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Abstract
Dissolved oxygen (DO) is an important water quality monitoring parameter of great significance in aquaculture. Accurate 
prediction of dissolved oxygen can help farmers to take necessary measures in advance to ensure the healthy growth of 
cultured species. The characteristics of multivariate and long-term correlation of water quality time series in the traditional 
methods make it difficult to achieve the expected prediction accuracy. To solve this problem, we propose the combined 
prediction method LSTM-TCN (long short-term memory network and temporal convolutional network). After the preproc-
essing of time series, the LSTM extracts the features of the series in time dimension, and then combines with TCN to build 
the fusion prediction model. In this study, we have carried out the DO predictions of LSTM and TCN algorithms separately, 
followed by the analysis of DO prediction, based on CNN-LSTM and LSTM-TCN combined models. The effects of atten-
tion mechanism and window size of historical time on the prediction results were also investigated. The experimental results 
show that the combined method has high accuracy in dissolved oxygen prediction, and can capture better characteristics of 
historical data with increasing time window of the historical dissolved oxygen sequence. The LSTM-TCN method achieves 
better prediction performance, with evaluation index values of MAE = 0.236, MAPE = 3.10%, RMSE = 0.342, and R2 = 0.94.

Keywords Dissolved oxygen prediction · Long short-term memory network · Temporal convolutional network · Time 
window · Attention mechanism · Combined model

Introduction

The future direction of rapidly developing aquaculture 
focuses on intensive and intelligent solutions. In the com-
plex, dynamic, and nonlinear aquaculture systems, the qual-
ity of water is affected by many factors. Human management 
alone is not enough to respond to the rapid change of water 
quality in time that restricts the sustainable development of 
aquaculture. As one of the key indicators of water quality, 
the concentration of dissolved oxygen affects the healthy 
growth of cultured species directly. Keeping the dissolved 
oxygen content in a proper range improves feed efficiency, 
reduces the stress response of aquaculture species, and 
ensures the economic benefits of rearing. Therefore, it is of 
great practical significance to establish a prediction model 
of dissolved oxygen, based on historical data, and to predict 
the trend of dissolved oxygen content accurately.

There are many water quality variables in aquaculture, 
while the water quality information exists in the form of 
multivariate time series datasets. Water quality changes 
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periodically in time. Many scholars carried out relevant 
exploration and in-depth research to solve the problem of 
water quality prediction worldwide. The common methods 
for water quality prediction include artificial neural networks 
(ANN), regression analyses (RA), grey model (GM), and 
support vector regressions (SVR) (Zhou et al. 2018), as well 
as other methods (Rahman et al. 2020). Zhu et al. (2017) 
used the model of least squares support vector regression 
(LSSVR) with fruit fly optimization algorithm (FOA) to pre-
dict dissolved oxygen. Girija and Mahanta (2010) applied 
and compared artificial neural network and Mamdani’s fuzzy 
logic control for the prediction of dissolved oxygen in an 
effluent-impacted urban river. The results showed that the 
neural network had better prediction performance. Xiao et al. 
(2017) used the traditional method to predict the dissolved 
oxygen in the pond and compared the algorithms accord-
ing to the prediction accuracy. The results showed that the 
neural network was better than auto-regression (AR), grey 
model (GM), support vector machines (SVM), and curve 
fitting (CF). Ji et al. (2017) used support vector machine 
(SVM) to predict the dissolved oxygen concentration in 
a hypoxic river in South-Eastern China, and this method 
provided the optimal performance. The traditional models 
have some shortcomings, such as local optimal solutions, 
poor stability, and generalization ability. The self-learning 
characteristics of neural networks and their ability to process 
nonlinear information make up for the shortcomings of tra-
ditional dissolved oxygen time series models. Accordingly, 
they are widely used for dissolved oxygen prediction.

In recent years, deep learning method has made signifi-
cant progress in improving prediction accuracy in time series 
prediction (Qin 2019; Dabrowsk et al. 2020). For the predic-
tion of dissolved oxygen in aquaculture, the long short-term 
memory (LSTM) has good performance in deep learning 
models (Liu et al. 2019; Dabrowski et al. 2018). LSTM can 
memorize the previous data; thus, it has some advantages 
in dealing with time series prediction. It is widely used in 
machine translation (Cui et al. 2015; Wang et al. 2016), 
natural language processing (Yao and Huang 2016; Yao 
and Guan 2018), time series prediction (Shi et al. 2015; Li 
et al. 2019), and other fields. Chen et al. (2018) proposed a 
prediction model of dissolved oxygen in aquaculture based 
on principal component analysis (PCA) and long short-term 
memory (LSTM) neural network, which has better predic-
tion performance and generalization ability than traditional 
prediction methods. Hu et al. (2019a, b) proposed a water 
quality prediction method, based on the deep LSTM learn-
ing network for maricultural environment. Yang et al. (2018) 
established an end-to-end and trainable LSTM neural net-
work model, which combined temporal and spatial infor-
mation to realize the prediction of sea surface temperature. 
Its improvement and combination with other algorithms are 
more and more widely used in water quality prediction, and 

the experimental results show that the combined model has 
more reliable performance and higher prediction accuracy, 
than the single one. Accordingly, Li et al. (2018) proposed 
a hybrid model based on sparse auto-encoder (SAE) and 
long short-term memory (LSTM) network. Barzegar et al. 
(2020) established a hybrid model of long short-term mem-
ory (LSTM) and convolutional neural network (CNN). Yuan 
et al. (2018) investigated the accuracy of hybrid long short-
term memory neural network and ant lion optimizer model 
(LSTM-ALO) in prediction of monthly runoff.

Recently, temporal convolutional network has been pro-
posed to develop further time series prediction. The results 
show that convolution architectures can outperform recur-
rent networks for various datasets and tasks, and the tem-
poral convolutional network has better performance in the 
sequence modeling task (Bai et al. 2018). Ta and Wei (2018) 
proposed a simplified reverse understanding convolutional 
neural network (CNN) to predict dissolved oxygen, which 
had faster convergence rate and better stability, than BP net-
work. Zhao et al. (2019) proposed a new method combining 
graph convolutional network (GCN) and gated recurrent unit 
(GRU), which can capture the spatial and temporal depend-
ences to achieve accurate and real-time traffic prediction. 
Deng et al. (2019) proposed a novel knowledge-driven tem-
poral convolutional network (KDTCN) to predict the future 
trend of stocks.

Related experiments show that RNNs and CNNs can sim-
ulate complex nonlinear feature interactions and have good 
performance for time series processing (Chen et al. 2019). 
How to utilize the historical data of water quality time series 
effectively is still a challenge.

In this paper, a dissolved oxygen prediction model, based 
on the combination of long short-term memory network and 
temporal convolutional network, is proposed. Long short-
term memory network has the ability to deal with long-term 
dependence of complex time series. Temporal convolutional 
network solves the problem of concurrency in the LSTM 
network and improves the flexibility of model structure. The 
structure of dilations and causal convolutions in the network 
make the model suitable for time series data of large receiv-
ing field with advanced calculation. After preprocessing, the 
water quality data pass through the LSTM and TCN network 
model stepwise, and finally the tool calculates the prediction 
results. In parallel, the comparative experiments of LSTM, 
CNN-LSTM, and TCN algorithms are carried out. The influ-
ence of attention mechanism on prediction and the change 
of prediction accuracy caused by the size of historical time 
window are discussed. The experimental results demonstrate 
that the combined LSTM-TCN has better dissolved oxygen 
prediction performance, than other algorithms.

The rest of the paper is organized as follows: The basic 
principles of LSTM and TCN and the overall framework 
of our proposed combined method are summarized in the 
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“Methodology” section. “Experiments” presents the applica-
tion and results of the model to the prediction of dissolved 
oxygen in the actual industrial aquaculture, comparing it 
with other algorithms. Finally, the “Conclusion” section 
summarizes the findings of the work.

Methodology

This section introduces the basic principles of LSTM and 
TCN, and shows the framework and overview of the pro-
posed model. Next, the combined algorithm of LSTM-TCN 
is introduced in detail.

Long short‑term memory

Recurrent neural network (RNN) has a network structure 
in which the nodes of hidden layer are connected with each 
other along multiple times. Therefore, the network can gen-
erate the memory state of historical data, can establish the 
dependence relationship between the input data at different 
times, and is applicable to the current output calculation. 
Based on this feature, RNN is suitable for mining time series 
information (Hu et al. 2019a, b). The network structure is 
shown in Fig. 1, illustrating how RNN expands by time 
series. RNN network architecture includes only three parts, 
namely input layer, hidden layer, and output layer. For a 
given time series x =

(
x1, x2, , xn

)
 the expected output series 

y =
(
y1, y2, , yn

)
 can be obtained by calculation. For example, 

at time t we apply the calculation formulas, as follows.

Here Wxh is the weight coefficient matrix from the input 
layer to the hidden layer; Whh is the weight coefficient matrix 
for the hidden layer; Why is the weight coefficient matrix 
from the hidden layer to the output layer; dh and dy are the 
bias vectors of hidden layer and output layer respectively; f  
is the nonlinear activation function.

With increasing input time series, RNN has a long-term 
dependence problem, and will gradually forget the input 
information appeared a long time ago. In gradient back-
propagation, a gradient explosion appears in the training 
process. To solve this problem, LSTM algorithm was first 
proposed by Hochreiter and Schmidhuber (1997). As an 
improved RNN, the gating mechanism is added to improve 
the phenomenon of gradient disappearance. Compared with 
the RNN algorithm, LSTM has better performance in longer 
time series. The input of the current hidden layer consists of 
the output of the previous hidden layer and the input layer 
of the current time.

(1)ht = f
(
Wxhx

t +Whhh
t−1 + dh

)

(2)yt = Whyh
t + dy

Figure 2 shows the structure of LSTM hidden layer neu-
rons, illustrating the calculation process of current hidden 
layer neurons. Each hidden layer neuron contains input gate, 
forget gate, output gate, and current state.

Actually, the input gate determines how much input of the 
current time network is saved into the unit state, i.e., how 
much information is updated into the neuron. The calcula-
tion formula is as follows:

The forgetting gate determines which information is dis-
carded from the cell state, i.e., how much information of 
the last cell state ct−1 is retained in the current time ct . The 
calculation formula is as follows:

(3)it = �
(
Wi ∙

[
ht−1, xt

]
+ bi

)

(4)ft = �
(
Wf ∙

[
ht−1, xt

]
+ bf

)

h

x

acitvationf

y

Input

Output

xhW

hhW

hyW

Fig. 1  Network structure diagram of RNN unit

39547Environmental Science and Pollution Research (2022) 29:39545–39556



1 3

The output gate controls the output at the current time ct 
and determines the final output information. The calculation 
formula is as follows:

The calculation formula of cell state ct is the following:

Here, � is the activation function; Wf , Wi , Wc and Wo are 
the weight matrices of the forget gate, update gate, and out-
put gate, while bf , bi , bc , and b0 are the corresponding bias 
vectors.

The memory unit structure is added to the LSTM to forget 
and remember historical data by combining with the gating 
unit. It can effectively deal with the complex long-term time 
series dynamic dependence, so it is suitable for the predic-
tion of dissolved oxygen in aquaculture.

Temporal convolutional network

As a variant of the convolutional neural network (CNN), 
temporal convolutional network (TCN) performs better in 
time series prediction than the recurrent neural network 
(RNN) and long short-term memory (LSTM) network. It 
is more suitable for processing sequential data with large 
receptive fields and temporality (Yan et al. 2020), as it 
employs causal convolutions and dilations.

The model of temporal convolutional network (TCN) (Bai 
et al. 2018) adopts convolution form. Its network architecture 
is mainly composed of fully convolutional network (FCN), 

(5)
ot = �

(
Wo ∙

[
ht−1, xt

]
+ bo

)

ht = ot ∗ tanh
(
ct
)

(6)
c̃t = tanh

(
Wc ∙

[
ht−1, xt

]
+ bc

)

ct = ft ∙ ct−1 + it ∙ c̃t

causal convolution, dilated convolutions, and residual block. 
Corresponding to each module, the network has the follow-
ing characteristics:

1. The fully convolutional network can guarantee the same 
output and input sequence length;

2. The network architecture of causal convolution makes 
no information “leakage” from future to past;

3. The dilated convolutions and residual layer modules are 
used to build a deep network model, and accordingly, 
more historical information can be obtained for predic-
tion.

Figure 3 is a comparison of standard convolution (left) 
and causal convolution (right). Different from the traditional 
convolutional neural network, for the prediction of time t, 
only the observed sequence 

(
x1, x2, , xt−1, xt

)
 will be used 

instead of the future information in TCN.
Figure 4 adds the dilated convolution to the causal convo-

lution, which is the dilated causal convolution with dilation 
factors d = 1, 2, 4 and filter size k = 3 in TCN. The use of 
dilated convolution makes it necessary to use padding in 
the TCN network to ensure that the input and output length 
of hidden layer and input layer are equal, while the pad-
ding size is (k − 1) × d. Actually, causal convolution ensures 
that the prediction at time t will not use future information, 
because the output of time t will only be obtained by convo-
lution of time t and the elements from previous layers. For 
the sequence tasks that need to acquire a long history, the 
dilated convolution is used to increase the receptive field of 
the network. There are two ways to increase the receptive 
field, namely.

1. To increase the dilation factor d;
2. To select larger filter sizes k.

Fig. 2  Structure diagram of LSTM hidden layer neurons
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The calculation formula is as follows:

where x is the one-dimensional sequence input 
andx ∈ Rn, f  is the filter and, f ∶ {0,… , k − 1} → R s is 
the element in the sequence, and F is the dilated convolu-
tion operation.

With the increase of the length of time series, TCN 
needs a larger receptive field to receive high-dimensional 
time series. The increase of network depth leads to net-
work degradation, increasing the consumption of com-
puting resources, gradient explosion, and gradient disap-
pearance. The solution of this problem is to add residual 
module into the network. The residual network consists 
of a series of residual blocks, each of them consists of 
two parts: direct mapping part and residual part. Adding 
jump links to realize residual learning and using identity 

(7)f (s) =
(
x×df

)
(s) =

k−1∑

i=0

f (i) ⋅ xs−d×i

map as shortcut link reduce the complexity of residual 
network, making the deep network easier to be trained and 
optimized. It can be expressed as follows:

where F
(
x1,W1

)
 is the residual part, and W1 is the 

weight matrix. h
(
x1
)
 is the direct mapping part, including 

1 × 1 convolution operation. xl is the input of the residual 
block, and x1+1 is the output of the residual block.

Figure 5 shows the residual block structure in TCN. 
The residual block has two layers, including dilated causal 
convolution, weight normalization, non-linearity (ReLU), 
and dropout layer for regularization. If the input and out-
put of residual have different dimensions, then it is usually 
solved by adding a 1 × 1 convolution. The residual network 
adds the identity map of cross layer connection. Instead of 
modifying the entire transformation, it allows the layer to 
modify the identity mapping. It is beneficial for TCN to 

(8)x1+1 = h
(
x1
)
+ F

(
x1,W1

)

1
2
3

Input 
time 

series

Standard 
Convolution

Kernel 
size=3, 

stride=3,
Kernel 

number=2

Feature

1
2
3

Input 
time 

series

Standard 
Convolution

Kernel 
size=3, 

stride=3,
Kernel 

number=2

Feature

Standard 
Convolution

Kernel 
size=1,

Stride=1, 
Kernel 

number=1

Output

12 13

Casual 
Convolution

13

(a) (b)

Fig. 3  Standard convolution and causal convolution with kernel size 3. a For standard convolution, the kernel size and stride are 3, and the ker-
nel number is 2. b For casual convolution, two standard convolution layers are composed. Each figure is described in b 
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build a deeper network structure that increases the stability 
of the TCN network.

The combined model (LSTM‑TCN)

Figure 6 shows the main network architecture of our pro-
posed LSTM-TCN prediction model. After data preproc-
essing, the multivariable water quality data enter the LSTM 
network through the input layer first to extract the correla-
tion of datasets in time dimension. Then, the time series 
prediction model is established by combining with TCN 
network. Finally, the prediction DO value goes through the 
full connection layer to realize the prediction of dissolved 

oxygen in the future. Long short-term memory (LSTM) net-
work solves the long-term dependence problem of recurrent 
neural network that can capture the short-term and long-
term dependence, and can be widely applied for time series 
problems. As a new algorithm for time series prediction, 
temporal convolutional network (TCN) has been proved to 
be better than RNN in some datasets. It can deal with large-
scale data and with a larger sensing field, which enables it 
to retain the information memory of a longer time ago. By 
comparison, it uses less memory when processing the same 
long sequence. Therefore, based on the unique advantages 
of the two algorithms, we propose a fusion prediction model 
LSTM-TCN that combines the two algorithms.

Fig. 4  Dilated causal convolu-
tion with dilation factors 1, 
2, and 3 for three convolution 
layers

1
2
3

Input 
time 
series

Dilated 
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Feature 2

Dilated 
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Fig. 5  The structure of TCN 
residual block
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Experiments

Dataset and data preprocessing

The dataset used in this paper is the real water quality data 
collected from industrial recirculating aquaculture workshop 
by using multi-parameter water quality sensor. The sampling 
time is from January 1, 2019, to July 9, 2019, and the data is 
collected in every 10 min. The collected water quality data 
include six characteristics of dissolved oxygen, including 
water temperature, pH, turbidity, ammonia nitrogen, and 
water level. The collected six water quality parameters are 
used as input data to predict the dissolved oxygen value in 
the future from the historical water quality data. The data-
set contains 27,077 samples: 24,370 samples are used for 
training and the remaining for testing. The verification set 
accounts for 10% of the training set.

Due to the inevitable influence of the sensor’s behavior 
and complex external environment, there may be missing 
data and abnormal values. Considering abnormal data, the 
method of mean inputting is used in the experiment for the 
improvement. Regarding missing data, we use the temporal 
regularized matrix factorization (TRMF) method to pre-
dict and repair the time series data, considering the time 

dependence. The expression of the respective formula is as 
follows:

where L is a lagged set that stores the associated distance 
between columns in X; �l is the time series coefficient vec-
tor of xt - l.

Evaluation criteria

In the experiment, four evaluation indexes are used to eval-
uate the prediction results of different models, which are 
mean absolute error (MAE), mean absolute percentage error 
(MAPE), root mean square error (RMSE), and coefficient of 
determination (R2). The smaller the value of the first three 
indexes is, the better the prediction, while the closer the R2 
value is to 1, the more accurate the prediction of the model. 
Their respective expressions are the followings:

(9)xt ≈
∑

l∈L

𝜃1 ⊗ xt−l

(10)MAE =
1

m

m∑

i=1

|
|yi − ŷi

|
|

Fig. 6  Network architecture of 
LSTM-TCN Collected mul�variable water quality data

Temporal Convolu�onal Network 
(TCN)

Conv1d

Ac�va�on

Spa�alDropout
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Ac�va�on

Spa�alDropout
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DO
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where yi is the actual value observed, ŷi is the predicted 
value, m is the number of test data, and yi is the mean value 
of the original observation data.

Experimental details

Prediction results of the combined model LSTM‑TCN

In order to verify the better performance of the combined 
LSTM-TCN model for the prediction of dissolved oxy-
gen, experiments with LSTM, TCN single model forecast, 
and CNN-LSTM combined model forecast were also per-
formed. On the basis of these results, contrast analysis was 
conducted. In each algorithm, the historical time window 
was set to 2 to predict 20 min in advance. Figures 7, 8, 
9 and 10 are the prediction results of models LSTM, TCN, 
CNN-LSTM, and LSTM-TCN, respectively. Among them, 
the blue curve represents the real value, while the orange 
curve represents the predicted value of dissolved oxygen.

For the prediction of dissolved oxygen, the curve of 
LSTM-TCN algorithm is more consistent with the actual 

(11)MAPE =
1

m

m∑

i=1

|
|
|
|
|

yi − ŷi

yi

|
|
|
|
|
× 100%

(12)RMSE =

√√√
√ 1

m

m∑

i=1

(
yi − ŷi

)2

(13)R2 = 1

∑
i

�
yi − ŷi

�2

∑
i

�
yi − yi

�2

data, and the prediction result is more accurate, as it can be 
seen in Figs. 7, 8, 9 and 10.

Table 1 shows the comparison of error results of different 
prediction models with four evaluation indexes. The pattern 
of the predicted result curves and evaluation index values 
can be summarized as follows:

Combined algorithm LSTM-TCN has better prediction 
than LSTM, TCN, and CNN-LSTM. The final evaluation 
index values of LSTM-TCN are as follows: for MAE 0.236, 
which improves the prediction accuracy by 36% compared 
with LSTM; for MAPE 0.031, the error value decreases by 
93% compared with CNN-LSTM; for RMSE 0.342, which 
improves the prediction accuracy by 33% compared with 
LSTM; R2 is 0.94, which is a little bit less than in the case of 

Fig. 7  Prediction results of the LSTM model

Fig. 8  Prediction results of the TCN model

Fig. 9  Prediction results of the CNN-LSTM model
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algorithms (0.97). In conclusion, the combined algorithm of 
LSTM-TCN has better prediction and improves the predic-
tion accuracy of dissolved oxygen to a certain extent.

Experiment with different lookback window sizes

To study how temporal convolutional network can be used 
for long historical data, we carried out experiments with 
different historical time windows to realize the prediction 
of dissolved oxygen. We changed time window values from 
2, 4, 8, 16, 32 to 64 with the same other conditions. Table 2 
shows the error results under different time window sizes.

It can be seen from Table 2 that with increasing of time 
window, the error evaluation index value of dissolved oxy-
gen fluctuates up and down. The prediction results are bet-
ter when the time windows are 2 and 16. The experimental 
results show that the TCN network has the ability to obtain 
more historical data, and the prediction model after add-
ing the TCN network can also have better prediction for the 
larger historical time window values.

Attention mechanism

In 2014, attention model was applied to machine translation 
as part of the RNN framework (Bahdanau et al. 2014). With 
the development of deep learning, it has become an impor-
tant concept in the field of neural networks, and it is widely 

Fig. 10  Prediction results of the LSTM-TCN model

Fig. 11  Comparison of predic-
tion results of CNN-LSTM 
with and without attention 
mechanism. a CNN-LSTM 
without attention mechanism. 
b CNN-LSTM with attention 
mechanism

(a) CNN-LSTM without attention mechanism   (b) CNN-LSTM with attention mechanism

Fig. 12  Comparison of predic-
tion results of LSTM-TCN with 
or without attention mechanism. 
a LSTM-TCN without attention 
mechanism. b LSTM-TCN with 
attention mechanism

(a) LSTM-TCN without attention mechanism (b) LSTM-TCN with attention mechanism
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used in image classification, speech, and machine translation 
(Ran et al. 2019). In recent years, more and more attention 
mechanism modules have been introduced into the predic-
tion of time series. By giving weight values for different time 
and space data, the efficiency and accuracy of prediction 
may be improved.

In this section, the attention mechanism experiments are 
explained. The attention mechanism layer is added between 
the fusion model network layer and the full connection 
layer. The aim is to explore whether attention mechanism 
has an effect on the prediction of dissolved oxygen for spe-
cific scenarios and data. The fusion models CNN-LSTM 
and LSTM-TCN are compared in terms of attention mecha-
nism, and the predicted results are analyzed and compared. 
Figure 11 shows the comparison of prediction results of 
CNN-LSTM combined model with and without attention 
mechanism. Figure 12 shows the comparison of prediction 
results of LSTM-TCN combined model with and without 
attention mechanism.

Table 3 shows the error evaluation index results of CNN-
LSTM and LSTM-TCN algorithms with and without atten-
tion mechanism. It can be seen from Table 3 that after adding 
attention mechanism to the CNN-LSTM fusion algorithm, 
the error evaluation indexes MAE and MAPE decreased. For 
the LSTM-TCN fusion algorithm, the addition of attention 
mechanism does not improve the final prediction accuracy.

Conclusion

In this work, we propose a fusion prediction model of LSTM 
and TCN to predict dissolved oxygen in multivariable aqua-
culture environment. LSTM is used to extract the sequence 
features in time dimension, dealing with the long-term 
dependence in complex time series. We built the fusion pre-
diction model of time series with the TCN network. In addi-
tion, we also studied the influence of the size of historical 
time window, as well as the effect of attention mechanism on 
the prediction. The experiments show that the fusion model 
still has a good prediction performance when the time win-
dow is large. The addition of attention mechanism improves 
the prediction of the combined model CNN-LSTM, but does 
not improve the combined model LSTM-TCN. Finally, the 
performance of the LSTM-TCN prediction model was veri-
fied with the dissolved oxygen data in real aquaculture by 
comparing with the LSTM, TCN, and CNN-LSTM mod-
els. The model established in this paper has better predic-
tion performance and higher prediction accuracy, and it 
can be applied to practical aquaculture, with error meas-
ures of MAE = 0.236, MAPE = 0.031, RMSE = 0.342, and 
R2 = 0.94. This study considers only the correlation between 
water quality data characteristics in time. In the future work, 
we will combine the water quality environmental data with 

Table 1  The result value of evaluation indexes of different algorithms

Algorithms

LSTM CNN_LSTM TCN LSTM_TCN

Evaluation indexes
MAE 0.366 0.319 0.648 0.236
MAPE 0.256 0.470 0.082 0.031
RMSE 0.514 0.495 0.750 0.342
R2 0.97 0.97 0.73 0.94

Table 2  Evaluation index 
results of dissolved oxygen 
prediction for different lookback 
window size

Lookback window

2 4 8 16 32 64

Evaluation indexes
MAE 0.236 0.367 0.407 0.296 0.453 0.667
MAPE 0.031 0.048 0.054 0.039 0.060 0.088
RMSE 0.342 0.568 0.496 0.401 0.563 0.815
R2 0.94 0.87 0.89 0.92 0.83 0.67

Table 3  The influence of attention mechanism on prediction results

CNN-LSTM LSTM-TCN

Without 
attention 
mechanism

With atten-
tion mecha-
nism

Without 
attention 
mechanism

With attention 
mechanism

MAE 0.319 0.317 0.236 0.484
MAPE 0.470 0.379 0.031 0.064
RMSE 0.495 0.496 0.342 0.575
R2 0.97 0.97 0.94 0.84
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the behavior data of aquaculture species, as well as consider 
the prediction of spatial characteristics of water quality data.
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