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Abstract
Recently, covalent organic frameworks (COFs) have gained significant attention as a promising material for the elimina-
tion of various organic pollutants due to their distinctive characteristics such as high surface area, adjustable porosity, high 
removal efficiency, and recyclability. The efficiency and selectivity of COFs depend on the decorated functional group 
and the pore size of the chemical structure. Hence, this review highlights the adsorption removal mechanism of different 
organic contaminants such as (pharmaceutical and personal care products, pesticides, dyes, and industrial by-products) by 
COFs from an aqueous solution. Spectroscopic techniques and theoretical calculation methods are introduced to understand 
the mechanism of the adsorption process. Also, a comparison between the performance of COFs and other adsorbents was 
discussed. Furthermore, future research directions and challenges encountered in the removal of organic contaminants by 
COFs are discussed.
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Introduction

Water is essential for humans and the environment. The 
great challenge is keeping water as safe and clean as possi-
ble (Cabral &health 2010). Among different types of pollut-
ants in water, organic contaminants have attracted attention 
due to their occurrence at high concentrations in different 
water sources in the ecosystem (Nde et al. 2018; Nieder 
et al. 2018). Organic contaminants are present in surface 
and groundwater, usually from natural origin or indiscrimi-
nate discharge of synthetic chemicals into the environment. 

Among several major sources of organic contaminants are 
the industrial production process, human activities, and agri-
culture (Lv et al. 2019). Organic contaminants are not only 
found in marine water (Jiang et al. 2014) and surface water 
(You et al. 2015), but also in the air, soil, sediments (Azzouz 
&Ballesteros 2012), and landfills. These contaminants con-
stitute a high risk for human health and the ecosystem due 
to their toxicity, bioaccumulation, mutagenicity, and carci-
nogenicity (Meffe &de Bustamante 2014, Stuart &Lapworth 
2013). With the increasing use of organic chemicals, the 
potential for contamination of water resources exists. There-
fore, it is urgent to evaluate a suitable means of how to elimi-
nate these hazardous contaminants from the environment.

Organic contaminants can be removed naturally for exam-
ple through the biodegradation of microorganisms but this 
process is generally very slow. Other removal methods, such 
as adsorption (Feng et al. 1997; Tan et al. 2017; Xue et al. 
2016), precipitation (Peligro et al. 2016), electrochemical 
oxidation, degradation (Li et al. 2016), ozonation, filtration 
(Lam et al. 2018), coagulation-flocculation, chlorination, 
and photocatalytic oxidation are the most common method 
to capture these contaminants (Al-Shannag et al. 2015). 
Hence, in past three decades, adsorption has been one of 
the most distinguished methods due to the simplicity of the 
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system and excellent efficiency with a high removal capac-
ity (up to 99.9%), and low energy consumption compared to 
several alternative methods (Huang et al. 2017).

The most classical platforms used in the water treatment 
industry are activated carbon (Schreiber et al. 2006), metal 
oxides (Nagpal et al. 2019), mesoporous silica (Walcarius 
&Mercier 2010), and polymers cyclodextrins (Hu et al. 
2020b), and chitosan (Heydaripour et al. 2019). The ideal 
adsorbent is characterized by a large surface area and high 
porosity with definite adsorption sites. COFs are synthesized 
with a remarkable porous structure which improves their 
adsorption capacity.

COFs are a new class of crystalline porous polymer that 
can be two-dimensional (2D) or three-dimensional (Chen 
et al. 2020, Fang et al. 2014, Gendy et al. 2021b, Geng et al. 
2020b, Huang et al. 2016). They consist of light elements 
(C, H, O, N, or B atoms) with a strong covalent bond. Due 
to the exceptional properties and the various functional 
group, COFs have become more attractive due to their (1) 
low density; (2) large surface area; (3) high crystalline; (4) 
tunable ultrahigh porosity; (5) facile tailored functional-
ity; (6) versatile covalent combination; (7) high thermal 
and mechanical stability; (8) selectivity of the interaction 
sites for definite adsorbate; (9) changeable pore structure 
(pore volumes, uniform pore size); (10) high internal surface 
area; (11) elaborate control of geometry. These attributes 
encourage the application of COFs in different industrial and 
technological fields (Das et al. 2017) including adsorption, 
separation, catalysis, and sensing (Song et al. 2019).

More than 33, 306 scientific articles titled COFs and 
around 4,525 COFs/organic contaminants have been viewed 
in the science database search (January 2010- January 2022). 
As shown in Fig. 1, the number of publications on COFs and 
their application in the removal of organic contaminants is 
increased gradually every year, specifically from 2018 to 
2021, indicating that COFs are currently the promising 
research trend (Bagheri et al. 2021, Bisbey &Dichtel 2017, 

Cao et al. 2019, Das et al. 2017, Gendy et al. 2021a, Geng 
et al. 2020a, Lv et al. 2019, Song et al. 2019, Wang et al. 
2017).

Herein, this review discusses the interaction mechanism 
between the adsorbate and the adsorbent. The elimination of 
organic pollutants by COFs and their selectivity are evalu-
ated and reviewed. The performance of COFs in compari-
son to other platforms has also been mentioned. This review 
paper discusses the removal mechanism of organic pollut-
ants such as (pharmaceutical and personal care products, 
pesticides, dyes, and industrial by-products) by covalent 
organic frameworks based on the chemical structure and 
functional group. In addition, the selectivity and efficiency 
of COFs under the different environmental conditions (pH, 
temperature, contact time, etc.) were elucidated.

Removal of organic contaminants by COFs 
and their adsorption mechanism

Removal of organic contaminants by COFs

COF-based materials are used as a superior platform for 
the removal of organic pollutants from aqueous solutions. 
Other parameters influence the adsorption performance of 
these contaminants by COFs such as pH, concentration, tem-
perature, adsorption kinetics, contact time, and recyclabil-
ity. The present section focuses on the recent progress and 
investigations of removing organic water pollutants based on 
adsorption by COFs. However, some reviews have also been 
reported dealing with the adsorption process. we hope this 
section would be a kind extension of such inclusive reviews. 
The information was collected by categorizing organic pol-
lutants, such as pharmaceuticals, pesticides, dyes, and indus-
trial by-products. The reported information is summarized 
and documented in Tables 1, 2, 3 and  4.

Pharmaceutical and personal care products (PPCPs) 
contaminants

PPCPs act as the most significant types of organic pollutants. 
These chemicals are widespread in the environment due to 
the constant consumption of medicines, cosmetics, and 
household chemicals in modern societies. The lack of effec-
tive protocols for decontamination causes precipitation and 
accumulation of these pollutants in the aquatic environment 
(Bu et al. 2013). Several studies have strongly proposed that 
the existence of these contaminants at very low doses is 
dangerous and harmful for humans and the environment in 
the long term. Due to its various effects and serious risks 
on marine species and the health of humans, PPCPs have 
attracted considerable attention and effective elimination is 
essential according to current water treatment protocols.

Fig. 1  Number of publications on COFs and COFs/Organic contami-
nants from 2010 to 2022 based on the database of “web of Science”
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Different methods have been used for the capture of 
PPCPs from the aquatic environment, including adsorption 
(Wang &Wang 2019, Zhuang et al. 2018), microbial degra-
dation (Wang et al. 2018a) Fenton-like oxidation (Liu et al. 
2018b), ozonation (Wang &Bai 2017), ionizing radiation 
(Zhuan &Wang 2019), and other advanced oxidation pro-
cesses AOPs (Wang &Wang 2018). Adsorption is a prom-
ising method due to its low cost and high efficiency and 
energy consideration compared to other methods. In addi-
tion, it avoids poisonous degradation products and resistance 
genes/bacteria, which may produce secondary contamination 
to the environment. Many pharmaceutical drugs have been 
commonly used for human care and animal husbandry (Xu 
et al. 2017; Yang et al. 2017).

PPCPs are categorized depending on purposes and 
their features: (1) Antibiotics: sulfamethoxazole (SMZ), 
sulfafurazole (SIZ), sulfamethazine (SMT), enrofloxacin 
(ENX), ampicillin, danofloxacin (DAN), ofloxacin (OFL), 
cefotaxime (CTX), orbifloxacin (ORB), ciprofloxacin (CIP), 
tetracycline (TC), enoxacin (ENO); (2) anti-inflammatory 
drug: ibuprofen (IBU), diclofenac sodium (DS), ketoprofen 
(KT), indomethacin (IDM), naproxen (NPX); (3) Analgesic: 
acetaminophen (ACE). There is a shortage of removal of 
other types of PPCPs like (anti-cancer, anti-bacterial, anti-
psychotic, asthma drug, etc.) by using COFs. Therefore, it 
is necessary to show the removal efficiency of these kinds 
of contaminants by COFs.

Antibiotics

Antibiotics are a kind of pharmaceutical drug that is used in 
the treatment of human and veterinary medicine. Sulfona-
mides describe a class of drugs containing the sulfanilamide 
structure such as sulfamethoxazole, sulfafurazole, and sul-
famethazine. So far, TPB-DMTP -COF showed  qmax value 
of 209 mg  g−1 for sulfamethoxazole capture from the water. 
The high adsorption quantity of TPB –DMTP COF was due 
to large surface area = 2115  m2/g, large channel ∼3.3 nm, 
high crystallinity. TPB –DMTP COF also showed a higher 
adsorption capacity for SMT than TAB-DVA-COF and 
COF-SO3H (Zhuang et al. 2020b). Fast adsorption equilib-
rium time (80 min), and good reusability, it was regenerated 
by THF, ethanol, and methanol, which is feasible and more 
economical in successive with an even after four adsorp-
tion–desorption cycles(Zhuang et al. 2020b). Also, the mag-
netic TPB –DMTP COF was tested for sulfamethoxazole and 
showed  qmax value of 113.2 mg  g−1 with a faster equilibrium 
time (50 min) (Zhuang et al. 2020a).

Fluoroquinolones (FQs) are a significant class of syn-
thetic antibiotics and the third-largest kind consumed in the 
global market. FQs are derivatives of fluorinated piperazi-
nyl of nalidixic acid which contain a fluorine atom at the 
C-6 position and a piperazinyl at the C-7 position. Thus, Ta
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the progress of an efficient platform for this class of antibi-
otics is of principal significance. ENX, ENO, OFL, ORB, 
DAN, and CIP are examples of FQs. COF-based material 
 (Fe3O4@COF(TpBD)@Au-MPS) showed a higher affinity 
to FQs compared to other similar COF/COF-based materi-
als  (Fe3O4@COF(TpBD), TAB-DVA-COF and COF-SO3H 
for ENX and CIP.  Fe3O4@COF(TpBD)@Au-MPS exhibited 
good selectivity toward ENRO, ENX, DAN, ORB, OFL, 
ENO, and CIP with maximum extraction capacity 8.52, 9.28, 
7.34, 7.24, 7.01, and 8.76 mg  g−1, respectively at pH = 5 
(Table 1). Two dynamic adsorption models (first pseudo-
order and second pseudo-order were used to simulate the 
control mechanism of the adsorption process with equilib-
rium time = 25 min (Wen et al. 2020).

Cefotaxime is an antibiotic for the treatment of Gram 
bacterial infections (Rochon et  al. 2019) and tetracy-
cline is the second-largest consumption of antibiot-
ics for the treatment of animals (Khodadadi et al. 2018). 
 NiFe2O4-COF-chitosan-terephthalaldehyde nanocompos-
ites film (NCCT) was used as a potential platform for the 
removal of cefotaxime and tetracycline with  qmax = 309.26 
and 388.52 mg   g−1, respectively. It was regenerated by 
0.1 M NaOH after six adsorption–desorption cycles (Li 
et al. 2020b).

Anti‑inflammatory

There is widespread use of anti-inflammatory drugs for 
animal husbandry and human treatment such as ibuprofen, 
diclofenac sodium, ketoprofen, indomethacin, and nap-
roxen. Widely used non-steroidal anti-inflammatory drugs 
have gained increased global awareness due to their frequent 
detection in the water. Advanced oxidation processes are 
effective for the removal of diclofenac sodium from waste-
water. However, there are drawbacks such as the produc-
tion of more toxic secondary contaminants, and the tech-
niques are hard to carry out on a large scale. Therefore, the 
adsorption process is an efficient alternative for capturing 
diclofenac sodium from wastewater(Xu et al. 2017).

Huang et al. showed magnetic covalent organic frame-
works MCOF-2 for capturing diclofenac sodium with 
 qmax = 565  mg   g−1. High adsorption capacity can be 
explained by high surface areas, proper pore size, good ther-
mal/chemical stability, and separation ease. It was noted that 
pH solution is effective on the status of the adsorbate and 
absorbent. The  pKa of diclofenac sodium is 4.2, suggesting 
that the negative form was dominated at pH > 4.2. Around 
pH = 7, the charge on the surface of MCOFs -2 shifted 
from positive to negative. MCOF-2 still had a large cap-
ture capacity towards diclofenac sodium when the pH is > 7. 
The quantity of diclofenac sodium adsorbed was affected 
by adding the salt; it was decreased, especially after adding 
 CaCl2. The strong competition of cations  (Ca2+ and  Na+) 

in occupying the active sites for diclofenac sodium uptake 
can be explained by this result. The pseudo-second-order 
kinetic model could well explain the adsorption process of 
MCOF-2. Equilibrium of adsorption was attained 20 min for 
diclofenac sodium and showed good regeneration by meth-
anol after five adsorption–desorption cycles (Huang et al. 
2019). Moreover, magnetic TPB –DMTP COF showed  qmax 
value of 209 mg  g−1 for adsorption diclofenac sodium with 
equilibrium time (80 min) (Zhuang et al. 2020a).

Ibuprofen is a non-steroidal anti-inflammatory drug used 
for medical treatment for humans and animals (Davarnejad 
et al. 2018; Kråkström et al. 2021; Oba et al. 2021; Silva 
et al. 2020). The presence of IBU in nature can have negative 
effects on living organisms. It can threaten human life and 
the health of natural habitats. Therefore, the researchers are 
still discovering ways to remove IBU from water or decrease 
its presence to a minimum (Davarnejad et al. 2018). IBU is 
among the most commonly used active medication compo-
nents in the world ambient surveillance studies. IBU is the 
second most popular observed drinking water in high con-
centrations (> 1 ppb) due to the great consumption of IBU 
allied with the low efficiency of capture/degradation of tradi-
tional water treatment processes. Despite the present lack of 
organization proper quantity of IBU in different water types, 
significant efforts are directed from the scientific community 
to monitor them, eliminate, and/or degrade them.

Mellah et  al. reported TpBD-(CF3)2 exhibited high 
adsorption and selectivity toward ibuprofen among other 
hydrophilic pharmaceutical contaminants (diclofenac 
sodium, ampicillin, and acetaminophen) with 119 mg  g−1 at 
pH = 2. The large surface area of 870  m2g−1 and the molecu-
lar size of IBU is suitable for entry within the pores of these 
COF which contributed to increasing adsorption capacity 
compare to BiOCl microsphere and activated carbons (see 
Table 6). The affinity order of TpBD-(CF3)2 for removing 
these contaminants is ibuprofen > acetaminophen > ampicil-
lin due to acetaminophen being slightly close to the size of 
ibuprofen, whereas ampicillin is slightly larger. The carbox-
ylic acid moiety of Ibuprofen plays a crucial role in drug 
capture. The adsorption capacity decreased by increasing 
pH,  qmax value at pH = 2 and pH = 6–7 ibuprofen is partially 
negatively charged after pH = 7 the  qmax value decrease. 
The kinetic curve presents that equilibrium was attained at 
60 min and regenerated by isopropanol (Mellah et al. 2018).

Wang et  al. also showed β-cyclodextrin (β-CD) for 
removal of ibuprofen with an efficiency of 79%. β-CD COF 
is a hydrophobic cavity guiding molecular-specific recogni-
tions. β-CD COF is synthesized with heptakis (6-amino-
6- deoxy)- β -CD and terephthaldehyde in green solvents 
of water and ethanol at room temperature. The β -CD COF 
possesses a larger surface area of 108.2  m2   g−1, a more 
uniform pore size of 0.332  cm3g−1, and higher thermal sta-
bility at 235.6 °C than the non-crystalline β -CD polymer. 
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Bisphenol A, acridine orange, ibuprofen,4-nonyl phenol, and 
(s)-naproxen are tested to show the selectivity of β -CD COF 
to word these contaminants, it was observed that β -CD COF 
adsorbed bisphenol, ibuprofen, and naproxen with adsorp-
tion removal percentage 99, 78, 98 and 98% at 10 min (Wang 
et al. 2018b).

A varying degree of  SO3H functionalized was incor-
porated for pharmaceuticals and PPCPs removal by Hao 
et a. COF-  SO3H was synthesized by presenting sulfonic 
acid polar functionalities through a simplistic solvo-
thermal method. COF-SO3H showed a strong affinity for 
the diclofenac with the maximum adsorption quantities 
770 mg  g−1, which was evaluated 1.5 times higher than 
that of commercial active carbon, and graphene oxide, 
while  SO3-UiO-66 was evaluated three times higher than 
these adsorbents. It was also found that COF-SO3H possess 
an affinity for personal care products (PPCPs) ibuprofen, 
diclofenac sodium, ketoprofen, indomethacin, and nap-
roxen of initial concentration [1 g L −1] with removal effi-
ciency 95%, 94%, 59%, 57%, and 48% respectively, while 
TAB-DVA-COF showed removal efficiency of ibuprofen, 
diclofenac sodium, ketoprofen, indomethacin, and naproxen 
25%, 20%, 20%, 23%, and 30% with initial concentration 
[1 g L −1]. COF-SO3H showed good recyclability after four-
time (Table 1) and showed excellent recovery after the first 
two cycles (Hao et al. 2019).

Pesticides

Pesticides are commonly used around the world to control 
insect pests from a healthy crop. They are a broad spectrum 
of chemicals and mixtures of organic used to stop plant dis-
eases, pests, and weeds and to improve and maintain the high 
quality of food products (Lushchak et al. 2018, Rajmohan 
et al. 2020, Гycaк &Лyщaк 2018). It includes plant growth 
regulators, fungicides, insecticides, etc. However, it is used 
in a wide range in agriculture, causing a high level of waste 
in the aquatic environment and food commodities, causing 
severe harm to humans. Thus, to ensure food safety, develop-
ing a simple and effective method for identifying pesticides 
in environmental and food samples is extremely important 
(Brutti et al. 2010).

Carboxylic acid pesticides were used extensively in agri-
culture to improve the productivity of agricultural products 
such as 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), 
2-(2,4-dichlorophenoxy) propanoic acid, 2,4-dichlorophe-
noxyacetic acid (2,4-D), imidacloprid, (2,4-DP),2-(2,4,5-
trichloro phenoxy) acetic acid (2,4,5-T), 4-chlorophenoxy-
acetic acid (4-CPA), and cyhalothrin. Some of these acidic 
pesticides are endocrine disrupters and cause carcinogenic 
and teratogenic diseases. They can easily reach the surface 
water or via leakage or natural drainage due to their good 
solubility and high polarity. The superior pollutant level of 

chlorophenoxy acid herbicides in water is in the range of 
10–70 ng  mL−1. The maximum efficiency and selectivity 
of carboxylic acid pesticides is a big challenge due to their 
strong water solubility.

Ji et al. reported the amino covalent organic framework 
 (NH2@COF) which is synthesized by the thiol-ene click 
reaction of the vinyl covalent organic framework (COF) with 
4-aminobenzenethiol (Ji et al. 2019b).  NH2@COF is distin-
guished by an excellent extraction ability for carboxylic acid 
pesticides with both better extraction performance than com-
mercial absorbents and superior selection compared with 
the unfunctionalized COF.  NH2@COF showed a maximum 
adsorption capacity of  qmax > 10.5 mg  g−1 for six carboxylic 
acid pesticides (Dicamba, 2,4.5 T, 2,4 DP, 4-CPA, 2,4 D, 
and MCPA) while vinyl COF provides adsorption quanti-
ties with  qmax < 1.5 mg  g−1 lower than  NH2@COF due to 
stronger intermolecular interactions between hydrophilic 
pesticides and  NH2@COF. Furthermore, the adsorption 
capacity values for cyhalothrin 379 (1.27 mg  g−1) tsumacide 
(1.48 mg  g−1), and imidacloprid (1.32 mg  g−1) were reduced 
by the hydrophilicity of  NH2@COF. Weak interactions lead 
to a significantly lower adsorption capacity of both vinyl 
COF and  NH2@COF for gentamycin  (qmax < 1.0 mg  g−1). 
NH2@COF captures six pesticides that are kinetically effi-
cient and equilibrium adsorption capacity reaches within 
25 min Table 2. Besides, the pseudo-second-order model can 
manifest that the removal of six carboxylic acid pesticides 
mostly depends on chemical adsorption (Ji et al. 2019b).

Benzoylureas pesticides (diflubenzuron), hexaflumuron, 
chlorfluazuron, triflumuron, and flufenoxuron are acted as 
insect growth regulators (Stuart &Lapworth 2013). Song 
et al. reported DAAQ-TFP COF used to extract five differ-
ent classes of compounds, including phenyl urea herbicides, 
phthalic acid esters, endocrine disruptor chemicals, chloro-
phenols, and benzoylurea insecticides (Bus). It showed good 
thermochemical stability, high porosity, large surface area, 
and abundant O and N groups make it have great poten-
tial as a platform for Bus. It was used as an adsorbent to 
extract benzoylurea insecticides from the water with high 
adsorption capacity at low detection limits. Owing to its 
high π-conjugated system, DAAQ-TFP can form a strong 
π- interaction with some aromatic compounds. Among dif-
ferent adsorbents, DAAQ-TFP showed the highest extraction 
recovery for benzoylurea insecticides. So, the DAAQ-TFP 
was used as a promising platform to extract organic com-
pounds like Bus (Song et al. 2018).

Organic dyes

One of the most common industrial water contaminants is 
pigments, which have presented serious environmental and 
human health risks (Hasan &Jhung 2015, Nguyen &Juang 
2013). From the global dye production (around 800 000 tons 
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/year), approximately 10 − 15% enter the ecosystems directly 
as effluent or because of losses that happened through tech-
niques (Hassaan et al. 2017). The removal of dyes from 
water is further categorized depending on their charge of 
molecular (neutral, anionic, and cationic) at neutral pH, usu-
ally present in wastewater.

Cationic dyes

Cationic dyes can be separated into positively charged ions 
in water such as rhodamine B, crystal violet, N, N-dimethyl-
p-phenylenediamine dihydrochloride, brilliant green, and 
methylene blue. Triphenylmethyl dyes, one of the princi-
pal categories of pigments, are widely used in industries 
(e.g., pharmacology, plastic, rubber, textile, and printing) 
(Chaudhry et al. 2014; Liu et al. 2019). These dyes are usu-
ally poisonous and carcinogenic and may pose a serious 
threat to organisms in water and humans (Vyavahare et al. 
2018; Ye et al. 2019). They are very soluble in water and 
extremely resistant to degradation in sunlight and heat, so 
removing dyes from water is critically significant for eco-
system protection and the health of humans.

To date, very few techniques have been used for the 
elimination of triphenylmethyl dyes, such as membrane fil-
tration for adsorption (Amirilargani et al. 2019), chemical 
oxidation (Sirés et al. 2008), photodegradation (Wang et al. 
2014a), AOPs, and biological technologies (Chen &Ting 
2015). Adsorption usually requires more time to attain 
equilibrium to absorb dye and adsorption (Rajabi et al. 
2017; Yusuf et al. 2015), resulting in a long-time capture 
process. Hence, exploring new sorbents with fast kinetics 
of adsorption and great adsorption quantities is of great 
importance and challenge for the adsorption and removal 
of organic dyes. Li et al. reported (COF-TzDBd) for very 
fast adsorption and efficient elimination of triphenylmethane 
dyes with mesoporous pores, good crystallinity, and high 
chemical stability. The maximum adsorption capacities of 
crystal violet and brilliant green on TzDBd were 307 and 
276 mg  g−1 respectively. The equilibrium time for adsorp-
tion crystal violet and brilliant green was obtained in 15 min 
(Li et al. 2019a).

Wang et al. reported covalent triazine framework (CTF) 
used as an absorbent for adsorption organic dyes due to its 
microporous structure, high surface area 2071  m2 g −1. It 
demonstrated a higher adsorption capacity of rhodamine B 
(1.01 mmol/g) than classical platforms such as AC with  qmax 
(0.36 mmol/g). An increasing temperature was desired for 
the adsorption of rhodamine B onto CTF. As the temperature 
increased, the capture of rhodamine B by CTF increased. 
the maximum uptake (0.51 mmol/g) at 45 °C with an equi-
librium time of 25 min. Kinetics and mechanism investiga-
tion showed that the adsorption of rhodamine B onto CTF 
is subjected to the Langmuir isothermal adsorption model 

and follows a pseudo-second-order adsorption equation, 
with equilibrium time 55 min Table 3 (Wang et al. 2014b).

CuP-DMNDA-COF/Fe was synthesized by modifying 
imine-linked porphyrin COF with  FeCl3 in acetone. The 
removal efficiency of rhodamine B by CuP-DMNDA-COF/
Fe was affected by the coordinate interactions between Fe 
(III) ions in the COF and the carboxy group of rhodamine 
B. Thermodynamics was used to study the adsorption per-
formance, and the results demonstrated a spontaneous and 
endothermic process (Hou et al. 2017). TPT-azine-COF and 
TPT-TAPB-COF are also showed high adsorption capacity 
of rhodamine B with  qmax = 725 and 970 mg/g respectively. 
The high removal efficiency ascribed to the higher surface 
areas (957  m2/g for TPT-TAPB-COF and 1,020  m2/g for 
TPT-azine-COF). Both COFs exhibited high selectivity and 
regeneration ability (Li et al. 2018).

Huo et al. introduce TPT-DMBD-COF with high poros-
ity, a large specific surface area (279.5  m2·g−1) for adsorp-
tion methylene blue. At the low pH of the methylene blue, 
the solution was acidic which competed for a large amount 
of  H+ and MEB (positively charged). So, the adsorption effi-
ciency of methylene blue was relatively low under acidic 
conditions. When the methylene blue solution was basic 
(pH is10), the maximum adsorption was 12.31 mg·g−1 (Huo 
2019). Zhu et al. introduce TS-COF-2 as an efficient adsor-
bent for removal methylene blue, and rhodamine B. COF 
exhibits high adsorption of the.

Zhang et al. presented the EB-COF: Br membrane as 
excellent selective sieving carried out for different dye mol-
ecules/ions, which ascribed to their positively charged sites 
on the walls in addition to small pores. Cationic EB-COF: 
Br nanosheets 2D was reported as adsorbent for removal 
of cationic dye N, N-dimethyl-p-phenylenediamine dihy-
drochloride, methyl blue, and rhodamine B. The rejection 
values of cationic dyes N, N-dimethyl-p-phenylenediamine 
dihydrochloride, methyl blue, and rhodamine B are 84.9%, 
87.2%, and 91.2%, respectively. Cationic dye molecules 
N, N-dimethyl-p-phenylenediamine dihydrochloride can 
diffuse into the channels slowly because of the small size 
of N, N-dimethyl-p-phenylenediamine dihydrochloride 
dye. Because of the repulsive force between the positively 
charged pore and the cationic dye, the cationic dye is unable 
to enter the channels, and these dyes will pass through the 
membrane (Zhang et al. 2018b).

Anionic dyes

Anionic dyes can be separated into negatively charged ions 
in water such as dye potassium permanganate (PP), bril-
liant red X-3B, scarlet 4BS, alizarin red (AR), methyl orange 
(MO), methyl blue MB, direct fast brown M (DFBM), acid 
green 25 (AG), fluorescein sodium salt (FSs), acid red 27 
(AR-27) and indigo carmine (IC). As discussed before, CTF 
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is used as a platform for adsorption cationic dye RhB and is 
also used for adsorption anionic dye brilliant red X-3B and 
scarlet 4BS with uptake reaches 0.43 and 0.18 mmol/g for 
X-3B and 4BS, respectively. For anionic dyes, the interac-
tion between the adsorbent of the free electrons of the dye 
molecule and the surface basic sites is the main adsorption 
mechanism (Wang et al. 2014b).

BTT-TAPT-COF showed excellent adsorption capac-
ity removal of indigo carmine dye with 547.33 mg  g−1. It 
was found that the Langmuir model showed better linearity 
than the Freundlich model due to better clarify of indigo 
carmine adsorption onto BTT-TAPT-COF and formation of 
monolayer adsorption of IC. The recycling adsorption was 
performed of BTT-TAPT-COF toward indigo carmine dye 
after five cycles (Pan et al. 2020). Yu et al. introduced 2D 
(PC-COF) imine linkage with high stability in water and 
high adsorption quantities (> 97%) for removal of anionic 
organic dye contaminants (methyl orange, monoanionic, acid 
green 25, dianionic, direct fast brown M, dianionic, indigo 
carmine, dianionic, and acid red, trianionic) at low concen-
tration (3.2 ×  10–5 M) from water. The equilibrium time of 
methyl orange was reached at 30 min (Yu et al. 2016)..

TS-COF-2 was reported for adsorption cationic dye 
methyl blue, and rhodamine B, it is also used for adsorption 
anionic dye (CR) with  qmax =319 mg  g−1. The best adsorp-
tion wavelengths of CR were reported 500 nm, the Langmuir 
and Freundlich isotherm models were used to fit the adsorp-
tion data which showed a good linear relationship at equi-
librium. The maximum adsorption capacity of TS-COF-1 
was 319 and 46.02 mg  g−1 by the Langmuir and Freundlich 
model respectively which higher than that of polyvinyl alco-
hol/activated carbon, polyvinyl alcohol hydrogel, and mela-
mine–formaldehyde polymer.

Cationic EB-COF: Br nanosheets 2D was reported as a 
sieving membrane for removal of anionic dye fluorescein 
sodium salt, methyl orange, and potassium permanganate. 
the membrane can refuse anionic dyes potassium perman-
ganate, fluorescein sodium salt, and methyl orange up to 
98.1%, 99.2%, and 99.6%, respectively. The regeneration 
of COF was performed by immersing the membrane with 
an aqueous NaBr solution and the rejection efficiency for 
methyl orange is above 99.1% even after six cycles (Zhang 
et al. 2018b).

Neutral dyes

Neutral dyes are salt formed by the interaction of an acid dye 
and a basic dye. Using COFs in the capture of neutral dyes 
is very limited compared to the cationic and/or anionic dyes 
and is directly related to adsorption. Generally, the COF 
adsorption quantity of neutral dyes is less than that of cati-
onic and/or anionic dyes (Table 3). Taking into account the 
existence of negative or positive structures in the framework, 

higher adsorption of anionic and cationic dyes is referred to 
as the formation of π-π interactions and electrostatic inter-
actions between the matrix and dye. Cationic EB-COF: Br 
nanosheets 2D was reported as a sieving membrane not only 
for anionic and cationic dyes but also for neural dye. The nile 
red, calcein, and p-nitroaniline were selected for rejection 
on EB-COF: Br membrane, the selectivity of sieving for 
dye molecules depended on their different sizes and charges. 
UV–vis absorption spectra of neutral dye solutions before 
and after sieving by the EB-COF: Br approved the rejec-
tion of nile red, calcein, and p-nitroaniline on EB-COF: Br 
membrane. The rejection efficiency values of p-nitroaniline, 
nile red, and calcein were 15.7%, 22.3%, and 74.4%, respec-
tively. For neutral dye molecules, the electrostatic interaction 
is very weak between the EB-COF: Br and dye. Therefore, 
the rejection efficiency is mainly attributed to the effect of 
molecular size sieving. The order of molecular size of neu-
tral dye is p-nitroaniline < nile red < calcein which can pass 
through the pore channels of the EB-COF: Br membrane.

Industrial organic water contaminations

In developed societies, rapid industrialization is associated 
with the production of large quantities of factory waste to 
meet the increasing demand for consumer products (Dhaka 
et  al. 2019, Rojas &Horcajada 2020). Many industrial 
organic/inorganic contaminants have a significant impact 
on water pollution. The wide use of aromatic compounds 
in the industry led to potential environmental risks due to 
high toxicity rates, high oxygen demand, carcinogenicity, 
and low biodegradability. Therefore, eliminating these con-
taminants from polluted water is very significant for water 
treatment (Erogul et al. 2015; Liu et al. 2014). Some tradi-
tional porous synthetic organic materials such as polymeric 
resins have already been extensively used as platforms for 
organic water pollutants and environmental remediation 
recently (Buchmeiser &Catalysis 2003). COFs have also 
been suggested as an excellent platform for the removal of 
this kind of pollutants.

Pollution of our environments with nitrobenzene deriva-
tives (NBD) has become a global concern with toxins. The 
extensive use of NBD in industries has raised the level of 
NBD in wastewater to 100 ppm. Its high solubility and 
poisonousness make it an urgent contaminant for various 
environmental organizations. Hence, the search for effective 
platforms to recover the NBD from water is very impor-
tant. Naphthols are extensively used as an intermediate 
material in diverse industrial development to manufacture 
products related to modern societies. The effect of toxic-
ity of naphthol on both organisms with wide use and high 
mobility makes this, besides pollutants pose a dangerous 
risk to the environment's sustainability. Liu et al. showed 
the adsorption efficiency of CTF for aromatic compounds 
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such as phenol (PHOL), benzene (BEN), benzenesulfonate 
(BS), aniline (AN), 1,3-dinitrobenzene (DNB), nitrobenzene 
(NB), 4-ethyl-2,6-dinitrophenol (MDNP), 1,3,5-trinitroben-
zene (TNB), naphthalene (NAPH), 1-naphthalenamine 
(1-NALA), 2-naphthol (2-NAOL), 2-naphthalenesulfonate 
(2-NS). CTF exhibited high selectivity toward NAPH, 
2-NAOL, 2-NS, 1-NALA, DNB, MDNP, BEN, BS, and 
TNB compared to a polymeric adsorbent amberlite XAD-4 
resin Table 4. By comparing the adsorption and uptake 
kinetics of nitrobenzene between CTF and XAD-4, the equi-
librium time reached within 100 min on CTF, but within 
600 min on XAD-4 (Liu et al. 2012).

Ji et.al. introduced DhaTab-PBA for adsorption hydro-
quinone, resorcinol, toluene, phenol, catechol, aniline, and 
chlorobenzene with good thermal and chemical stability. 
DhaTab-PBA showed selectivity toward catechol with  qmax 
of 160 mg  g−1 (Table 4). The large adsorption capacity for 
removal catechol was due to π-π interaction. The adsorption 
capacity of catechol on DhaTab-PBA increased in the pH 
range 3–7 and remained almost constant from pH 7 to pH 10. 
The equilibrium time for desorption catechol on DhaTab-
PBA was reached within 40 min, which indicated the fast 
catechol adsorption. Regenerated COF was performed by 
phosphate buffer solution (PBS), 10 mM, with an even after 
five adsorption- adsorption cycles (Ji et al. 2019a).

Bisphenol A is extensively used to manufacture epoxy 
resins and polycarbonate plastics. It is one of the most chem-
icals that is produced globally. The presence of bisphenol A 
in the water has devastating effects on the endocrine system; 
hence the main focus is on the issue of the environment 
(Mon et al. 2018). Wei et al. presented  Fe3O4@TpND for 
removal bisphenol A with a high  qmax = 114.97 mg  g−1 at pH 
6. The equilibrium of adsorption attained 10 min and was 
maintained over the entire range of contact time. The kinetic 
process of bisphenol A adsorption on  Fe3O4@TpND was 
described to introduce the pseudo-first-order and pseudo-
second-order models. Five sorption-regeneration cycles 
were carried out to test the adsorption capability. After five 
cycles, the capture efficiency was kept at about 96.2%, indi-
cating the high recyclability of  Fe3O4@TpND (Wei et al. 
2020b).

Fermentation of carbohydrate substrates produces lactic 
acid, but isolating it from the broth generates equivalent 
amounts of residual salt precipitated. While the demand 
for lactic acid is extremely growing; this separation prob-
lem is the basic narrow reducing the generation process's 
further upscaling. Lohse et  al. introduced three COFs, 
TpBD(NHCOCH3)2, TpBD(NH2)2, TpBD(NO2)2 for adsorp-
tion lactic acid. COFs, TpBD(NHCOCH3)2 was synthesized 
via acetylation of TpBD(NH2)2 which was formed by reduc-
tion of TpBD(NO2)2. Three COFs was used as adsorbent 
for the adsorption of lactic acid. The maximum adsorp-
tion capacity of TpBD(NHCOCH3)2, TpBD(NH2)2 and 

TpBD(NO2)2 for lactic acid  qmax = 4.0, 6.6 and 2.4 mg/g 
receptivity at natural pH. A small polar.

molecule lactic acid adsorbed by π-π-interactions of COF 
stacks for three COFs as well as H-bond donor and accep-
tor atoms, of TpBD(NHCOCH3)2 and TpBD(NH2)2. Differ-
ent shapes of isotherm were observed for the three COFs, 
TpBD(NH2)2 and TpBD(NHCOCH3)2 showed type I iso-
therms with uptakes of up to 6.6 and 4.0 wt%, respectively, 
but the isotherm of TpBD(NO2)2 was linear with a highest 
measured uptake at 2.5 wt%). These results showed that lac-
tic acid adsorption could be adsorbed by the chemical pore 
environment (Lohse et al. 2016).

The contamination of ground and surface water by poly-
fluorinated alkyl substances affects all humans worldwide. 
Polyfluorinated alkyl substances, like perfluorooctanoic acid, 
perfluorooctane sulfonate, and ammonium perfluoro- 2 pro-
poxypropionate. Polyfluorinated alkyl substances are used in 
the generation of water, fluoropolymers, and stain repellents 
and as ingredients of aqueous film-forming foams used to 
inhibit fires. Concerns about environmental persistence, bio-
accumulation, and health effects of perfluorooctanoic acid 
allowed it to be phased out in the United States. However, it 
has been altered by other polyfluorinated alkyl substances, 
such as ammonium perfluoro—2 propoxypropionate, which 
are also dangerous contaminants. Ammonium perfluoro—2 
propoxypropionate was originated in the Cape Fear River 
in North Carolina, and its elimination by traditional and 
progressive treatment technologies was negligible. Dichtel 
et al. presented imine-linked two-dimensional (2D) COFs 
(having primary amines) adsorb ammonium perfluoro—2 
propoxypropionate rapidly at environmental concentration 
with high surface area ≥ 1000  m2g−1 and crystallinity mate-
rials. The X%[NH2]–COFs exhibit high affinity for adsorb-
ing ammonium perfluoro—2 propoxypropionate and other 
polyfluorinated alkyl substances. The removal efficiency 
values of COF with 100%[NH2]–COF and 20%[NH2]–COF 
were 56 and 97% respectively. The highest adsorption capac-
ity of 20%[NH2]–COF due to having the highest affinity to 
ammonium perfluoro-2-propoxypropionate. Whereas at 
lower amine loadings, GenX uptake was slightly decreased 
for 10%[NH2]– COF and 1%[NH2]–COF with a removal effi-
ciency of 94% 73%. The mechanism of interaction of GenX 
with the amine-functionalized COFs was proposed to arise 
from favorable interactions of the polar amino groups with 
the anionic headgroup of ammonium perfluoro-2-propoxy-
propionate. The X%[NH2]–COFs showed rapid removal for 
adsorbing GenX and other polyfluorinated alkyl substances 
and reached equilibrium time at 30 min (Ji et al. 2018).

Overall, organic pollutants are classified into pharma-
ceuticals, pesticides, dyes, and industrial by-products. The 
adsorption performances by COFs are summarized and tabu-
lated in Tables 1, 2, 3, to 4. These compounds have polluted 
the water of the environment around the world, mainly due 
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to runoff from firefighting foams, effluents, and a variety 
of industrial processes. However, COF-based materials are 
showed high removal efficiency of these pollutants, the prac-
tical use of COFs as adsorbents was limited. Reusability and 
long-term stability of COFs will also need to be achieved to 
enable most real applications.

Adsorption mechanism of COFs

Understanding the adsorption mechanism is very important 
because the interactions between the adsorbate − adsorbent 
are significant for designing future materials. Generally, 
adsorption performances are affected by two factors: (1) the 
interaction between organic contaminants and COFs such 
as the electrostatic attraction, hydrogen bond, hydrophobic 
interaction, dispersive interaction, and π-π.

Electrostatic interaction

Electrostatic interaction plays an important role in the 
adsorption process. The interaction occurred between the 
charge on the surface area of COFs and the opposite charge 
of absorbate (organic pollutants). Electrostatic interaction is 
mainly affected by the solution of pH which influences (1) 
proton/deprotonation of the functional groups, (2) changing 
the distribution of pollutants species, and (3) changing the 
charge on the surface of COFs. For example, TPB-DMTP-
COF was used for adsorption sulfamethazine, TPB-DMTP-
COF was synthesized by condensation of 2,5-dimethoxy-
terephthalaldehyde and 1,3,5-tri-(4-aminophenyl) benzene. 
It was exhibited a large surface area (2115  m2/g), and high 
crystallinity. The imine group (C = N), and OR play an 
important role in the removal mechanism. Sulfamethazine 
was trapped in the pore size of COF with its π-rings fac-
ing the walls of COFs. The maximum adsorption capac-
ity of sulfamethazine was at pH = 6 while the adsorption 
performance was lower in acidic or alkaline conditions due 
to the electrostatic repulsive forces increased significantly 
(Zhuang et al. 2020b). Moreover, TzDBd showed ultrafast 
adsorption of triphenylmethane dyes (brilliant green and 
crystal violet). It was synthesized by direct condensation of 
1,3,5-tris(4-formyl-phenyl) triazine (Tz) and 4,4'-diamino-
[1,1'-biphenyl]-2,2'-dicarboxylic acid (DBd). It showed good 
crystallinity, mesoporous pores, and high chemical stabil-
ity. The adsorption of brilliant green and crystal violet by 
TzDBd COF increased as the pH was increased from 3 to 
5. At pH = 3, the electrostatic repulsion between cationic 
dyes (BG and CV) and positively charged of TzDBd COF 
resulted in inappropriate adsorption of brilliant green and 
crystal violet on TzDBd. (Li et al. 2019a).

BTT-TAPT-COF showed high crystallinity, large surface 
area, and thermal stability. Due to the porous feature, the 
large π-conjugated network structure, and the existence of 

electron-rich heteroatoms. It exhibited excellent adsorp-
tive performance for the removal of indigo carmine with an 
adsorption capacity of 547.33 mg  g−1. The removal mecha-
nism of indigo carmine onto BTT-TAPT-COF has been 
suggested through electrostatic reaction. At low pH = 2, N 
and S functionalized BTT-TAPT-COF were protonated to 
yield a large amount of positively charged sites that inter-
act with negatively charged anionic indigo carmine dye. 
Therefore, the removal efficiency of indigo carmine was 
improved. However, at high pH = 10, the protonated process 
was hindered due to the low  H+ concentration (Table 5). 
As a result, the adsorption capacity decreased, especially at 
pH = 10. Also, the amino-modified covalent organic frame-
work  (NH2@COF) showed an excellent extraction ability 
for carboxylic acid pesticides. The introduction of amino 
groups can interact with the anionic headgroup of carbox-
ylic acid pesticides. Moreover, the ample hydrophilic surface 
area can boost absorption in the water media. Electrostatic 
attraction between the carboxyl group of pesticides and 
the amino group of  NH2@COF has been suggested to be 
the main mechanism for the uptake. As well, cationic EB-
COF: Br nanosheet was synthesized by a facile bottom-up 
interfacial crystallization. It showed much higher solvent 
permeability due to its high porosity. The main mechanism 
of cationic EB-COF: Br nanosheets 2D for the removal of 
fluorescein Sodium salt, methyl orange, and potassium per-
manganate depended on the strong electrostatic interaction 
between anionic dyes and the positively charged pore walls 
of the membrane. Moreover, the nanoscale size of channels 
limits the adsorption of the dye.

TPT-DMBD-COF was synthesized by the condensation 
of the O-linked, flexible, triazine-based aldehyde TPTCHO 
and the rigid diamine DMBD. It was exhibited permanent 
porosity, a high specific surface area (279.5  m2·g−1), and was 
chemically and thermally stable. It can adsorb methylene 
blue in basic or neutral conditions because the functional 
groups on the surface of COF are electronegative under 
basic or neutral conditions which indicate an electrostatic 
attraction between the positive charge of the amine group 
(-N+ =) of methylene blue dye molecule and the surface 
negative charge of TPT-DMBD-COF (Huo 2019).

Molecular size effect

The design of candidates with suitable pores size is the 
critical challenge in environmental remediation for elimi-
nating organic contaminants. Moreover, the size of absorb-
ate has also participated in the adsorption. For instance, 
benzimidazole-COF was synthesized through Schiff 
base condensation to trigger their ionization response 
both under acid and basic conditions. It was used for the 
removal of four dyes (methyl orange, methyl blue, acid 
magenta, and crystal violet). Methyl orange and methyl 
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blue were adsorbed because of their smaller size than acid 
magenta and crystal violet. Therefore, both dyes showed 
higher adsorption capacity (256 mg/g) for methyl orange 
in acidic conditions and (185 mg/g) for methyl blue in 
basic conditions (Xu et al. 2020).

CH/π‑interaction and π‑ π interaction

CH/ π- interaction with some aromatic compounds (non-
covalent bond) where the region of positive charge inter-
acts with a negative charge (the electron-rich π system 
can interact with cation, neutral, anion, another molecule, 
and even another π system) (Mori &Inoue 2005). DAAQ-
TFP possesses a large surface area, high porosity, and 
good thermochemical stability. It poses a high π -conju-
gated system that forms a strong π- interaction with some 
aromatic compounds (Table 5). It was employed as an 
adsorbent to extract benzoylurea insecticides (BUs) from 
environmental water, juice, fruit, and vegetable samples. 
The abundance of O atoms and N–H groups makes it of 
great potential as an adsorbent for some compounds. (Song 
et al. 2018). Moreover, TS-COF-2 is mesoporous triazine-
functionalized polyimide COF. The adsorption of meth-
ylene blue by TS-COF-2 is explained by both the size of 
the organic dye molecules and the intrinsic pore size. The 
diversity of COF based-materials and the understanding of 
organic dyes' encapsulation on COFs possess great prom-
ise for developing new COF candidates for the efficient 
capture of organic pollutants from the aquatic environment 
(Zhu et al. 2017).

Hydrogen bond

The hydrogen bond is participated in the extract of ben-
zoylurea insecticides by DAAQ-TFP. DAAQ-TFP has 
abundant O atoms and N–H groups, which make hydro-
gen bonding stronger (Song et al. 2018). Also, the adsorp-
tion mechanism of diclofenac by COF-SO3H through π–π 
interactions and hydrogen bonds formation, in which the 
π-electrons number of the adsorbate and adsorbent was 
constant. At pH 6–10, the amino (–NH) group is stable on 
diclofenac,  SO3 − on COF ionized and the oxygen atom 
in the sulfonic acid group can form an intermolecular 
hydrogen bond with the hydrogen of the amino group of 
diclofenac. Moreover,  Fe3O4@COF(TpBD)@Au-MPS) 
showed a high affinity to fluoroquinolones owing to the 
ionic interactions and hydrogen bond between the mag-
netic surface of COF and fluoroquinolones. Furthermore, 
hydrogen bonding dominated the removal mechanism 
for bisphenol A by  Fe3O4 @TpND (Wei et  al. 2020b) 
(Table 5).

Hydrophobic interaction and others

One interesting approach for the adsorption of organic pol-
lutants from an aqueous solution is hydrophobic COFs. 
PC-COF was successfully synthesized by a facile solu-
tion-processed condensation polymerization with the raw 
materials 1,3,5-tris (4 aminophenyl) benzene and 1,1-bis(4-
formylphenyl)-4,4’-bipyridinium dichloride. PC-COF is 
polycationic two-dimensional (2D), that the 2D layer struc-
tures stack into 3D porous frameworks and the adjacent 
BIPY dications stack in an eclipsed pattern, with chloride 
counterions being sandwiched in between the layers. It 
showed high adsorption efficiency (97%) for removal of acid 
green 25, methyl orange, indigo carmine, direct fast brown 
M, acid red 27 over water. Hydrophobic and electrostatic 
attraction between the anionic groups of the dyes and the 
bipyridinium dications of the COF was suggested to be the 
main mechanism for the uptake. While the exchange of hard 
base  Cl− with the dye anion as soft base plays an important 
role due to the formation of two hard acid-hard base and soft 
acid soft base pairs. (Table 5) (Yu et al. 2016).

Wang et  al. reported a solid-phase microextraction 
approach to remove seven phenols (phenol, 4-bromophenol, 
4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 
2,3,6-trichlorophenol, and 3,4-dichlorophenol). The high 
removal of these dyes has indicated that π- π stacking inter-
actions, π conjugation of aromatic groups, and hydrophobic 
interaction have dominated the capture reactions between 
SNW-1-coated fiber and contaminants (Wang et al. 2016).

The removal mechanism of rhodamine B onto CTF can 
be concluded such that (1) The basic sites for the adsorption 
of dyes are rich in carbon and nitrogen. (2) The electrostatic 
interaction is more significant than the interaction between 
the primary surface site and a free electron. (3) Dispersion is 
significant for dyes to enter the pores. Also, π-π interaction 
in mesoporous pores and electrostatic interaction contributed 
to the adsorption. TzDBd gave faster kinetics for the adsorp-
tion of cationic dyes as compared to other platforms involv-
ing commercial activated carbon. It was found that ethanol 
and HCl (10 mM) were not satisfied with the desorption 
efficiency to reusability, so an ethanol solution with (0.1%) 
hydrochloric acid was used; the efficiency was increased to 
95% desorption. The results showed that electrostatic inter-
action and π-π interaction affected the adsorption, the HCl 
solution led to electrostatic repulsion between the analytes 
and adsorbent. Simultaneously, the organic solvent allowed 
triphenylmethane dyes to be more soluble, this also indicated 
the synergistic effects of the electrostatic and π-π interaction 
during the adsorption process (Table 5) (Li et al. 2019a). 
Moreover, the adsorption mechanisms of CTF depended on 
electrostatic attraction, non-hydrophobic including hydrogen 
bonding (amino- and hydroxyl -substituted compounds), and 
π–π electron-donor–acceptor interaction with the triazine 
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structure of CTF (Liu et al. 2012). Moreover, TPT-DMBD-
COF contains a large number of aromatic rings that undergo 
π − π stacking with the methylene blue molecules during 
adsorption (Table 5).

Above all, the adsorption processes are mostly ascribed to 
electrostatic attraction, H-bonding, hydrophobic interaction, 
and some of the mechanisms are attributed to functional 
group selectivity and molecular sieving. The molecular size 
of the adsorbate and the pre-designed pore size of the adsor-
bents are very important in the adsorption process. Moreo-
ver, the introduction of heteroatoms (S, O, and N) such as 
amino, amide, carboxyl, hydroxyl, and thiol assist the bond 
formation between organic contaminants and COFs which 
remarkably enhance the elimination efficiencies and adsorp-
tion capacities of pollutants.

Interaction mechanism analysis

Spectroscopic techniques

Various techniques have been used to confirm the interac-
tion mechanism such as Fourier transform infrared (FTIR) 
spectroscopy and X-ray photoelectron spectroscopy (XPS) 
(Hu et al. 2020a; Wang et al. 2019). For example, after 
ibuprofen adsorption, the FTIR spectrum of TpBD-(CF3)2 
showed the appearance of 1720  cm−1 which referred to the 
carbonyl group of the ibuprofen moiety. The slight blueshift 
of free ibuprofen from 1705  cm−1 could be revealed a change 
in H- bonding under environmental adsorption. Moreover, 
the FTIR spectrum of NCCT- COF after the adsorption of 
cefotaxime (CTX) and tetracycline was found in the range 
of 1300–400  cm−1 which agrees with the fingerprint spec-
trum of each antibiotic (Li et al. 2020b; Liu et al. 2021). 
The spectra of NCCT showed that the FeـــــO and ـــــOH 
peaks of NCCT were found at 575  cm−1 and 3436  cm−1, 
respectively. After adsorption of CTX and TC, the ــــــOH 
peaks shifted to 3434  cm−1 and 3428  cm−1, respectively. For 
NCCT-TC adsorption, the shifting might be referred to the 
 OH cation exchanged with deprotonated TC moleculesــــــ
adsorption. Whereas NCCT-CTX adsorption, the shifting 
might be ascribed to the ــــــOH the formation of intramolec-
ular hydrogen bonding. the FeـــــO of NCCT-TC shifted to 
566  cm−1 indicating the surface complexation of iron atoms 
with the species of TC while the shifting of C = C peaks 
from 1582 to 1599 and 1597  cm−1, respectively, might be 
due to the π–π interaction between antibiotics and NCCT 
(Li et al. 2020b).

XPS spectra of N 1  s of NCCT could be deconvo-
luted into three peaks, such as ــــــ N = , ــــــ NH, and  N+ 
positive nitrogen located at 398.8 eV, 399.5 eV, and 4.2% 
respectively. After CTX adsorption, The peak area of ــــــ
N+ increased rapidly from 4.2% to 47.8% and the ــــــ NH 

decreased dramatically from 59.7% to 17.0%, which might 
be referred to the strong interaction between the amino 
groups of NCCT and CTX species. For TC adsorption, the 
peak area of FeـــــO was significantly increased, indicating 
that the uptake of the TC on NCCT was likely attributed 
to the surface complexity of Fe / Ni with oxygenic groups 
of TC like the C1–C3 and C10–C12 portion. On the other 
hand, the ــــــOH peak area of NCCT-TC decreased dramati-
cally compared to that of NCCT. Therefore, the adsorption 
of TC on NCCT might be significantly enhanced by the 
cation exchange between the C4 amino group of TC and the 
hydroxyl of NCCT (Li et al. 2020b).

Wei et al. reported the elimination of (bisphenol A by 
 Fe3O4@TpND. XPS spectra showed the high-resolution O 
1 s for three O 1 s peaks located at 530.7 eV, 532.3 eV, and 
533.8 eV, which can be referred to as the OــــــH, C = O, 
and physically adsorbed water on the metal oxide surface, 
respectively. After the adsorption of BPA, a slight shift of 
carbonyl group peak from (532.0 eV) to higher binding 
energy (532.3 eV), which confirmed the aldehyde group of 
TpND for participating in the surface complexation through 
the formation of H-bonding (O…H). The content of O–H 
was increased (from 14.93% to 27.95%) due to the adsorp-
tion of BPA (Wei et al. 2020b). Indigo carmine dye has been 
successfully adsorbed on BTT-TAPT-COF by the presence 
of two significant characteristic peaks belonging to indigo 
carmine dye (sulfonate group in 168.3 eV and C = O in 
287.8 eV) (Pan et al. 2020).

Theoretical calculation

To understand the interactions between organic pollutants 
and COFs, theoretical calculations such as density func-
tional theory (DFT) and molecular simulation (MS) are 
used to determine the structure–property relationships, the 
charge density of the system, total energy information, and 
this investigates the adsorption behavior of organic pollut-
ants that cannot be realized from experimental results and 
spectroscopic methods. These results can help researchers 
to design the structure of COFs/COF-based materials and 
optimize their adsorption performance (Wei et al. 2020a; 
Zhuang et al. 2020b).

Density function theory (DFT)

Density function theory (DFT) is a useful tool to explain the 
experimental results and spectroscopic analysis at the atomic 
level, such as orientations, lengths, bond energies, and the 
charge density of the system. The most significant advantage 
of DFT calculation is probing the species and microstruc-
ture at molecular levels under complicated conditions and 
the simulation of the interaction processes. For example, 
sulfamethazine molecules adsorbed in the pore-sites of 
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COFs through C–H···π interaction due to stable adsorption 
configuration while hydrogen bonding was not detected in 
this configuration (Zhuang et al. 2020b). To investigate the 
adsorption of bisphenol A to TpND the DFT calculation was 
used and it was found that bisphenol A is favorably removal 
by TpND phenolic aldehyde groups through the hydrogen 
bonds. Notably, the main electron transfer has occurred 
between the oxygen atoms (O1 and O2) in the phenolic 
aldehyde groups of TpND and the hydrogen atoms (H1 and 
H2) of BPA Which approved H-bonding interaction mecha-
nisms during the sorption process (Wei et al. 2020b). DFT 
calculation of adsorption triphenyl phosphate on three COFs 
(COF1, COF2, COF3) with different pore sizes showed that 
the triphenyl phosphate could easily pretend into larger pore 
sizes (COF2 and COF3) and prevented from passing through 
the small pore size of COF1. This calculation explained the 
low adsorption capacity of triphenyl phosphate on COF1. 
However, with the easy diffusion of triphenyl phosphate 
into (COF2 and COF3), the larger pore size decrease the 
affinity of this molecule and increase the tendency to get- 
away outside (Wang et al. 2018c). pollutants and COFs at 
the molecular level, which are difficult to perform at experi-
mental measurements.

DFT calculation of magnetic TPB-DMTP-COF for 
adsorption Ds and sulfamethazine molecules showed that 
these adsorbates were introduced into the TPB-DMTP-
COF channel structure after adsorption. Both molecules 
were close to the π-wall of TPB-DMTP-COF, and their 
benzene ring structures were nearly vertical to that of TPB-
DMTP-COF. The predominant interaction between layers 
to form the layered stacking structure was π-π interaction, 
and C-H···π interaction also contributed to the adsorption of 
diclofenac sodium/sulfamethazine into COFs (Zhuang et al. 
2020a).

Molecular simulation

Molecular simulation (MS) is also a useful tool for determin-
ing the positions, the prediction of the macroscopic phenom-
ena simulation, potential energies, describing the adsorption 
process at an atomic level, calculating driving forces and 
interaction energy of dynamic interactions (Hoskins &Rob-
son 1989, Liu et al. 2021). MS simulation was used to study 
bisphenol A movement from the external solvent to the inte-
rior porous structure of TpND. Three different molecular 
numbers of BPA (Num 20, 10, and 5) were randomly settled 
in the box. For Num 20, the new peaks (around 9.78 nm, 
11.94 nm) were embedded on the surface of TpND due to 
numerous BPA molecules would agglomerate into big clus-
ters before they reached the surface of TpND and also the 
high volume and the big clusters were crowded by the hole-
structure. For Num10, a portion of BPA molecules is assem-
bled into the chain-type cluster and intercalated between the 

inner layers. For Num 5, the BPA molecules could easily 
pretend into the surface and then be trapped in the interior 
of the TpND. Thus, the physical pore structure of COF and 
size of BPA cluster have a significant aggregating effect on 
the sorption process (Liu et al. 2021; Wei et al. 2020b).

Reports of molecular simulation studies on the elimina-
tion of organic contaminants by COFs are lower than those 
on gas adsorption due to the long-time of computational to 
simulate dense liquid phases. Hopefully more simulation 
studies on the removal of organic pollutants and deeper 
molecular insight as computational power increases. The 
computational simulation can help to understand the inter-
action processes of these pollutants and COFs at the molec-
ular level, which are difficult to perform at experimental 
measurements.

Above all, spectroscopic techniques and theoretical cal-
culations are used to confirm the adsorption mechanism 
and understand the interaction between COFs and organic 
contaminants. From XPS and FTIR spectra, the chemical 
shift proves the bonding information in the adsorption pro-
cess of surface functional groups and molecular structures 
of adsorbents. On the other hand, DFT calculations approve 
these results from experimental techniques and explain the 
complicated relationship between sorption capacity and 
pore size. Moreover, MS can also assist the role of COFs 
in adsorption, electrostatic interactions, and ion exchange. 
Therefore, spectroscopic techniques and theoretical calcula-
tions play a major role in the mechanism study.

Comparison between COFs and other 
materials in removing organic pollutants

Table 6 tabulates the adsorption capacity of other materials 
for the elimination of organic pollutants. The recent studies 
of capturing PPCPs by COFs showed a significant adsorp-
tion capacity than other materials. For example, MCOF-2 
showed higher adsorption capacity with faster adsorption 
kinetics and excellent reusability for removal diclofenac 
sodium than MOF-UiO-66, activated carbon from agri-
cultural by-products, zeolitic imidazolate frameworks -8 
PCDM-1000, carbide-derived carbons-1000, and Metal 
azolate framework-6-derived porous carbon-K1000. The 
high removal efficiency of DS by MCOFs was mainly caused 
by π − π stacking, electrostatic interaction, and hydrogen 
bonding interactions.

For adsorption SMT, TPB– DMTP -COF showed higher 
adsorption capacity with  qmax = 209  mg/g compared to 
mesoporous organosilica (Parambadath et al. 2016) and acti-
vated carbon (Yao et al. 2019)which agree that COF / COF 
based materials are an efficient absorbent for SMT removal. 
For removal IBU, it was noticed that the higher adsorption 
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capacity by TpBD-(CF3)2focused on the advantage of using 
the fluorinated COF for pharmaceutical adsorption.

The reported studies for adsorption pesticides by COFs 
are very limited. However, the higher removal efficiency 
with more than 97% of methomyl, aldicarb, carbaryl, sul-
foxide aldicarb, carbofuran, sulfone aldicarb, and imidaclo-
prid by  Fe3O4@SiO2-NH2@COFs, can’t be holding a real 
comparison between COFs and other materials.

To date, an interesting adsorption capacity for cationic 
dye MEB by TS-COF-2 with  qmax = 1691 mg/g than amino-
MIL-101(Al), nitrogen-doped porous carbon nanosheets-10, 
holey graphene nanosheets, ordered mesoporous carbon, 
porous carbon sheets, triptycene-based hyper-cross-linked 
polymer sponge and 1,4-dicyanobenzene polymer DCB2 see 
Table 6. COF-TzDBd showed higher adsorption capacity for 
capture CV and BG than other absorbents such as Cd-MOF, 
zwitterionic polymer hydrogels, magnetite/silica/ pectin 
NPs, zero-valent iron anionic, and zeolite-MOF see Table 6.

For adsorption anionic dye, MO showed higher adsorp-
tion capacity by benzodiimidazole-COF than activated car-
bon (Haque et al. 2011). The adsorption of neutral dye by 
COFs is used in a limited range. To understand the nature 
of the reaction between COFs and neutral dye isn’t clear, it 
is necessary to use COFs as a platform to remove neutral 
dye such as NA, NR, and CA. DhaTab-PBA showed higher 
adsorption for elimination catechol than water-compatible 
hyper crosslinked resin HJ-1, hyper cross-linked Polymers, 
granular activated carbon, and Waste Fe (III) = Cr (III) 
Hydroxide.

Overall, COFs and COF-based materials showed higher 
efficiency than other materials due to high surface area, 
abundant functional groups, active sites, and appropriate 
pore size. COFs can be synthesized in green conditions with 
more active sites and ultrahigh porosity. In addition, they 
can be synthesized by novel methods with short preparation 
time and high yield. Multifunctional COFs platforms can 
be developed. Multi-component can be carried out through 
complex reactions with other functional composites.

Conclusion and perspectives

In summary, COFs can be considered as an alternative plat-
form for the removal of different organic pollutants (phar-
maceutical and personal care products, pesticides, dyes, and 
industrial by-products). In this review, different adsorption 
mechanisms were discussed considering the introduction of 
various functional groups such as N, O, and S into COFs. 
This remarkably improves the adsorption capacity due to 
the ability of these functional groups to form strong link-
ages with organic compounds. Moreover, the automeriza-
tion of functional groups between two interconvertible struc-
tures (i.e.,enamine-imine, ketone-enol, etc.) enhances the 

adsorption performance. COFs are excellent absorbents with 
high reusability, large adsorption capacities, and fast sorp-
tive kinetics. For instance, the maximum adsorption capacity 
of methylene blue by COFs can be as high as 1691 mg  g−1, 
with rapid equilibrium time. Other studies have shown COFs 
capable of removing 565 mg  g−1of diclofenac sodium. In 
addition, COF with 20% of amine loading has the highest 
affinity to ammonium perfluoro-2-propoxypropionate with 
maximum adsorption capacity = 240  mg   g−1. However, 
it is important to note that different structural designs of 
COFs influence the adsorption capacities, and the adsorp-
tion capacity of different contaminants by a particular COFs 
vary due to its pore structure, multiple functionalities, physi-
cal/chemical properties, selectivity as well as other process 
parameters such as pH.

, The pore structure can be easily redesigned through var-
ious methods, suitable for the removal of different organic 
contaminants. Modification of COFs can combine the syn-
ergistic effects, chemical/physical properties, and multiple 
functionalities of the individual components. Furthermore, 
a short processing time with high yields can be achieved in 
the synthesis of COFs. 2D COFs have a high crystal struc-
ture and are more stable in different media (boiling water, 
organic solvent, acidic and basic contortions). However, 
the 2D COFs topological structural area is limited because 
of the limited pores design strategies associated with pore 
walls including distribution, intensity orientation, distribu-
tion, intensity, and alignment. Moreover, the addition of a 
new linker led to new topologies. It is very interesting to 
consider the pore size, and the shape of pores, to enhance 
the removal efficiency of emerging organic contaminants. In 
addition, COFs can be designed with favorite functionalities 
for definite applications. This selects the functional group 
of monomer and organic linkers in the synthesis process 
and post-synthetic modifications (PSM). As a result, COF 
influences the dimensionality, shape, surface area, pore size, 
and chemical conditions. Many COFs are used as a plat-
form in bulk or nanosheet as well as a single adsorbent or 
in combinations to remove organic contaminants because of 
the open apertures and 1D channels free of chain entangle-
ment and pore interpenetration, this enables full access to 
the porous space. Nevertheless, the stability of 3D COFs is 
a big challenge. Many 3D COFs like NPN-1, NPN-2, and 
NPN-3 have been synthesized. Still, the crystallinity and 
porosity cannot be determined by powder  N2 gas adsorp-
tion isotherms and powder X-ray diffraction, respectively, 
because of the instability of these COFs. Weak azodioxy 
bonds cause instability. In general, the stability is related to 
crystallinity and reverse to the reversible reaction. Moreover, 
synthesized single crystal 3D COFs were still lacking the 
diversity of the structure (not only imine linkage), limited in 
methodology (flow synthesis or vapor-assisted conversion, 
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Table 6  Various candidates and their maximum adsorption quantities  (qmax, mg  g−1) for the capture of organic contaminants

Organic contaminants Adsorbent Qmax, mg  g−1 References

Pharmaceutical contaminants and personal care products (PPCPs)
Diclofenac Na MOF-UiO-66

Activated carbon from agricultural by-products
Zeolitic imidazolate frameworks -8 PCDM-

1000
Carbide-derived carbons-1000
Metal azolate framework-6-derived porous 

carbon-K1000

189
56
105
351
503

(Lin et al. 2015)
(Larous &Meniai 2016)
(Bhadra et al. 2017)
(Álvarez-Torrellas et al. 2018)
(An et al. 2018)

Sulfamerazine MA-PMO-5 / mesoporous organosilica
SA-PMO-5/ mesoporous organosilica
Granular activated carbon

96
31
165.67

(Parambadath et al. 2016)
(Parambadath et al. 2016)
(Yao et al. 2019)

Ibuprofen Activated carbons / CAC 
Activated carbons / CPAC
Activated carbon cloths
Rice Straw Based Biochar
BiOCl microsphere
Magnetic palm-based powdered activated 

carbon- Triethoxyphenylsilane
Magnetic carboxyl modified hyper cross-linked 

resins-10
Magnetic carboxyl modified hyper cross-linked 

resins -30
Magnetic carboxyl modified hyper cross-linked 

resins -40
Magnetic carboxyl modified hyper cross-linked 

resins -50
Magnetic carboxyl modified hyper cross-linked 

resins -70
Multi-walled carbon nanotubes

85.5
89.3
492
170
26.6
100
0.8 mmol/g
0.7 mmol/g
0.6 mmol/g
0.45 mmol/g
0.1 mmol/g
0.059 − 1.3

(Mestre et al. 2007)
(Mestre et al. 2007)
(Guedidi et al. 2017)
(Ahmed 2017)
(Li et al. 2017)
(Wong et al. 2016)
(Jin et al. 2017)
(Jin et al. 2017)
(Jin et al. 2017)
(Jin et al. 2017)
(Jin et al. 2017)
(Reinholds et al. 2017)

Pesticides
Imidacloprid Powdered Activated Carbon

Magnetic Activated Carbon
110.59
94.89

(Zahoor et al. 2011)
(Zahoor et al. 2011)

Methylchlorophenoxy-propionic acid MgAl-layered double hydroxides
Activated carbon

0.08–1.21 mmol/g
303

(Inacio et al. 2001)
(Seo et al. 2015)

Chlorophenols Multi-walled carbon nanotubes -OH
Single-walled carbon nanotubes
Multi-walled carbon nanotubes -COOH
powdered activated carbon
Granular Activated Carbon
Filter Coal
Pine
Hardwood

65
84
65
81%
294–467
7–7.5
3.2–7
3.5–7.4

(Ding et al. 2016)
(Ding et al. 2016)
(Ding et al. 2016)
(Zhou et al. 2011)
(Hossain &McLaughlan 2012)
(Hossain &McLaughlan 2012)
(Hossain &McLaughlan 2012)
(Hossain &McLaughlan 2012)

Dimethyl phthalate Single wall carbon nanotubes
Activated Carbon-Cloth
α-Cyclodextrin
β-Cyclodextrin

148
2.25
2.76
1.8

(Wang et al. 2010)
(Ayranci &Bayram 2005)
(Chen et al. 2007)
(Murai et al. 1998)

Diethyl phthalate Activated sludge
Activated Carbon-Cloth
Extracellular polymeric substances

0.73
5.77
14.3

(Fang &Zheng 2004)
(Ayranci &Bayram 2005)
(Fang &Zheng 2004)

Dibutyl phthalate Activated sludge
Extracellular polymeric substances
alkylbenzene-functionalized

17.6
10.6
184.9

(Fang &Zheng 2004)
(Fang &Zheng 2004)
(Zhang et al. 2018a)

2,4-Dichlorophenoxy-acetic acid (2,4-D) Activated carbon
Zeolite USY
Granulated activated carbon

286
256
182

(Sarker et al. 2017)
(Sarker et al. 2017)
(Salman &Hameed 2010)

Organic dyes
Rhodamine -B Jack fruit peel activated carbon

Tapioca peel activated carbon
Sodium Montmorillonite

85.9%
88.2%
42.19

(Sivamani &Leena 2009)
(Inbaraj &Sulochana 2006)
(Selvam et al. 2008)
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mechanochemical synthesis), and the absence of additional 
driving force (mainly π–π stackings).

Hence, there are many challenges in the application of 
COFs for water treatment. Some of these challenges include 
1) the stability of COFs in acidic, basic conditions, real, 
synthetic water under, liquid systems and air exposures, 
(Existing studies discussed the effect of pH, temperature, 
concentration- but only a few consider real water investiga-
tions such as tap water, and river water (generally ranging 
from ng  L−1to μg  L−1), or even a mixture of them, 2) The 
safety of materials, the synthetic conditions (preferably the 
nontoxic conditions) are essential for industrial applications 
in real water treatment, 3) high-cost of synthetic materials, 
4) difficulty in recyclability and reusability, for instance, 
most research studies only consider the regeneration for 
short-term use while the long-term use was neglected, 5) 
Moreover, the removal of organic contaminants is still lim-
ited. For example, the simultaneous adsorption and degrada-
tion of pollutants by COFs should be studied, 6) Due to the 
uncertain relationship between the structure, performance, 
and mechanism of COF materials. It is highly recommended 
to calculate the in situ DFT and EXAFS, XPS, XRD, and 
other advanced spectroscopic techniques to detect the reac-
tion process to distinguish reactive intermediates from the 

active site. Overall, these problems should be considered 
in future studies. We also anticipate the synthesis of a wide 
range of COF materials which will increase its depth of 
application in environmental remediation.

Abbreviations

COFs covalent organic 
frameworks

PAEs phthalic acid esters

2D two-dimensional PUHs phenyl urea herbi-
cides

3D three-dimen-
sional

EDCs endocrine disrup-
tor chemicals

MOFs metal–organic 
frameworks

Bus benzoylurea insec-
ticides

MO methyl orange RhB rhodamine B
MB methyl blue CV crystal violet
AG acid green 25 DMPD N, N-Dimethyl-

P-Phenylenedi-
amine dihydro-
chloride

DFBM direct fast brown 
M

BG brilliant green

IC indigo carmine MEB methylene blue
AR-27 acid red 27 BEN benzene

Table 6  (continued)

Organic contaminants Adsorbent Qmax, mg  g−1 References

Crystal violet CV Cd-MOF
Anionic zeolite-MOF
Fe-MOF
Zwitterionic polymer hydrogels
Magnetite/silica/pectin NPs
Zero-valent iron

221
270
812
13.5
125
172

(Chand et al. 2017)
(Shen et al. 2016)
(Sarker et al. 2019)
(Rehman et al. 2019)
(Attallah et al. 2016)
(Liu et al. 2018a)

Methyl orange Activated carbon 11.2 (Haque et al. 2011)
Methylene Blue ZJU-24-MOF

H3PW12O40 ⊂ ZIF-8 (BIT-1)
Amino-MIL-101(Al)
Nitrogen-doped porous carbon nanosheets-10
Holey graphene nanosheets
Ordered mesoporous carbon
Porous Carbon sheets
Triptycene-based hyper-cross-linked polymer 

sponge
1,4-dicyanobenzene polymer DCB2

902
810
762
962
269
758
769
330
351

(Zhang et al. 2014)
(Li et al. 2014)
(Haque et al. 2014)
(Gong et al. 2016)
(Xing et al. 2014)
(Zhuang et al. 2009)
(Gong et al. 2015)
(Zhang et al. 2015)
(Kuhn et al. 2008)

Industrial organic contaminants
Catechol Granular activated carbon

Water-compatible hyper crosslinked resin HJ-1
Hyper cross-linked Polymers
Waste Fe (III) = Cr (III) Hydroxide

100
99
55
4

(Suresh et al. 2011)
(Huang et al. 2009)
(Sun et al. 2005)
(Namasivayam et al. 2004)

Phenol Activated carbon
Activated carbon fiber (ACF)
MIL-53(Cr)
Polyacrylonitrile /activated carbon

293
110
267
77

(Girods et al. 2009)
(Liu et al. 2010)
(Maes et al. 2011)
(Laszlo et al. 2003)

p-Nitrophenol Silica beads
Nanocrystalline hydroxyapatite
Bagasse fly ash

116
8.9
8.3

(Phan et al. 2000)
(Wei et al. 2010)
(Dhaka et al. 2019)
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Abbreviations

PPCPs pharmaceutical, 
personal care 
products

PHOL phenol

STPs sewage treatment 
plants

AN aniline

WWTPs wastewater treat-
ment plants

BS benzenesulfonate

AOPs advanced oxida-
tion processes

NB nitrobenzene

SMZ sulfamethoxazole DNB 1,3-Dinitrobenzene
SIZ sulfafurazole TNB 1,3,5-Trinitroben-

zene
SMT sulfamethazine MDNP 4-Ethyl-2,6-Dini-

trophenol
ENX enrofloxacin NAPH Naphthalene
DAN danofloxacin 2-NAOL 2-Naphthol
ORB orbifloxacin 1-NALA 1-Naphtha-

lenamine
OFL ofloxacin 2-NS 2-Naphthalenesul-

fonate
ENO enoxacin EDA Electron-donor–

acceptor
CIP ciprofloxacin BPA Bisphenol A
IBU ibuprofen BPB Bisphenol B
DS diclofenac 

sodium
BPC Bisphenol C

KT ketoprofen PFAS polyfluorinated 
alkyl substances

IDM indomethacin PFOA perfluorooctanoic 
acid

GO graphene oxide PFO perfluorooctane 
sulfonate

NPX naproxen GenX ammonium 
perfluoro—2 pro-
poxypropionate

ACE acetaminophen AFFF film-forming foams
FQs fluoroquinolones
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