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Abstract
The construction of cascade reservoirs on the Lancang River (the upper Mekong) has an important influence on the distribu-
tion and accumulation of heavy metals. Heavy metal contents in porewater provide vital information about their bioavail-
ability, studies on this aspect are rare until now. In this study, sediment cores were collected from four adjacent cascade 
reservoirs in the upper Mekong River to study the distribution, potential sources, diffusive fluxes and toxicity of heavy metals 
in porewater. The findings indicated that the average contents of Mn, Fe, As, Ni, Cu, Zn, Cd, and Pb in the sediment porewa-
ter were 6442, 644, 11.50, 2.62, 1.23, 3.95, 0.031, and 0.24 µg/L, respectively; these contents varied as the sediment depth 
increased. Correlation analysis and principal component analysis showed that Cu, Zn, Cd and Pb were mainly associated 
with anthropogenic sources, As, Mn and Fe were primarily affected by natural inputs, and Ni was affected by a combination 
of natural and anthropogenic effects. The diffusive fluxes of Mn, Fe, As, Ni, Cu, Zn, Cd, and Pb in the cascade reservoirs of 
the Lancang River were 919 – 35,022, 2.12 – 2881, 0.17 – 750, 0.71 – 7.70, 2.30 – 31.18, (-3.35) – 6.40, 0.06 – 0.54, and 
(-0.52) – 4.08 µg/(m2 day), respectively. The results of toxic units suggested that the contamination and toxicity of heavy 
metals in porewater were not serious. Overall, in the cascade reservoirs, the content and toxicity of heavy metals in porewa-
ter of the upstream reservoirs were higher than that of the downstream reservoirs. The operation of the cascade reservoirs 
enabled greater accumulation of contaminants in sediments of the upstream reservoirs. This research gives strong support 
for the prevention of heavy metal contamination and the sustainability of water resources under the running condition of 
cascade reservoirs on such a large international river (the Lancang-Mekong River).
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Introduction

Heavy metal pollution is a serious threat to aquatic ecology 
and has become a worldwide concern due to its toxicity, 
non-biodegradability, and bio-accumulation (Xu et al., 2019; 
Zeng et al., 2020). Most of the heavy metals discharged into 
aquatic environment are adsorbed on suspended particulates 
and eventually deposit in the sediments (Palma et al., 2015). 
However, when physical or biochemical conditions change, 
these metals in sediments may be re-dissolved into the pore-
water from where they can enter the overlying water column 
through diffusion (Blasco et al., 2000; Sullivan and Taylor, 
2003). This subsequent secondary pollution will result in 
water quality degradation and pose a serious threat to the 
ecosystem (Wang et al., 2016; Li et al., 2020).

Recently, researchers came to realized that the heavy 
metal properties of contaminated sediment cannot directly 
reflect the bioavailability and toxicity characteristics of 
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sediment (Tang et al., 2015, 2016; Lei et al., 2016), whereas 
the biogeochemical processes and bioavailabilities of toxic 
metals at sediment–water interfaces were strongly influenced 
by metal distributions and mobilities in porewater (Zhu 
et al., 2016). Moreover, porewater composition may be the 
most sensitive indicator of the type and extent of the reaction 
between contaminated sediment and the aqueous phase that 
contacts it (Wu et al., 2016). Thus, metal concentrations in 
porewater have been showed to be an effective predictor of 
toxic effect (Tang et al., 2016; Cleveland et al., 2017).

On the main stream of the Lancang River (the upper 
Mekong River), a chain of six cascade hydroelectric dams 
had been constructed as of 2016 (Fan et al., 2015; Shi et al., 
2020), and another 17 dams in the river will be completed 
over the next few decades (Chen et al., 2019). There is no 
doubt that the cascade dams on the Lancang River could 
trap a portion of sediment delivered downstream (Lu and 
Siew, 2006; Wang et al., 2012). Recent researches estimated 
that the trapping efficiency of the existed cascade dam res-
ervoirs in the Lancang River might reach to 74–94% (Liu 
et al., 2015; Binh et al., 2020). Consequently, large amount 
of sediment has been stored in these dam reservoirs (Fan 
et al., 2015). In addition, the sediments retained in these res-
ervoirs were finer and rich in clay minerals compared with 
the downstream sediments (Guo et al., 2020). Therefore, it 
provides great convenience for heavy metals to accumulate 
in these reservoirs. Several researches have reported heavy 
metal contamination in sediments of these reservoirs in the 
Lancang River (Wang et al., 2012; Zhao et al., 2013; Li 
et al., 2019). However, until now, few studies have focused 
on the fluxes of heavy metal released from sediments, and 
their concentration and toxicity in porewater in the cascade 
reservoirs. This information is necessary to understand the 
sources of heavy metals in reservoir water and their toxic 
risks to the environment and aquatic organisms.

Therefore, in this study, four cascade reservoirs in the 
Lancang River were selected to (1) investigate heavy metal 
distribution in porewater profiles, (2) distinguish their poten-
tial sources in porewater, (3) examine the diffusive fluxes 
of metals at the sediment–water interface (SWI), and (4) 
evaluate the toxicity of heavy metals in the interstitial water.

Materials and methods

Study area

The Lancang River is the upper reach of the Mekong River 
which is one of the world’s famous international rivers. It is 
a large river in China with a length of 2153 km, ranking the 
5th among all rivers in China. Originating from the northern 
foot of Tanggula Mountain in the south of Qinghai Province, 
the Lancang River flows through Tibet Plateau and Yunnan 

Province before flowing to foreign countries (Myanmar, 
Laos, Thailand, Cambodia and Vietnam) and becoming the 
Mekong River. The basin in China covers an area of 168,000 
 km2 (Guan et al., 1984). The river head is 5244 m above sea 
level (Fan et al., 2015). With the large descending elevation 
(1780 m) in Yunnan Province, the Lancang River produces 
plentiful hydraulic resources there, which is conducive to 
hydropower cascade development (Liu et al., 2015; Chen 
et al., 2019). The studied four cascade reservoirs are located 
in the middle and lower reaches of the Lancang River, which 
are the Manwan (MW) Reservoir, Dachaoshan (DCS) Res-
ervoir, Nuozhadu (NZD) Reservoir, and Jinghong (JH) Res-
ervoir, respectively (Fig. 1). The detailed information about 
these reservoirs was displayed in Table S1.

Sampling and analytical methods

Sediment cores were collected using a 100 cm long gravity 
corer with 6 cm internal diameter in April 2017, and the 
sampling sites are displayed in Fig. 1. The overlying water 
was collected near the SWI with a syringe and a silicone 
tube. Then, cores were sliced at 1-cm interval in the field, 
stored in sealed sterile centrifuge tubes and kept refriger-
ated at 4 °C in dark during transport to the laboratory. To 
obtain porewater, sediments were centrifuged at a speed of 
4000 r/min for 30 min (Bufflap and Allen, 1995; Cleveland 
et al., 2017). The overlying water and porewater were fil-
tered through cellulose membranes (0.45 μm), acidified to 
2%  HNO3, and stored at 4 °C until analysis.

The concentrations of Mn, Fe, As, Ni, Cu, Zn, Cd, and Pb 
were measured by inductively coupled plasma-mass spec-
trometry (ICP-MS, Agilent, 7700x, USA). Major cations 
were analyzed by inductively coupled plasma-optical emis-
sion spectroscopy (ICP-OES, iCAP6500, Thermo Scientific, 
Germany) (Zhao et al., 2020).

Diffusive fluxes

The diffusive fluxes of heavy metals across the SWI were 
estimated using Fick’s first law (Eq. (1)) (Berner, 1984).

where J is the metal flux and � is the porosity of surface 
sediment and can be calculated by the dry weight and the 
wet weight of the sediment (Tang et al., 2016). (dC∕dZ)z=0 
is the metal concentration gradient at the SWI. Ds is the 
sediment diffusion coefficient of metals which is calculated 
as the following equations (Ullman and Sandstrom, 1987):

(1)J = φ ⋅ Ds ⋅ (dC∕dZ)z=0

(2)Ds = �D0(� ≤ 0.7)

(3)Ds = 𝜑
2
D0(𝜑 > 0.7)
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where D0 is metal diffusion coefficient in free solution and 
values of D0 for each metal were adopted from Li and Greg-
ory (1974).

Porewater toxicity analysis

To examine the toxicity level of metals in porewater, the 
interstitial water criteria toxic units (IWCTU) was adopted 
(Liu et al., 1999; Lourino-Cabana et al., 2011):

(4)IWCTUMe
=

[

Me

]

i,w

FCVMe

where 
[

Me

]

i,w
 is the heavy metal concentration in porewate, 

and FCVMe
 represents the final chronic value of the metal by 

hardness. The calculation method for FCVMe
 was shown in 

Table S2. If the IWCTUMe
 is greater than 1, it indicates a risk 

of toxicity to aquatic organisms (Zhu et al., 2016). The NI 
(Nemeraw index) was calculated to reflect porewater quality. 
The NI was categorized into five levels: no impact (NI < 1), 
slight impact (1 < NI < 2), moderate impact (2 < NI < 3), 
strong impact (3 < NI < 5), and serious impact (NI > 5) (Tang 
et al., 2016).

(5)NI =

[
(

IWCTUmax

)2
−
(

IWCTUmean

)2

2

]1∕2

Fig. 1  Locations of the sam-
pling sites in cascade reservoirs 
of the Lancang River
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Statistical analysis

Correlation analysis and principal component analysis were 
performed to check the significant relationships among 
heavy metals and identify their potential sources for this 
study. The independent sample t test was applied for two-
group comparisons. The above analyses were conducted 
using SPSS 21.0.

Results and discussion

Distribution of heavy metals in porewater

Heavy metal concentrations in overlying water and 
porewater exhibited obvious spatial variation (Fig. 2; 
Table S4). The porewater in the MW Reservoir contained 

the highest average concentrations of Cu and Cd, and the 
porewater in the DCS Reservoir contained the highest 
average concentrations of Ni, Zn and Pb, whereas the 
mean concentrations of most of the heavy metals in pore-
water were lowest in the JH Reservoir (the lower reaches). 
Due to the existence of the cascade reservoirs, particles 
containing organic matter were preferentially deposited 
in the upstream reservoirs (Fig. S1). Organic matter usu-
ally has a strong affinity for heavy metals, resulting in 
a stronger capacity of upstream reservoir sediments to 
retain these metals (Perez-Esteban et al., 2014). In addi-
tion, heavy metal concentrations in porewater followed 
the order of Mn > Fe > As > Zn > Ni > Cu > Pb > Cd at 
each of the four reservoirs. Due to dilution and settling 
processes, the lowest concentrations of heavy metals in 
the overlying water were usually found in the downstream 
regions (Varol, 2019). However, the highest contents of 

Fig. 2  Heavy metal concentra-
tions in overlying water and 
porewater from the MW Res-
ervoir, the DCS Reservoir, the 
NZD Reservoir and the JH res-
ervoir (the dashed lines denote 
the sediment–water interface)
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Ni and Pb in the overlying water were observed in the 
lower reaches (the JH Reservoir) indicating significant 
local inputs existed.

The distribution of heavy metals in porewater varied 
vertically (Fig. 2). The porewater profiles of Fe and As 
showed a certain degree of similarity at each sampling 
site. Moreover, significant positive correlations existed 
between Fe and As in porewater from the MW Reser-
voir (r2 = 0.60, p < 0.01), the DCS Reservoir (r2 = 0.56, 
p < 0.01), the NZD Reservoir (r2 = 0.65, p < 0.001), and 
the JH Reservoir (r2 = 0.89, p < 0.001). These results sug-
gested that the solubility and migration of arsenic were 
highly controlled by Fe oxyhydroxides. Furthermore, the 
poor relationship between As and Mn in porewater of 
these reservoirs indicated that Fe oxyhydroxides played 
a more important role than Mn oxyhydroxides in con-
trolling As solubility which was consistent with results 
of other researches (Couture et al., 2010a, 2010b; Toevs 
et al., 2008). Previous studies revealed that Fe could be a 
good indicator to reflect sediment redox (oxic, sub-oxic, 
or anoxic conditions) (Campanha et al., 2012; Lei et al., 
2016). In the JH Reservoir, the contents of Fe and As in 
interstitial water generally increased with depth before 
reaching peaks and then decreased. Their lower contents 
in the top layers might represent the oxic zone where As 
was absorbed or co-precipitated with Fe oxyhydroxides 
(Nikolaidis et al., 2004; Carraro et al., 2015). The peaks 
of Fe and As in the porewater profile might indicate the 
sub-oxic zone where partial Fe oxyhydroxides contain-
ing As reductively dissolved and released them to pore-
water causing the elevated concentrations of Fe and As 
(Keimowitz et al., 2005; Couture et al., 2010a). Similar 
phenomena have also been discovered by other research-
ers (Couture et al., 2010a; Deng et al., 2014; Sun et al., 
2016). In general, the distribution patterns of most met-
als (Ni, Cu, Zn, Cd, and Pb) in the interstitial water were 
not significantly regular, although some enrichment or 
deficiency existed at certain discrete layers.

Overall, the mean concentrations of Mn, Fe, As, Ni, 
Cu, Zn, Cd, and Pb in the sediment porewater from the 
cascade reservoirs of the Lancang River were 6442, 644, 
11.50, 2.62, 1.23, 3.95, 0.031, and 0.24 µg/L, respectively. 
The mean concentrations of Mn, Fe, As, Ni, Cu, Zn, Cd, 
and Pb in the overlying water from the cascade reservoirs 
of Lancang River were 19.18, 4.05, 4.10, 0.09, 0.42, 4.10, 
0.021, and 0.10 µg/L, respectively. The contents of all the 
studied metals in overlying water and porewater met the 
Chinese Surface Water Environmental Quality Standard, 
except that the concentrations of Mn and Fe in porewater 
were higher than the standard (100 and 300 µg/L for Mn 
and Fe, respectively; China EPA, 2002).

Source identification

Correlation analysis and principal component analysis were 
conducted to explore the potential sources of studied metals 
in porewater (Chatterjee et al., 2007; Bai et al., 2016).

Correlation analysis

The CA was carried out to identify relationships among the 
eight metals (Fig. 3). Generally, significantly positive cor-
relations among metals might reflect their similar sources, 
controlling factors, and transport behavior (Zeng et al., 
2020). In this study, a significantly positive correlation was 
found between Cu and Cd (R = 0.76, p < 0.01), suggesting 
that they possibly shared the same source. Positive correla-
tions existed among Mn, Fe, and As (p < 0.01), but they were 
relatively weakly correlated with other metals. Moreover, 
negative correlations were observed between Cu and Mn, Zn 
and Mn, Cd and Mn, Pb and Mn, and Cu and Fe, signifying 
that Mn, Fe, and As might originate from a different source 
relative to other metals. Cu, Zn, Cd, and Pb exhibited posi-
tive correlations among them (Fig. 3).

Principal component analysis

The PCA was used to further explore the possible sources 
of the selected metals in porewater. The PCA identified 
three principal components (PCs) with eigenvalues exceed-
ing 1, explaining 67.2% of the total variance (Table 1). 
PC1 (Cu, Cd, Pb and Zn), PC2 (As, Fe and Mn), and PC3 
(Ni) account for 30.91%, 20.60%, and 15.68% of the total 

Fig. 3  Correlation coefficients of metals in sediment porewater in 
cascade reservoirs of the Lancang River. **Significant at the 0.01 
level. *Significant at the 0.05 level
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variance, respectively. Fe and Mn were commonly applied 
as the geochemical reference elements (Guan et al., 2018; 
Sun et al., 2018; Varol, 2019) and were strongly correlated 
with As (p < 0.01) (Fig. 3), indicating that PC2 was primar-
ily affected by natural inputs. Cu, Zn, Cd and Pb had high 
loadings on PC1 and were positively correlated with each 

other. Combined with the negative correlations between Cu 
and Mn, Zn and Mn, Cd and Mn, Pb and Mn, and Cu and Fe 
(Fig. 3), it could be inferred that PC1 is mainly associated 
with anthropogenic sources. This could also be supported 
by former researches (Geng et al., 2015; Zhu et al., 2016; 
Zeng et al., 2020); namely, Cu, Zn, Cd, and Pb were the 
typical anthropogenic pollutants from agricultural runoff and 
industrial sewage. Ni was the main component of PC3. Con-
sidering the positive correlations of Ni with Mn, Fe, Zn, and 
Pb (Fig. 3), and the low concentrations of Ni in porewater, 
thus, PC3 was defined as being affected by a combination of 
natural and anthropogenic effects.

Diffusive fluxes of metals at the SWI

The diffusive fluxes of the selected metals showed signifi-
cant variations in the four reservoirs (Table 2). Heavy metal 
fluxes at the SWI can effectively indicate whether sediment 
is a source or sink for pollutants in the aquatic systems (Lei 
et al., 2016; Tang et al., 2016). The diffusive fluxes of Mn, 
Fe, As, Ni, Cu, Zn, Cd, and Pb in the cascade reservoirs 

Table 1  Factor loadings for varimax rotated PCA of heavy metals

Elements PC1 PC2 PC3

Mn  − 0.546 0.385 0.287
Fe  − 0.062 0.850 0.018
As 0.049 0.857 0.025
Ni 0.016 0.017 0.929
Cu 0.829  − 0.115  − 0.094
Zn 0.594 0.164 0.389
Cd 0.829 0.044 0.019
Pb 0.609  − 0.008 0.384
% of variance 30.91 20.60 15.68
% of cumulative 30.91 51.50 67.18

Table 2  Diffusive fluxes (µg  (m2 day)−1) of heavy metals at the sediment–water interface in cascade reservoirs of the Lancang River and other 
lakes and reservoirs worldwide

Negative fluxes are directed into sediment from overlying water column
ND no data
a Affected by acid mine drainage

Location Mn Fe As Ni Cu Zn Cd Pb Reference

MW Reser-
voir

14,424 45.68 53.89 7.23 31.18 6.40 0.54 4.08 This study

DCS Reser-
voir

7437 36.96 6.59 4.37 5.78 1.88 0.25 0.24 This study

NZD Reser-
voir

35,021 2881 750 7.70 2.30  − 2.95 0.17 0.45 This study

JH Reservoir 919 2.12 0.17 0.71 9.62  − 3.35 0.06  − 0.52 This study
Aha Res-

ervoir 
(China)

ND ND 25.48 to 
54.71

2.74 to 7.95  − 0.27 to 
0.27

 − 36.99 
to − 32.33

ND 0.27 to 0.55 Xiao et al. 
(2019)

Shahe 
Reservoir 
(China)

ND ND 108.4  − 35.67  − 5.11  − 20.89 ND Yuan et al. 
(2014)

Taihu Lake 
(China)

ND ND ND  − 1.74 to 
28.9

6.95–54.3  − 14.8 to 
12.2

ND 2.62 to 19.2 Lei et al. 
(2016)

Chaohu Lake 
(China)

3360 ND 80 0.77 ND ND  − 0.02  − 0.24 Tang et al. 
(2015) 
and Wen 
et al. 
(2012)

Lake Hope 
(USA)a

249 to 559 4.47 to 159 ND  − 0.24 to 
0.04

 − 0.11 to 
0.65

 − 0.01 to 
1.35

ND 0.04 to 0.20 Lopez et al. 
(2010)

Dianchi Lake 
(China)

ND  − 17.02 to 
7.95

 − 3.09 to 
5.11

 − 19.24 to 
1.66

 − 36.70 to 
3.83

 − 290 to 
10.08

 − 1.22 
to − 0.13

 − 50.47 to 
2.82

Bao et al. 
(2008)

Daya Bay 
(China)

2619 872 ND 2.54 1.64 14.51 0.06 4.79 Ni et al. 
(2017)
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of the Lancang River were 919–35,022  µg/(m2 day), 
2.12–2881 µg/(m2 day), 0.17–750 µg/(m2 day), 0.71–7.70 µg/
(m2 day), 2.30–31.18 µg/(m2 day), (− 3.35)–6.40 µg/(m2 
day), 0.06–0.54 µg/(m2 day), and (− 0.52)–4.08 µg/(m2 day), 
respectively. The fluxes of all metals in the four reservoirs 
were positive (with the exception of Zn from the ZND and 
the JH, and Pb from the JH), suggesting export from sedi-
ment to overlying water and that sediment was generally 
the source of heavy metals. Human activities and the weak 
hydrodynamic conditions after impoundment caused the 
accumulation of heavy metals in sediment. Among these 
metals, the diffusive flux of Mn was highest, followed by 
Fe and As, which might negatively affect the quality of 
overlying water and pose health risks. The fluxes of Mn, 
Fe, and As in the NZD Reservoir were considerably higher 
than those in other reservoirs, which was ascribed to their 
peak concentrations in the top layer of porewater caused by 
the anoxic environment at the SWI of the NZD Reservoir. 
The highest fluxes of Cu, Zn, Cd, and Pb were found in the 
MW Reservoir signifying the greatest endogenous release of 
these metals in the upper reaches of the cascade reservoirs, 
whereas the lowest fluxes of all the studied metals except for 
Cu were observed in the JH Reservoir which was the last one 
of the cascade reservoirs. In addition, the negative fluxes of 
Zn and Pb in the JH Reservoir represented that these two 
metals diffused from overlying water to sediment. Combin-
ing the results of 3.1, it could be inferred that although there 
was Pb pollution in the JH Reservoir, sediment was able to 
scavenge some Pb in the overlying water of the JH Reservoir.

The fluxes of metals in this study were comparable with 
those observed elsewhere (Table 2). The fluxes of Mn in 
the cascade reservoirs of the Lancang River (except that in 
the JH Reservoir) were much higher than those reported in 
other places (such as the Chaohu Lake, the Lake Hope, and 
the Daya Bay). Fe and As fluxes in this study were similar 
to other regions (e.g. the Aha Reservoir, the Shahe Res-
ervoir, the Chaohu Lake, the Dianchi Lake, and the Lake 
Hope), except their extremely high fluxes in the NZD Res-
ervoir. Diffusive fluxes of Ni, Zn, and Pb were compared 
with all the areas listed. However, the fluxes of Cu and 
Cd in this study were higher than all of the other regions 
(except for the Taihu Lake) which were polluted by heavy 
metals in different degree, suggesting that Cu and Cd from 
anthropogenic sources should be paid more attention in this 

region. Actually, the diffusion fluxes might be overestimated 
because dissolved heavy metals in porewater would be par-
tially absorbed by Fe/Mn oxyhydroxides at the SWI in the 
process of upward diffusion (Deng et al., 2014; Tang et al., 
2016).

Toxic units

Heavy metal concentration in sediment porewater can 
reflect their bioavailability and the changing trend of met-
als in overlying water (Burgess et al., 2013; Ji et al., 2018). 
Therefore, it has replaced sediment as an effective predictor 
of toxic effects (Tang et al., 2016). The IWCTU was applied 
to analyze the toxicity level of a single metal in porewater, 
and the NI was used to evaluate the combined effects of met-
als. Results showed that the IWCTU values of each metal 
(Ni, Cu, Zn, Cd, and Pb) were less than 1 and the NI values 
were also low (0.05–0.10) in all the four reservoirs from the 
Lancang River (Table 3). These results indicated that these 
metals in porewater showed no toxicity risks for biota in the 
study areas. However, this method does not include assess-
ments for Mn, Fe, and As. Considering the strong release 
fluxes and high concentrations of Mn, Fe, and As in pore-
water, especially in the NZD Reservoir, their potential risks 
in porewater should be taken seriously. It is interesting to 
note that the values of 

∑

IWCTU
i
 and NI in porewater from 

the upstream reservoirs (the MW Reservoir and the DCS 
Reservoir) were higher than those from the downstream res-
ervoirs (the NZD Reservoir and the JH Reservoir; p < 0.01). 
It suggested that the operation of the cascade reservoirs ena-
bled greater accumulation of contaminants in sediments of 
upstream reservoirs, which made the porewater of upstream 
reservoirs exhibit relatively stronger toxicity.

The results of toxic units suggested that the heavy metal 
contamination and toxicity in porewater were not serious. 
However, Deng et al. (2017) reported that Cd was moder-
ately polluted in the sediment of the MW Reservoir and 
the DCS Reservoir, and Wang et al. (2012) indicated that 
Cd, Cu, Pb, and Zn were slightly enriched in sediment 
from the MW reservoir and could cause adverse effect. 
This seeming contradiction revealed that the risks of these 
metals releasing from the sediment to the water column 
were pretty low, and high total contents of heavy met-
als in contaminated sediment might not result in a severe 

Table 3  The IWCTU and NI 
values for heavy metals in 
porewater from the cascade 
reservoirs of the Lancang River

Reservoir IWCTUi

∑

IWCTU
i

NI

Ni Cu Zn Cd Pb

MW 0.03 ± 0.01 0.10 ± 0.16 0.03 ± 0.02 0.03 ± 0.04 0.06 ± 0.06 0.24 ± 0.25 0.09 ± 0.11
DCS 0.04 ± 0.01 0.09 ± 0.06 0.03 ± 0.02 0.02 ± 0.02 0.10 ± 0.09 0.28 ± 0.15 0.10 ± 0.07
NZD 0.04 ± 0.01 0.06 ± 0.05 0.02 ± 0.01 0.02 ± 0.02 0.04 ± 0.04 0.17 ± 0.10 0.06 ± 0.04
JH 0.03 ± 0.01 0.03 ± 0.08 0.02 ± 0.01 0.01 ± 0.01 0.03 ± 0.03 0.12 ± 0.09 0.05 ± 0.05
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consequence. This was further supported by the fact that 
contents of Ni, Cu, Zn, Cd and Pb in porewater were all 
below the USEPA chronic water quality criteria of 8.2, 3.1, 
81, 8.8, and 8.1 μg/L, respectively (USEPA 2009). Gener-
ally, these metals showed relatively low diffusive fluxes 
from the sediment porewater to overlying water in most 
sites, suggesting that the release risk of these elements 
from sediment in the study area was not high. The mobility 
and transformation processes might be controlled by many 
factors, such as hydrological conditions, hardness, pH, 
redox potential, and the mineralization of organic matter 
(Lourino-Cabana et al., 2011; Lei et al., 2016). Therefore, 
porewater is very essential to comprehensively evaluate 
heavy metal pollution in sediments of aquatic ecosystem.

Conclusion

Despite its irreplaceable roles in the cycling of trace met-
als in aquatic ecosystems, porewater was little studied. 
Thus, the contents, diffusive fluxes, potential sources, and 
toxicity of metals in porewater were examined in the cas-
cade reservoirs of the Lancang River. The concentrations 
of most of the heavy metals in porewater were lowest in 
the downstream reservoir. With the exception of Mn and 
Fe in porewater, the contents of heavy metals in overlying 
water and porewater met the Chinese Surface Water Envi-
ronmental Quality Standard. Anthropogenic input was the 
main source of Cu, Zn, Cd, and Pb in sediment porewater, 
while As, Fe, and Mn were primarily affected by natu-
ral processes, and Ni was associated with mixed sources. 
Almost all the metals had positive diffusive fluxes from the 
interstitial water to the overlying water column in the four 
reservoirs suggesting that porewater was a direct source 
of heavy metals to the overlying water. According to the 
results of toxic units, the contamination and toxicity of Ni, 
Cu, Zn, Cd, and Pb in porewater were not serious. Consid-
ering the strong release fluxes and high concentrations of 
Mn, Fe, and As in porewater, their potential risks should 
be given a concern. This study and subsequent research 
would contribute to the prevention of heavy metal pollu-
tion and provide further powerful support for the sustain-
able development planning of the Lancang-Mekong water 
resources.
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