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Abstract
Microbial sulfate reduction, a vital mechanism for microorganisms living in anaerobic, sulfate-rich environments, is an 
essential aspect of the sulfur biogeochemical cycle. However, there has been no detailed investigation of the diversity and 
biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits. To elucidate this 
issue, soil samples from representative abandoned realgar deposits were collected. Microcosm assays illustrated that all 
three samples (2–1, 2–2, and 2–3) displayed efficient sulfate and As(V)-respiring activities. Furthermore, a total of 28 novel 
sequence variants of dissimilatory sulfite reductase genes and 2 new families of dsrAB genes were successfully identified. A 
novel dissimilatory sulfate-reducing bacterium, Desulfotomaculum sp. JL1, was also isolated from soils, and can efficiently 
respiratory reduce As(V) and sulfate in 4 and 5 days, respectively. JL1 can promote the generation of yellow precipitates in 
the presence of multiple electron acceptors (both contain sulfate and As(V) in the cultures), which indicated the biogenesis 
contribution of sulfate-reducing bacteria to the realgar mine. Moreover, this area had unique microbial communities; the 
most abundant populations belonged to the phyla Proteobacteria, Chloroflexi, and Acidobacteriota, which were attributed 
to the unique geochemistry characteristics, such as total organic carbon, total As,  NO3

−, and  SO4
2−. The results of this study 

provide new insight into the diversity and biogenesis contributions of sulfate-reducing bacteria in arsenic-contaminated 
soils from realgar deposits.
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Introduction

Microbial-catalyzed sulfate reduction can be performed 
via assimilatory and dissimilatory metabolisms (Mari-
etou et al. 2018; Rodrigues et al. 2019). In the assimila-
tory process, sulfate reduction is incorporated to synthesize 
sulfur-containing cell components. Second, sulfate-reducing 
organisms can utilize sulfate as a terminal electron accep-
tor through anaerobic respiration, along with organic com-
pounds (formate, propionate, lactate, pyruvate, ethanol) or 

 H2, methane, and even phosphite as electron donors (Kushk-
evych et al. 2018). From this electron transport chain, a con-
spicuous final product, hydrogen sulfide  (H2S), is produced, 
which has been widely recognized as a poisonous chemical 
with a characteristic odor. Sulfate-reducing microorganisms 
are widely distributed in different environments, including 
paddy soils, petroleum, oil reservoirs, soda lakes, marine 
sediments, acid mine drainage, and thermal springs (Bao 
et al. 2012; Yan et al. 2018). Several enzymes are involved 
in this sulfate reduction process, such as ATP-sulfurylase, 
adenylylsulfate reductase and dissimilatory sulfite reduc-
tase. Dissimilatory sulfite reductase (DsrAB protein) pro-
motes the conversion of sulfite to sulfide (Li et al. 2019a; 
Rodrigues et al., 2019). The dsrAB gene, which encodes 
the DsrAB protein, has widely detected a range of sulfate-
reducing bacteria (SRB) community structures, containing 
more than 20 different genera, such as Desulforibrio, Des-
ulfomonas, Desulfobulbus, Desulfobacter, Desulfococcus, 
Desulfosarcina, Desulfonema, Desulfotomaculum, and the 
genus Archaeoglobus within archaea (Guan et al. 2013; Lu 
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et al. 2017). Sulfate reduction mediated by microbes is often 
coupled to other interactions, such as fundamental biogeo-
chemical processes, oil biodeterioration and biocorrosion, 
food spoilage, bioremediation of heavy metals and biodegra-
dation of organic matter (George et al., 2008; Lai et al. 2020; 
Sheoran et al. 2010). Hence, the biotechnologies of SRB 
could also be utilized in a variety of environmental treat-
ments, such as microbial remediation of heavy metals in 
wastewater or contaminated soils, dichlorination of organo-
chlorines and repair of acid mine drainage (Hu et al. 2020; 
Shan et al. 2019; Zhang et al. 2016). However, previously 
published studies on the biogenesis contributions of SRB to 
the arsenic sulfate coexisting pollution system are limited 
(Fan et al. 2018; Kirk et al., 2004).

As the largest source of natural realgar ore reserves in Asia 
with over 1500 years of intensive exploiting histories, the Shi-
men Realgar Mine was completely out of production in 2011 
after a number of cases of As-poisoning (Tang et al., 2016). 
Large amounts of As-contaminated wastes, such as soils, water, 
air, plants, and animals have caused serious health risks to 
local residents. While previous studies have mainly focused on 
arsenic biogeochemistry cycles, such as As oxidation, reduc-
tion, and methylation, far too little attention has been given 
to the role of sulfur (Fan et al. 2018; Gao et al., 2017; Zhang 
et al. 2020). However, the fate of arsenic is influenced by abiotic 
or biological redox of sulfur, which can either mobilize or pre-
cipitate arsenic (Burton et al. 2013; Edwardson and Hollibaugh, 
2017; Zhu et al. 2017). Moreover, the soil of this mine also con-
tains a large amount of sulfur, which occupies 0.7–0.8% (Chen 
et al. 2017). Therefore, it is necessary to investigate the diversity 
and contribution of SRB in arsenic-contaminated soils.

In this context, the main issues addressed in this work are 
to (1) investigate the diversity and distribution of SRB in 
seriously arsenic-contaminated soils and (2) determine the 
ecological effect of SRB on the arsenic sulfate coexisting 
pollution system.

Materisls and methods

Sampling and geochemical analysis

Three soil samples were derived from the surface layer 
(0–20 cm) of an abandoned tailing realgar  (As4S4) mine area 
located in Baiyun village, Changde City, Hunan Province, 
China, in July 2020. The sites of the three samples (named 
2–1, 2–2, and 2–3) are presented in Table 1. After sampling, 
the soil samples (weighing 1.0 kg each) were carefully mixed, 
sealed, and stored in sterile polyethylene boxes (4 °C) and 
transported to the laboratory immediately. Certain soil samples 
were naturally air-dried, crushed, homogenized, and passed 
through a 2 mm nylon sieve for geochemical property analysis. 
Other soils were stored for subsequent batch microcosm assays 

(4 °C) and DNA extraction (− 20 °C) (Sun et al. 2016). Total 
As, soluble As, total organic carbon, and other characteriza-
tions were analyzed as described previously (Yang et al. 2018). 
Total soluble As(III) was detected using atomic fluorescence 
spectroscopy (AFS) (AFS-8510, Beijing). Soluble As(III) was 
separated using SupelClean™ (LC-SAX SPE-57017, Supelco, 
USA) from As(III) and As(V) to AFS measurements. Sulfate 
 (SO4

2−) was measured using sulfate-barium chromate spectro-
photometry (HJ/T 342–2007).

Determination of the sulfate and As(V)‑respiring 
activities of the microbial communities

To detect the sulfate respiring abilities, 1.5 g of each evenly 
mixed soil sample was added into serum bottles containing 
20 mL of deoxygenated and sterilized medium amended with 
5.5 mM sulfate. To detect the As(V)-respiring activities of the 
microbial communities from the realgar mine soils, 1.5 g of 
each sample was mixed with 10 mL of deoxygenated medium 
supplemented with 1.0 mM As(V) (Yan et al. 2018). The 
medium consisted of (per liter of dd water, pH 6.8) 1.0 g of 
 NH4Cl, 0.65 g of  KH2PO4, 0.05 g of  CaCl2, 3.5 g of sodium 
lactate, and 1.0 g of yeast extract. Duplicate controls were 
prepared by sterilized soils with the same reagents. All bot-
tles were incubated at 30 °C with moderate shaking. Approxi-
mately 1.0 mL of suspension was removed at an interval of one 
day for the measurement of soluble As(V), As(III), and sulfate 
(Blum et al. 2012; Burton et al. 2013).

DNA extraction and sequence analysis 
of dissimilatory sulfite reductase (dsrAB) genes 
from the soils

Total DNA was extracted from a 0.5 g soil sample using the 
FastDNA® SPIN kit (MP bio, USA) for soil following the 

Table 1  Geochemical parameters of the tailing soil samples

Parameters Soil samples

2–1 2–2 2–3

Location 29° 38′ 39″ 
111° 2′ 14″

29° 39′ 1″ 
111° 2′ 40″

29° 38′ 50″ 
111° 2′ 
20″

pH 6.72 6.84 7.01
TOC (g/kg) 30.30 7.66 4.80
Total As (mg/kg) 3865.11 832.38 4206.14
Soluble As (mg/kg) 183.27 1.06 379.88
SO4

2− (mg/kg) 90.70 73.54 117.05
NH4

+ (mg/kg) 2.16 2.01 1.84
NO3

− (mg/kg) 3.10 0.91 2.37
Zn (mg/kg) 178.50 197.17 199.66
Mn (g/kg) 0.88 0.93 0.65
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manufacturer’s protocol (Bao et al. 2021). The concentra-
tion and quality of extracted DNA were detected using a 
NanoDrop 2000 spectrophotometer. The DSRp2060F (5′-
CAA CAT CGT YCA YAC CCA GGG-3′) and DSR4R (5′-GTG 
TAR CAGTTDCCRCA-3′) primers were chosen to amplify 
the dsrAB genes with PCRs (Besaury et al. 2012; Geets 
et al. 2006). PCR conditions consisted of an initial dena-
turation step of 94 °C for 4 min, followed by 35 cycles of 
94 °C for 1 min, 55 °C for 1 min, and 72 °C for 1 min with a 
final extension at 72 °C for 10 min. Amplified PCR products 
were separated by 1.5% (w/v) agarose gel electrophoresis. 
DNA bands were cut out, and DNA was extracted and puri-
fied using a QIAquick Gel Extraction Kit, and then cloned 
into the pMD19-T vector for sequencing as described previ-
ously (Li et al. 2019a). The obtained DNA sequences were 
analyzed with the BLAST server and MEGA 6.0 software.

Isolation of a novel dissimilatory sulfate‑reducing 
strain from arsenic‑contaminated soils

A modified culture medium was applied in these microbial 
enrichment experiments. The medium used was the same as 
above, and 0.1 g of vitamin C (as an Eh regulator) and 1.2 g 
of Fe(NH4)2(SO4)26H2O (as an indicator) were added (Shan 
et al. 2019; Bao et al. 2012). Approximately 1.5 g of soil 
sample was added to 10.0 mL of anoxic sterile medium as 
described previously. Standard anaerobic incubations were 
performed at 30 °C for enrichment. When the color of the 
medium turned dark (the best proof of the positive growth 
of SRB), approximately 0.5 mL of culture was transferred 
into 10.0 mL of the same fresh medium for second-round 
enrichment. This step was repeated for several rounds. The 
enrichment culture was diluted to different gradient concen-
trations, and the agar shake tube technique was used to iso-
late single bacterial strains under strict anaerobic conditions 
(Dias et al. 2008).

Functional characterization of the novel cultivable 
isolate

Bacterial anaerobic functional characterization experiments 
were performed via the addition of different electron accep-
tors, such as As(V),  SO4

2− and combined electron accep-
tors of As(V) and  SO4

2−. JL1 cells  (1107/mL) were inocu-
lated into 10.0 mL of modified MMS medium containing 
10.0 mM lactate acting as the sole electron donor and 2.0 mM 
 SO4

2−, 1.5 mM As(V) or the same concentration of As(V) 
and  SO4

2− as described above. Strict anaerobic incubations 
were performed at 30 °C and briefly shaken once a day. At 
an interval of half day, approximately 0.5 mL of the culture 
mixture was taken for measuring the concentration of total 
As(V), As(III) and sulfate as described above.

Cloning, sequencing, and data analysis of bacterial 
16S rRNA and dsrAB genes

Genomic DNA was extracted using a simple boiling method 
described by Miyamoto. Briefly, several bacterial cells were 
collected into 1.0 mL centrifuge tubes, boiled at 100 °C for 
15 min, and centrifuged at 5000  min−1 for 2 min. The 16S 
rRNA gene was amplified and sequenced using the universal 
bacterial primer set 27F/1492R (Kim et al. 2020). The dsrAB 
genes of dissimilatory sulfite reductase proteins were cloned, 
sequenced and analyzed using the primer set DSRp2060/
DSR4R described above. Dendrogram analyses of the 
obtained. dsrAB genes and bacterial 16S rRNA gene sequence 
with 1,000 replicated bootstraps were constructed using the 
neighbor-joining method.

Determination of the microbial community 
structures

Total DNA of the soil sample was PCR amplified with the 
primer pair 341F/806R for the V3-V4 hypervariable regions of 
the 16S rRNA gene as described elsewhere (Li et al. 2019b). 
Then, high-throughput sequencing was performed on the 
MiSeq platform. The raw sequencing data was deposited to 
the Short Read Archive database at NCBI under accession 
number PRJNA784765.

Statistical analysis

Excel 2016 (Microsoft, USA), OriginPro 2020 (OriginLab, 
USA) IBM SPSS 22 (SPSS, USA) and R packages were used 
for statistical analyses. All data are expressed as the means and 
standard deviations. Significant differences were considered at 
P < 0.05 and assessed by ANOVA. The rarefaction curves were 
performed with Mothur. Principal coordinate analysis (PcoA) 
was analyzed by UPGMA according to the Bray–Curtis dis-
similarity matrix. Heatmaps were employed to illustrate the 
correlation between community compositions and environ-
mental factors using R packages (vegan). A Venn diagram 
shows the corresponding relationships between samples and 
phyla using R packages.

Results

Geochemical characterizations

The detailed physical properties of the three samples are 
presented in Table 1. The tailings soil samples were red-
dish-brown in appearance. As the largest deposit of real-
gar ore  (As4S4) in China, the soils of the Shimen Realgar 
Mine contain relatively high concentrations of sulfate 
(73.54–117.05 mg/kg), total arsenic (832.38–4206.14 mg/
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kg), and soluble arsenic (1.06–379.88 mg/kg). According to 
the national soil quality standard of China (GB15618-2018), 
the total As concentration of the sampling site exceeded 
27.75–140.20 fold the concentration grade II (30 mg/kg, 
6 < pH ≤ 7.5) in agricultural land, revealing serious risks to 
the environment and human health (Wan et al. 2017; Wu 
et al. 2016). Moreover, the sample had a relatively high 
abundance of total organic carbon (TOC) (24.60–59.40 g/
kg), which provided a suitable environment for the growth 
and reproduction of microorganisms.

Analysis of the sulfate and As(V)‑respiring activities

The sulfate and As(V)-respiring activities of the microbial 
communities from the three tailing samples were detected 
using the microcosm technique. As shown in Fig. 1a–c, after 
17.0 days of incubation, approximately 99.54%, 89.30%, and 
93.74% sulfate was reduced by microcosms of 2–1, 2–2, 
and 2–3, respectively. Moreover, the concentration of As 
was increased by 190.19%, 91.05%, and 81.18%, at 2.0, 2.0, 
and 5.0 days, respectively, which may be attributed to two 
reasons: aqueous sulfide generated by sulfate respiration can 
directly reduce Fe-oxide compounds, thereby catalyzing As 
dissolution; in the presence of sulfide, it not only accelerated 
the mass production of thio-As species but also affected As 

release for these different affinities to Fe-bearing minerals 
(Wang et al. 2019). However, after 29.0 days of incubation, 
approximately 0.44, 0.04, and 0.28 mM As was detected, 
as a result of precipitation of As-sulfide minerals (such as 
realgar and orpiment) or adsorption and coprecipitation by 
Fe(II)-sulfide minerals, respectively (Sun et al. 2016). In 
comparison, the microbial community from sterilized con-
trols possessed no significant sulfate or As(V)-respiring 
activities. As shown in Fig. 1d–e, after 2.0 days of incu-
bation, approximately 82.67%, 89.24%, and 89.72% As(V) 
were reduced in microcosms 2–1, 2–2, and 2–3, respectively. 
Moreover, the sulfate concentration steadily decreased. 
However, no detectable As(V) or sulfate-reducing abilities 
were observed in these cultures.

Unique molecular diversity of dsrAB genes

There has been little quantitative analysis of the diversity 
of sulfate-reducing genes in the microbial communities of 
arsenic-contaminated soils. The phylogenetic affiliation of 
dsrAB gene sequences is presented in Fig. 2. Dissimilatory 
sulfite reductase is a key enzyme for sulfate reducers, which 
catalyzes the energy-generation step during anaerobic res-
piration of sulfite (Zhou et al. 2021). The alpha and beta 
subunits of dissimilatory sulfite reductase (dsrA and dsrB) 

Fig. 1  The sulfate (a–c) and As(V)-respiring activities (d–f) of the microbial communities from three tailing samples 2–1, 2–2, 2–3, respectively
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have been used as makers to detect sulfate reducers in differ-
ent ecosystems. We obtained 28 novel sequence variants of 
dissimilatory sulfite reductase genes by amplifying, cloning, 
and sequencing them from the total genomic DNA of the 
soil sample. Phylogenetic relationships of the dsrAB gene 
sequences revealed rich and unique diversity compared to 
the other known dsrAB genes from other bacteria. We found 

that these novel sequence variants of dsrAB genes from the 
soils share 66.18–98.33% sequence identities to those depos-
ited in the GenBank database.

It is well established from a variety of studies that if 
a group of dsrAB genes from an independent cluster in a 
phylogenetic tree, shares less than 60% maximal homology 
with other known dsrAB genes, they can be classified as a 
new family. According to this rule, we successfully identi-
fied 2 new families of dsrAB genes from the soils: family 1 
(SM1, SM2, SM3, SM4, SM6, SM7, SM10, SM12, SM13, 
SM14, SM16, SM18, SM19, SM22, SM23, SM25, SM26, 
SM27, SM29, SM30, SM34, SM44, SM46, SM48, SM51) 
and family2 (SM55, SM56, SM57). Specifically, family 1 
is closely associated with the dissimilatory sulfite reduc-
tase alpha subunit (dsrA) and dissimilatory reductase beta 
subunit (dsrB) genes (DQ386233.1 and DQ211852.1) from 
Desulfotomaculum sp. Lac2 and Bacterium LS1701. Family 
2 is closely related to the dsrB genes of.

Bacterium AMD. C1 (EU086051.1) and Desulfovibrio 
sp. strain S10 (MN792773.1). These findings demonstrate 
the rich and unique diversity of sulfate-reducing microbes in 
arsenic-contaminated soils from realgar deposits.

Anaerobic reduction activities of JL1

Figure 3 illustrates the sulfate- and arsenate-respiring activi-
ties of Desulfotomaculum sp. JL1. As shown in Fig. 3a, in the 
presence of 1.5 mM As(V), the As(V) reduction efficiency 

Fig. 2  The phylogenetic affiliation of dsrAB genes sequences 
obtained from tailing soils of the realgar deposits

Fig. 3  Functional charateriza-
tion of Desulfotomaculum 
sp. JL1. The sulfate-respiring 
activity of JL1 (a); the arsenate-
respiring activity of JL1 (b); the 
reduction abilities of JL1 in the 
presence of multiple electron 
acceptors (both contain sulfate 
ans As(V) in the cultures) (c); 
the appearance difference of 
serum bottle before and after 
10 days culture (d)
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was slow at the beginning when lactate was used as the sole 
electron donor under anaerobic conditions. However, after 
4 days of incubation, 1.5 mM As(V) was completely trans-
formed into As(III). JL1 also has apparent activity to reduce 
sulfate. As shown in Fig. 3b, JL1 is highly effective in sulfate 
reduction under anaerobic conditions. It takes only 5 days 
for sulfate to be completely converted to sulfide catalyzed by 
JL1 in MMM medium (without sulfate) containing 2.0 mM 
sulfate and 10.0 mM sodium lactate.

To further explore the reduction abilities of bacterial 
cells in the presence of multiple electron acceptors, we 
performed a bacterial reduction assay containing 2.0 mM 
sulfate and 1.5 mM As(V) as electron acceptors and lactate 
as the sole electron donor under anaerobic conditions. As 
shown in Fig. 3c, when sulfate and As(V) were added to 
the cultures, compared to Fig. 3a, the sulfate reduction abil-
ity was more efficient than that achieved in the presence of 
only sulfate. After 4 days of incubation, 2.0 mM sulfate was 
fully reduced. Moreover, compared to Fig. 3b, the As(V) 
reduction ability is much slower than that when only As(V) 
is added; after 4 days, only half of As(V) is converted to 
As(III). After 10 days of incubation, significant amounts of 

yellow precipitates were generated in the culture (Fig. 3d). 
This phenomenon suggests that microorganisms can drive 
the reduction of As(V) and  SO4

2− and can effectively pro-
mote the formation of precipitation, which also hints at the 
biogenesis of the realgar mine in Shimen.

Phylogenetic features of the bacterial strain JL1

To further reveal the functional characterization and envi-
ronmental effects of sulfate-reducing bacteria in arsenic-con-
taminated soils, we isolated a representative dissimilatory 
sulfate-reducing bacterium using the microbial enrich-
ment technique, which was referred to as JL1. 16S rRNA 
gene phylogenetic analysis revealed that the novel isolate 
belonged to Firmicutes and shared the closest relatives with 
Desulfotomaculum sp. GY-2 (HQ827821.1) with 98.72% 
sequence similarity (Fig. 4a). The phylogenetic dendro-
gram also illustrates that JL1 fell into the same cluster with 
high bootstrap value within Desulfotomaculum and was thus 
referred to as Desulfotomaculum sp.JL1 (MZ342818).

The dsrAB gene sequences of the present isolate were 
deposited in GenBank under the accession numbers 

Fig. 4  Cloning and phylogenatic 
feature of the 16S rRNA (a) and 
dissimilatory sulfite reductase 
genes (b) from Desulfotomacu-
lum sp.JL1. The topology of 
tree was constructed by the the 
neighbor-joining method. The 
values at the nodes are boostrap 
values (n = 1000 replicates) 
of ≥ 50% are shown
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MZ383093 and MZ383094, and were identified as JL1-
dsrAB-1 and JL1-dsrAB-2, which share 99.61% sequence 
identity. According to the phylogenetic dendrogram show-
ing dsrAB gene sequence comparison in Fig. 4b, 11 refer-
ence strains were chosen to display sequence similarity 
(78.28–96.10%). JL1-dsrAB-1 shares 96.10%, 95.80%, 
95.03%, 94.97%, and 94.44% sequence identities with Des-
ulfovibrio carbinoliphilus strain D41, Desulfovibrio sp. sul5, 
Desulfovibrio burkinensis strain DSM 6830, Desulfovibrio 
burkinensis, and Bacterium LS2003, respectively. These 
results showed that JL1 possesses new variant of dissimila-
tory sulfite reductase gene, and it can also be inferred that 
this isolate is a novel sulfate-reducing bacterial strain.

Unique microbial community compositions 
of arsenic‑contaminated soils

As shown in Fig. 5, the Illumina high-throughput sequenc-
ing technique was used to determine the microbial com-
munity compositions from the arsenic-contaminated soils. 
A total of 104,599 high-quality 16S rRNA gene sequences 
were obtained from samples 2–1, 2–2, and 2–3. As shown 
in Fig. 5a, the dominant phyla on average contained Proteo-
bacteria (26.08%), Chloroflexi (19.64%), Acidobacteriota 

(19.14%), Actinobacteriota (8.06%), Gemmatimonadote 
(6.27%), Bacteroidota (4.34%), Myxococcota (2.82%), 
Methlomirabilota (2.03), unclassified_k_norank (1.78%), 
Deinococcota (1.45%), Patescibacteria (1.32%), and other 
bacteria (7.08%). These microbial community compositions 
were relatively consistent with previous reports at the site 
(Li et al. 2020; Yu et al. 2020). According to the Bray–Cur-
tis dissimilarity analysis using UPGMA (Fig. 5a), the soil 
samples can be divided into two groups: I (2–1 and 2–2) and 
II (2–3). Rarefaction curves showed that these sequences 
covered 99.78%, 99.84%, and 99.60% of the microbial diver-
sities of the corresponding soils, respectively (Fig. 5b). The 
corresponding relationships between samples and phyla are 
described in Fig. 5c. The number of common species of 
these three multi-samples was 26, and the number of unique 
species of these three multi-samples was 1, 0, and 2. Heat-
map (Fig. 5d) analysis showed the relationships between 
the abundances of dominant phyla and the environmen-
tal parameters. Total As and sulfate showed significant 
positive correlations with Bacteroidota, Acidobacteriota, 
unclassified_k_norank, Patescibacteria, Cyanobacteria, 
Verrucomicrobiota, Firmicutes, Armatimonadota, Elusimi-
crobiota, WS4. Total As and sulfate showed significant nega-
tive correlations with Desulfobacterota, Entotheonellaeota, 

Fig. 5  The microbial com-
munity compositions and its 
correlations with environmental 
paerameters from the arsenic-
contaminated soils. Relative 
abundances of the dominant 
phyla of the soil samples and 
UPGMA analysis (a); rarefac-
tion curves (b); Venn analysis 
showed the corresponding 
relationships between samples 
and phyla (c); heatmap analysis 
showed the relationships 
between the abudances of domi-
nant phyla and environmental 
factors (d)
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SAR324_cladeMarine_group_B, WPS-2, Nitrospirota, 
NB1-j, Myxococcota, Latescibacterota. In comparison, Mn 
showed the opposite correlation to the total As and sulfate.

Discussion

Unique geochemistry characteristics and microbial 
community structures

The Shimen realgar mine in China has been exploited for 
approximately 1500 years and is the largest source of real-
gar  (As4S4) ore in Asia (Peng et al. 2019). Hence, the soils 
contain extremely high concentrations of arsenic and sulfate. 
However, previous studies have only focused on microbial-
catalyzed arsenic metabolism, and have found that micro-
organisms here have a strong ability to drive As(III) oxida-
tion, As(V) reduction, and As methylation. In this study, 
we focused on investigating the diversity and activities of 
sulfate-reducing microorganisms in tailings. We found that 
the microbial communities had efficient abilities to respire 
As(V) and sulfate (Fig. 1). The diversity of sulfate-reduc-
ing microbes in the soils of the Shimen Realgar Mine was 
closely related to Desulfotomaculum, Desulfovibrio, and 
Bacterium (Fig. 2), which is totally different from other 
sulfur-rich ecosystems, such as mangrove sediments, deep-
sea anoxic brines of the Red Sea, petroleum reservoirs, and 
flooded rice paddy soils (Li et al. 2021; Guan et al. 2015; 
Santos et al. 2020; Liu et al. 2009). Moreover, compared 
to other arsenic-contaminated or sulfate-contaminated 

sites, this area had unique microbial communities, the most 
abundant populations belonged to the phyla Proteobacte-
ria, Chloroflexi, and Acidobacteriota (Fig. 5), which were 
attributed to the unique geochemistry parameters, such as 
TOC, total As,  NO3

−, and  SO4
2− (Li et al. 2015; Zheng 

et al. 2019).

Conceptual model for the biogenesis 
contribution of sulfate‑reducing bacteria 
to the arsenic‑contaminated soils from realgar mine

Realgar contains over 90% tetra-arsenic tetra-sulfide  (As4S4), 
and has been commonly used as a drug to treat diseases in 
ancient China, India and other countries for thousands of 
years (Wu et al., 2017). In recent years, realgar has also 
been proven to be an effective clinical treatment for various 
forms of cancer in vivo and in vitro. Compared with the 
disadvantages of traditional methods, such as low solubility 
in water, poor gastrointestinal absorption, high toxicity and 
low bioavailability of realgar, microbial leaching technology 
can significantly improve the solubility and bioavailability 
of realgar, and has high efficiency, ecological safety, low 
cost and other advantages. In a previous study, Chen found 
that A.ferrooxidans can effectively bioleach realgar in dif-
ferent environments (Chen et al. 2011). Addition to this, 
our research found that the novel strain JL1 was a typical 
sulfate-reducing bacteria (Fig. 4) and can effectively pro-
mote the formation of yellow precipitates (Fig. 3). Therefore, 
we proposed a conceptual model for the ecological effect 

Fig. 6  Conceptual model for 
the biogenesis contribution of 
sulfate-reducing bacteria to 
arsenic-contaminated soils from 
realgar mine
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of sulfate-reducing bacteria on arsenic-contaminated soils 
(Fig. 6).

Can this sulfate‑reducing bacterium 
be used for the bioremediation of As 
and sulfate‑contaminated water?

Using SRB as a biological treatment for acid mine drain-
age (AMD), remediation has gained extensive attention 
(Kefeni et al., 2017; Sánchez-Andrea et al., 2014; Jung et al., 
2015). Several studies have approved SRB as an effective 
AMD treatment option for the ability to produce alkalin-
ity and remove heavy metals (Jung et al., 2012). However, 
our research provides new insight into the SRB used for the 
bioremediation of As and sulfate-contaminated water, which 
can efficiently bioleach realgar from the soil and has promis-
ing industrial potential.

Conclusion

The fate of arsenic is affected by abiotic or biological 
redox of sulfur. However, little is known about the diver-
sity and biogenesis contribution of SRB in arsenic-con-
taminated soils from realgar deposits. Microcosm assays 
illustrated that soil samples displayed efficient sulfate and 
As(V)-respiring activities. The diversity of sulfate-reduc-
ing microbes in the soils of the Shimen Realgar Mine was 
closely related to Desulfotomaculum, Desulfovibrio, and 
Bacterium. A novel dissimilatory sulfate-reducing bacte-
rium, Desulfotomaculum sp. JL1, was further isolated from 
soils, and can efficiently respiratory reduce As(V) and sul-
fate in 4 and 5 days, respectively. JL1 can promote the gen-
eration of yellow precipitates in the presence of multiple 
electron acceptors (both contain sulfate and As(V) in the 
cultures), which indicated the biogenesis contribution of 
SRB to the realgar mine. Moreover, this area had unique 
microbial communities, the most abundant populations 
belonged to the phyla Proteobacteria, Chloroflexi, Aci-
dobacteriota, Actinobacteriota, and Gemmatimonadote, 
which were attributed to the unique geochemistry charac-
teristics, such as TOC, total As,  NO3

−, and  SO4
2−.
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