermediate products and degradation pathways

Through a study of relevant references and Q-TOF LC/
MS analysis of intermediate products of OFX degrada-
tion (Michael et al. 2013; Bi et al. 2019; Xue et al. 2017; 
Meng et al. 2021; Jin et al. 2021), and possible degrada-
tion pathways were proposed (Fig. 6). There are two main 
ways in which Fe(IV) degrades OFX. One of the degrada-
tion pathways is as follows: Firstly, the methyl group on 
the benzoxazine ring of OFX was carboxylated to form P1 
(m/z = 391.1). P1 was then converted to P3 (m/z = 303.1) 
through decarboxylation. After the opening of the piperazine 
and oxazine rings, P3 was transformed into P5 (m/z = 178.1), 
and finally, P7 (m/z = 110.0) was formed through pyridine 
ring opening, defluorination, deamination, and hydroxyla-
tion. The other degradation pathway is as follows: OFX was 
converted into P2 (m/z = 337.1) through pyridine ring open-
ing, and then P4 (m/z = 218.1) was formed by the opening of 
the piperazine and oxazine rings. P4 was finally transformed 
into P6 (m/z = 122.0) by deamination, defluorination, and 
dehydroxylation. P6 and P7 were further oxidized to form 
small molecular intermediates, which were finally decom-
posed into small molecular acids, CO3

2−, H2O, NO3
−, and 

minerals (Zhou et al. 2021).

Conclusion

This study showed that Fe(VI) is an effective oxidant for 
the degradation of OFX. The degradation rate of OFX by 
Fe(VI) was in accordance with the second-order kinetic 
equation. OFX degradation by Fe(VI) was directly propor-
tional to the initial concentration of Fe(VI) and temperature 
and inversely proportional to the pH. Under the conditions of 
[Fe(VI)]:[OFX] = 15:1, T = 25℃, and pH = 7.0, the removal 
efficiency of 8 μM OFX reached more than 90% in 4 min. 
Seven intermediates were identified by Q-TOF LC/MS, 
and the opening loop, decarboxylation, breaking the C-N 
bond, and deamination were the main reaction processes 
identified in their formation. In conclusion, Fe(VI) advanced 

Fig. 4   Influence of OH• on OFX degradation. Reaction conditions: 
[OFX]0 = 8 μM, [Fe(VI)]0 = 120 μM, T = 25℃, pH = 7.0

Fig. 5   OFX degradation as a function of water components. Reaction 
conditions: [OFX]0 = 8 μM, [Fe(IV)]0 = 120 μM, ​[K​+]​0 = [Na+]0 = [N
H4

+]0 = [Fe3+]0 = [HCO3
−]0 = [NO3

−]0 = [SO4
2−]0 = [Cl−]0 = [humic 

acid (HA)]0 = 50 μM, T = 25℃, pH = 7.0
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Fig. 6   Pathways of OFX degra-
dation by Fe(VI)
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oxidation technology has obvious advantages in the treat-
ment of wastewater containing OFX.
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tary material available at https://​doi.​org/​10.​1007/​s11356-​022-​18949-x.
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