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Abstract
In this study, the sedimentary records, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in Dianchi 
Lake were analyzed. The concentrations of ΣPAH16 in the sediments of Dianchi Lake ranged from 368 to 990 ng/g, with 
an average value of 572 ng/g, peaking in 1988. Economic development, rapid population growth, and rapid growth of coal 
consumption have a greater impact on the HMW (high molecular weight) PAHs than on the LMW (low molecular weight) 
PAHs in the sedimentary environment. The results of the diagnostic ratios and PCA (principal component analysis) model 
show that the main sources of PAHs were coal and biomass combustion, as well as the fossil fuel combustion in individual 
years. The risk assessment results showed that the PAH concentrations in the sediment were within a safe range. In the 
past 100 years of sediment pore water, other 2–3 ring LMW PAHs were within a safe range (except for Phe, which reached 
chronic toxic pollution levels in some years). With an increase in industrialization and urbanization, the burning of fossil 
fuels such as coal and petroleum has increased, and some of the 4–6 ring HMW PAHs have reached chronic toxicity or even 
acute toxicity in the sediment pore water.

Keywords Polycyclic aromatic hydrocarbon · Source apportionment · Risk assessment · Century sedimentary record · 
Dianchi Lake

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are persistent 
organic pollutants (POPs) that exist in different environmen-
tal media (Gregg et al. 2015; Lu et al. 2012; Sandro et al. 
2018; Walker et al. 2005). PAHs can originate from natural 
processes such as forest fires (Freeman and Catell 1990; Ma 
et al. 2020), volcanic eruptions (Kim et al. 2003; Morillo 
et al. 2007; Ma et al. 2018), and diagenesis of organic mat-
ter in oxygen-deficient sediments (Baumard et al. 1998; Van 
Metre et al. 2000). However, human activities such as gar-
bage incineration (Mastral and Callen 2000), fossil fuel com-
bustion (Blumer and Youngblood 1975; Ma et al. 2021b), 
and wood burning for household heating and cooking (Lima 
et al. 2005; Zhang et al. 2007) are generally considered to be 
the main sources of PAHs entering the environment (Viguri 
et al. 2002).

Lake sediment is an important source and sink of pollutants 
(Li et al. 2021). PAHs enter the aquatic ecosystem through 
various processes, such as urban and agricultural runoff, auto-
mobile exhaust emissions, and fossil fuel leakage (Rinawati 
et al. 2012; Wang et al. 2021). Owing to the low solubility and 
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strong hydrophobicity of polycyclic aromatic hydrocarbons 
(Boehm and Farrington 1984; Mouhri et al. 2008), they are 
easily combined with particles and eventually accumulate in 
lake sediments (Donahue et al. 2006; Gogou et al. 2000; Liu 
et al. 2007). However, as the main source and sink of PAHs, 
sediments may also cause secondary pollution to the aquatic 
ecosystem, such as Dianchi Lake through pore water trans-
portation, posing a substantial threat to animals, plants, and 
humans (Rockne et al. 2002; Tao and Liu 2019; Tao 2021). 
PAHs have attracted worldwide attention because of their 
potential carcinogenicity, mutagenicity, and teratogenicity, as 
well as their persistence in the environment and possible health 
risks (Han et al. 2019; Jia et al. 2021; Meyer et al. 2011).

Dianchi Lake is the largest freshwater lake in Yunnan 
Province, China. Due to its low replenishment coefficient and 
long lake water retention period, pollutants are concentrated 
in the lake (He et al. 2015). Since the reform and opening up 
of China, especially after the 1990s, rapid urbanization and 
industrialization have promoted an increase in human activi-
ties, such as industrial and agricultural development, deforesta-
tion, and tourism (Gu et al. 2017; Liu et al. 2008; Zeng and 
Wu 2009; Zhang et al. 2015). These activities have led to a 
sharp increase in the discharge of pollutants, a decline in water 
quality, and serious threats to Dianchi Lake and its ecological 
environment, making Dianchi Lake one of the most polluted 
lakes in China (Li et al. 2003b). Examining the sediments in 
Dianchi Lake and providing a risk assessment of PAHs in the 
sediments and pore water can provide a scientific basis for 
pollution control and risk management of PAHs in this lake.

Although some studies have investigated the deposition 
records and sources of PAHs in Chinese plateau lakes (Guo 
et al. 2010; Yang et al. 2016; Zhao et al. 2014), information 
on persistent organic pollutants in lakes in the western pla-
teau is still limited. Dianchi Lake is an important source of 
water for industrial development and human use in Kunming 
(Ma et al. 2021a); the quality of its water is directly related 
to the development of the surrounding industries, and it also 
affects people’s health. Therefore, it is necessary to evaluate 
the concentration levels, sources, and ecological risks of PAHs 
in Dianchi Lake. The main objectives of this study were to: (1) 
study the depositional records of polycyclic aromatic hydro-
carbons in the sediments of Dianchi Lake and their relation-
ship with human activities, (2) explore the source of PAHs in 
Dianchi Lake, and (3) assess the ecological risk of PAHs in 
sediments and pore water from 1860 to 2014.

Materials and methods

Sampling and experimental analysis

Dianchi Lake (24°40′–25°03′ N, 102°37′–102°48′ E)  is 
located on the Yunnan-Guizhou Plateau in China, southwest 

of Kunming (Fig. 1). The Dianchi Lake basin covers an area 
of 2,920  km2 and has an average depth of 4.7 m (Du et al. 
2011). It is approximately 40-km long from north to south 
and is 12.5-km wide (Gu et al. 2017; Ma et al. 2020). Sedi-
ment cores (102.67E, 24.69 N) were collected in July 2014 
from the eastern part of Dianchi Lake using a gravity sam-
pler with an internal diameter of 8.3 cm (Fig. 1). The sedi-
ment core (length: 39 cm) was cut into 1 cm segments, and 
each section was sealed in polygon bags at -4 °C and trans-
ported to the laboratory, where they were stored at -50 °C 
until further analysis.

Sediment core dating

The dating of each sediment core was based on the activity 
of 210Pb. Briefly, the activity of 210Pb and 226Ra in the sam-
ples was measured using an Ortec HPGe GWL series, well-
type, coaxial, low background, intrinsic germanium detector. 
The activities of 210Pb and 226Ra were determined from the 
gamma emissions at 46.5 or 295 keV, and 352 keV, respec-
tively. These were emitted in gamma rays by the daughter 
isotope (214Pb), which was stored for three weeks prior to 
dating in sealed containers to enable radioactive equilibra-
tion. Unsupported 210Pb (210Pbex) was calculated as the dif-
ference between the measured total 210Pb at 46.5 keV and an 
estimate of the supported 210Pb activity determined by the 
parent nuclide at 351 keV  [210Pbex = 210Pbtot-214Pb] (Huang 
et al. 2018; Ma et al. 2018).

Microwave extraction and analysis by GC–
MS

A detailed description of the extraction and cleanup methods 
for the samples is provided in previous studies (Ma et al. 
2020, 2021b; Zhang et al. 2017), and the experimental pro-
cedure is briefly explained in this study. First, 2 g of each 
sample was weighed, and then 25 mL hexane/acetone (1:1, 
v/v) solution was mixed with each sample and subjected to 
microwave extraction. Next, the extract was centrifuged at 
3000 rpm for 15 min and repeated three times, after which 
20 mL of hexane/acetone (1:1, v/v) solution was added. 
Third, the concentrated extract was reduced to 1 mL by 
rotary evaporation. Fourth, the extracts were purified by a 
chromatography column (1.5 g of 100–200 alumina mesh 
and 1.5 g of 80–100 silica gel mesh, 1 g of sodium sulfate) 
with a 50-mL solution of hexane/acetone (1:1, v/v). Finally, 
the extracts were reduced to 1 mL by rotary evaporation, 
and 1 mL of the extract was protected from light by amber 
glassware (Ma et al. 2020).

Shimadzu QP2010plus gas chromatography-mass 
spectrometry (GC–MS) was used to determine the PAH 
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concentrations. The PAHs were separated at a set tem-
perature in a silica capillary column (HP-5MS; diameter, 
30 m × 0.25 mm; film thickness, 0.25 μm). Helium was used 
as the carrier gas (99.999%) at a constant pressure of 20.06 
psi. Approximately 1 μL of each sample was added using the 
splitless injection method. The injector temperature, detector 
temperature, and initial oven temperature were 250 °C, 280 °C, 
and 90 °C, respectively. The initial oven temperature was first 
increased to 160 °C at a rate of 20 °C/min, then increased to 
200 °C at a rate of 6 °C/min, maintained for 1 min, increased to 
230 °C at 2 °C/min, maintained for 2 min, and finally increased 
to 280 °C at a rate of 20 °C/min and maintained for 2 min. 
The mass spectrum was scanned in electron ionization mode 
(70 eV) (from 45 to 600) and then scanned in the selected 
ion monitoring mode. Sixteen PAHs were classified based 
on retention times and m/z values, quantified according to an 
internal standard peak area calibration, and the GC–MS was 
auto-tuned via perfluorotributylamine (Ma et al. 2020). Sixteen 
types of PAHs were analyzed in this study (Table S6). The 
methods of quality assurance and quality control for the PAH 
analysis have been described in detail in previous studies (S1) 
(Ma et al. 2018).

Calculation of PAH concentrations in pore 
water

The relative distribution of PAHs in the solid and liquid 
phases in the sedimentary environment can be used to pre-
dict their bioavailability, environmental changes, behavior, 
and toxic effects (Bucheli and Gustafsson 2000; Han et al. 
2015). The concentration of ΣPAH16 in pore water reflects 
PAH pollution in lake water during different periods (Dueri 
et al. 2008).

The solid-water distribution coefficient  (Kd) in sedi-
ments is usually estimated using the equilibrium distribution 
model of TOC and the solution. The calculation formula is 
as follows:

where  KTOC represents the normalized distribution coeffi-
cient of TOC [(mol/kg organic carbon)/(mol/L solution)] and 
 ftoc represents the ratio of TOC in solids (mass of organic 
carbon/mass of total solids). The formula for calculating the 
concentration of PAHs  (Cw) in pore water is as follows:

(1)K
d
= K

TOC
⋅ f

toc

Fig. 1  Location of the sampling 
site in Dianchi Lake
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where  Cw represents the concentration of PAHs in the pore 
water and  Cs represents the concentration of PAHs in the 
sediment. This model has been widely used in field samples 
(Hawthorne et al. 2010; Li et al. 2019; Sun et al. 2003). 
The octanol–water partition coefficient used in this study 
(that is, the normalized carbon partition coefficient) and the 
PAH toxicity values used for risk assessment are shown in 
Tables S1 and S3.

Statistical analysis

The sampling map of the Dianchi sedimentary column 
was constructed using ArcGIS 10.0. Correlation analysis 
was performed using the SPSS 20.0. Data processing and 
deposition records of economic parameters and PAH were 
performed using Microsoft Excel 2013 and OriginPro 9.0. 
Principal component analysis (PCA) was used for source 
apportionment. Socioeconomic data were obtained from the 
Yunnan Statistical Yearbook (2015). Because of the limita-
tions of historical statistics, we only collected total popula-
tion, GDP (gross domestic product), rural population, and 
urban population data from 1971 to 2014, and coal con-
sumption data from 1975 to 2014.

Results

Historical sedimentary records of PAHs and their 
correlation with human activities

The vertical distributions of ΣPAH16 and 2–6 ring PAH 
concentrations in the sediments are shown in Fig. 2. The 

(2)C
w
= C

s
∕K

d

concentrations of ΣPAH16 in the sediments of Dianchi 
Lake range from 368 to 990 ng/g, with an average value of 
572 ng/g (Fig. 2 and Table S2). In the profile (Fig. 2), the 
slight change at the bottom of the sediments before the mid-
1970s may reflect background PAH values. The PAH content 
in sediments increased sharply from 1975 to 1988, peak-
ing at 990 ng/g in 1988. Figure 3 shows a high correlation 
between ΣPAH16 and GDP (R2 = 0.89, Fig. 3a) and ΣPAH16 
and coal consumption (R2 = 0.76, Fig. 3b) between 1975 
and 1988. The rapidly increasing concentration of ΣPAH16 
was consistent with the dramatic increase in GDP and coal 
consumption.

After 1988, as GDP and coal consumption continued 
to increase, the PAH concentrations showed a fluctuating 
downward trend. However, there was a high correlation 
between ΣPAH16 and coal% (R2 = 0.41, Fig. 3c) from 1989 
to 2014. As the proportion of coal decreased, the concentra-
tion of ΣPAH16 also fluctuated and decreased.

The concentrations of 2–3, 4, and 5–6 ring PAHs in the 
sediments were 240–634, 57–285, and 66–182 ng/g, respec-
tively (Figs. 2, 4). Table 1 shows that 2–3 ring PAHs were 
significantly correlated with the total population, GDP, 
and urban population from 1971 to 2014, with correlation 
coefficients of 0.357, 0.368, and 0.392, respectively (with 
P < 0.05).

Furthermore, 4 ring PAHs were significantly correlated 
with the total population, GDP, and urban population from 
1971 to 2014, with correlation coefficients of 0.439, 0.450, 
and 0.474, respectively, with P < 0.01 (Table 1). The correla-
tion coefficient between 4 ring PAHs and coal consumption 
was 0.344 (P < 0.01) between 1975 and 2014 (Table 1). This 
indicates that population, GDP, and coal consumption are 
the main factors that affect 4 ring PAHs, which is consistent 
with previous research results (Guo et al. 2007; Hafner et al. 
2005; Karina et al. 2014; Liu et al. 2012; Ma et al. 2021b; 

Fig. 2  Historical trend of 
ΣPAH16 and 2–6 ring PAH 
concentrations in sediments of 
Dianchi Lake
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Zhang and Tao 2009). However, after 1988, with an increase 
in population, GDP, and coal consumption, the 2–3 and 4 
ring PAHs decreased to a certain extent (Figs. 2 and 4).

Before 2005, the concentration of 5–6 ring PAHs con-
tinued to increase, but after 2005, the concentration of 
PAHs declined. Table 1 shows that 5–6 ring PAHs were 

Fig. 3  Comparison of ΣPAH16 concentrations and economic 
parameters in the Dianchi Lake sediment core. a ΣPAH16 and 
GDP (gross domestic product) (ΣPAH16 = 0.12 ∗ GDP -48, 

R2 = 0.89 (1975–1988)). b ΣPAH16 and coal consumption 
(ΣPAH16 = 1.02 ∗ coal + 142, R2 = 0.76 (1975–1988)). c ΣPAH16 and 
coal% (ΣPAH16 =—0.07 ∗ coal% + 114, R2 = 0.41 (1975–1988))

Fig. 4  Comparison of the con-
centrations of 2–6 ring PAHs 
and economic parameters to 
identify trends in the data: a 2–3 
ring PAH concentrations, b 4 
ring PAH concentrations, c 5–6 
ring PAH concentrations, d total 
population, e gross domestic 
product (GDP), f rural popula-
tion, g urban population, and h 
coal consumption
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also significantly correlated with the total population, GDP, 
urban population, and coal consumption.

According to the correlation coefficients between PAHs 
and human activities, the correlation coefficients between 
population, GDP, and coal consumption and 2–3 ring LMW 
PAHs are smaller than the correlation coefficients with 4–6 
ring HMW PAHs (Table 1). This indicates that from 1971 to 
2014, population, GDP, and coal combustion had a greater 
impact on HMW PAHs than on LMW PAHs.

Source apportionment and identification 
of PAHs

Diagnostic ratios of PAHs

The diagnostic ratios of Ant/(Ant + Phe), BaA/(BaA + Chr), 
and InP/(InP + BghiP) were used to analyze the possible 
sources of PAHs in Dianchi Lake (Colombo et al. 2006; Guo 
et al. 2010; Han et al. 2021; Yim et al. 2005). Figure 5 shows 

that the ratio of BaA/(BaA + Chr) is mostly > 0.35, except 
for one year, which is between 0.2 and 0.35. This shows that 
PAHs in Dianchi Lake are mainly derived from coal and bio-
mass combustion, and fossil fuel combustion occurs during 
several years. The ratios of InP/(InP + BghiP) were all > 0.5 
(Fig. 5), which indicates that coal and biomass combustion 
are the main sources of PAHs in Dianchi Lake. Therefore, 
the ratios of BaA/(BaA + Chr) and InP/(InP + BghiP) sug-
gest that coal and biomass combustion mainly contribute 
to the PAH concentrations in Dianchi Lake and fossil fuel 
combustion sources exist in individual years.

However, the ratios of Ant/(Ant + Phe) were all < 0.1, 
which suggest that the PAHs mainly originated from petro-
leum sources (Fig.  5). This difference in interpretation 
between Ant/(Ant + Phe), which suggests a petroleum source, 
and the ratios BaA/(BaA + Chr) and InP/(InP + BghiP), which 
suggest a coal and combustion source, has been observed in 
previous studies (Yan et al. 2005, 2006). This discrepancy is 
caused by differences in the environmental behavior of the 
Ant and Phe isomers (Hwang et al. 2003; Yan et al. 2005). 

Table 1  Correlation coefficients 
between PAHs and human 
activities

**Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed)

Total population GDP Rural Population Urban population Coal

2–3 rings 0.357* 0.368* 0.029 0.392* 0.191
4 rings 0.439** 0.450** 0.135 0.474** 0.344**
5–6 rings 0.661** 0.673** 0.193 0.696** 0.632**

Fig. 5  The ratios Ant/
(Ant + Phe), BaA/(BaA + Chr), 
and InP/(InP + BghiP) of PAHs 
in Dianchi Lake
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Previous studies have shown that Ant has a higher photol-
ytic ability than Phe (Ma et al. 2021b; Sanders et al. 1993). 
Therefore, the applicability of Ant/(Ant + Phe) in diagnosing 
PAH sources is questionable. This suggests that the ratios of 
BaA/(BaA + Chr) and InP/(InP + BghiP) are more reliable 
and show that the PAHs in Dianchi Lake are mainly derived 
from coal and biomass combustion, as well as fossil fuel 
combustion sources in individual years.

Principal component analysis for source 
apportionment

We used principal component analysis (PCA) to further analyze 
the source of PAHs in Dianchi Lake. The concentrations of the 
individual PAHs at each depth were used as the 16 variables in 
the PCA. Based on the loading of all 16 PAHs, three principal 
components (PC1, PC2, and PC3) were extracted (Fig. 6 and 
Table 2). PC1, PC2, and PC3 accounted for 53.14%, 14.87%, 
and 11.68% of the total variance, respectively (Tab. S4).

PC1 accounted for 53.14% of the total variance, of which Acy, 
Flo, Ant, Flu, Pyr, BaA, Chr, and BKF had the highest loading 
values (Tables 2 and S4). Acy and Flo are generally believed to be 
characteristic indicators of wood burning (Ravindra et al. 2008; 
Zhang et al. 2013), and Ant, Flu, Pry, BaA, Chr, and BKF are 
molecular indicators of coal burning (Duval and Friedlander 1981; 
Harrison et al. 1996; Li et al. 2003a; Wang et al. 2009a), indicating 
that PC1 may represent a source of wood and coal combustion.

PC2, which explained 14.87% of the total variance, was 
mainly composed of BbF, DBA, IcdP, and Bghip (Fig. 6 and 
Table 2). Previous studies have shown that BbF and BghiP 
are indicators of gasoline engine emissions (Chen et al. 2011; 
Motelay-Massei et al. 2007; Qian et al. 2016; Li et al. 2003a; 
Sofowote et al. 2008), and Inp and DBA have been identified 
as indicators of diesel emissions (Fang and Chang 2004; Li 
and Kamens 1993; Liu et al. 2017; Wang et al. 2009b, 2016; 
Yunker et al. 2002). Therefore, PC2 represents gasoline and 
diesel emissions originating from vehicle emissions.

PC3 accounted for 11.68% of the total variance, which 
was highly correlated with Phe (Fig. 6 and Table 2). Phe is a 
typical marker of coal combustion (Cao et al. 2016; Ramdahl 

1983; Ravindra et al. 2008). Therefore, PC3 was identified as 
an indicator of coal combustion. According to the analyses 
above, PAHs in Dianchi Lake were mainly derived from the 
combustion of coal and wood, followed by gasoline and die-
sel emissions originating from vehicle emissions. This result 
is consistent with the results of the diagnostic ratio method.

Ecological risk assessment of PAH 
contamination

In this study, a risk assessment including seven PAHs with 
potential human carcinogenicity, namely, BaA, Chr, BbF, BkF, 
BaP, DBA, and InP, was conducted. The toxicity of BaP was 

Fig. 6  Two-dimensional plot of 
the principal component loading 
of 16 PAHs from the Dianchi 
sediment core

Table 2  PCA analysis of PAHs 
in the sediments of Dianchi 
Lake

Note: bold values are the high 
load values in each principal 
component and the main posi-
tive contributing factors of each 
principal component

Component

PC1 PC2 PC3

Nap 0.492 -0.087 0.342
Acy 0.822 0.113 0.217
Ace 0.000 -0.560 -0.455
Flo 0.711 0.492 -0.061
Phe 0.519 -0.089 0.773
Ant 0.895 0.096 0.027
Flu 0.803 -0.020 0.346
Pyr 0.824 -0.131 0.355
BaA 0.910 0.284 -0.247
Chr 0.758 0.336 -0.289
BbF 0.563 0.547 -0.273
BKF 0.834 0.213 -0.463
BaP 0.662 -0.137 -0.279
DBA -0.762 0.577 0.176
IcdP -0.434 0.791 0.149
Bghip -0.825 0.503 0.129
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used as the standard to quantify the toxic equivalent  TEQBaP 
of the six other carcinogenic PAHs (Table S5) (Han et  al. 
2021; Qiao et al. 2006; Tsai et al. 2004). The concentration of 
 TEQBaP in the sediments of Dianchi Lake was calculated and is 
shown in Table 3. Toxicity equivalent concentration ranges of 
BaA, Chr, BbF, BkF, BaP, InP, and DBA were 0.72–3.20 ng/g, 
0.03–0.55 ng/g, 1.68–0.48 ng/g, 8.85–1.10 ng/g, 65.64–5.25 ng/g, 
14.08–8.47 ng/g, and 1.64–1.04 ng/g, respectively, and the average 
values were 1.52 ng/g, 0.10 ng/g, 1.05 ng/g, 3.39 ng/g, 17.23 ng/g, 
11.35 ng/g, and 1.42 ng/g, respectively. The toxicity equivalent 
concentration range of ∑7PAHs was 22.38–87.79 ng/g, and the 
average value was 36.05 ng/g. Compared with the global average 
 TEQBaP concentration (804.94 ng/g) in sediments (Li et al. 2014; 
Sprovieri et al. 2007), the  TEQBaP concentration in Dianchi Lake 
sediments was much lower than this toxicity level. The PAH con-
centrations in the sediments were all within a safe range (Liu et al. 
2010; Li et al. 2019).

Pore water occurs as groundwater in the pores between 
sediment grains. Pore water can interact with sediments, and 
PAHs can be released or adsorbed from or onto the sediment. 
Therefore, the concentration of ΣPAH16 in sediment pore 
water can reflect the pollution of PAHs in lake water from dif-
ferent time periods to a certain extent (Arp et al. 2009; Chiou 
et al. 1981; Lücker et al. 2003; Yong et al. 2009). In this study, 
the risk threshold of PAHs in lake water was used to assess 
the risk of PAHs in the sediment pore water of Dianchi Lake 
(Neff et al. 2005). As shown in Fig. 7, the pollution level of 
2–3 ring LMW PAHs has been within the safe range over the 
past 100 years. Only the concentration of Phe in some years 
has reached the chronic toxicity pollution level (55 µg/L).

Among the 4–6 ring HMW PAHs, most of the concentra-
tions of Flu, Chr, and BbF were within the safe range before 
the 1980s. After the 1980s, their concentrations increased 
and reached chronic toxicity levels of 11, 2.2, and 2.9 ug/L, 
respectively. Most of the concentrations of Pyr, BaA, BkF, 
BaP, and BghiP reached their chronic toxicity levels of 12, 
2.0, 1.7, 1.5, and 0.49 ug/L, respectively. Furthermore, the 
concentrations of BkF and BaP on the surface reached acute 

toxicity levels of 8.6 ug/L and 7.6 ug/L, respectively. DBA 
and InP are the two most polluting compounds. Over the past 
100 years, all the samples had DBA and InP concentrations 
over acute toxicity levels of 1.3 and 0.64 ug/l, respectively.

Discussion

Different economic development models cause 
different growth characteristics of PAHs

With the founding of New China, especially with the reforms 
and opening policies implemented in 1978 (Ma et al. 2018), 
energy consumption caused by urbanization and industriali-
zation increased rapidly. This may be the main reason for the 
rapid increase in PAH concentrations after 1975. However, 
the concentrations of PAHs fluctuated and declined after 
1988. This may be because coal and biomass combustion 
are the main sources of PAH emissions in Yunnan Prov-
ince (Xu et al. 2006), and while the proportion of total coal 
consumption has declined, the proportion of cleaner energy 
(oil and natural gas) has increased (Ma et al. 2020; Yunnan 
Statistical Yearbook 2015); therefore, PAH emissions were 
relatively reduced.

The population expansion brought about by rapid eco-
nomic development has led to an increase in fuel for house-
hold cooking and basic heating (Guo et al. 2012; Ma et al. 
2020), which may be the main reason for the increase in 
2–3 ring PAH pollutants. Simultaneously, with economic 
development and population increase, industrialization and 
urbanization have led to an increase in fossil fuel combustion 
and a significant increase in motor vehicle emissions, lead-
ing to an increase in 4 and 5–6 ring HMW-PAH emissions 
(Ma et al. 2020, 2021b).

Previous studies have shown that household energy usage 
in Yunnan Province is dominated by coal and biomass, as 
biomass combustion is used for cooking and basic heating 
purposes (Ma et al. 2020; Zhang et al. 2007). With the rapid 
development of the society and economy, people’s lifestyles 
have undergone significant changes, especially through sub-
stituting coal and biomass combustion for household needs 
with cleaner energy sources (Han et al. 2016; Liu et al. 2012; 
Tian and Chen 2017). In addition, the proportion of coal 
consumption in Yunnan has declined, while the proportion 
of cleaner energy (oil and natural gas consumption) has 
increased (Ma et al. 2020). These may be the main reasons 
for the decline in 2–3 and 4 ring PAHs. Furthermore, in 
recent years, improvements made to the vehicle emission 
standards in China (Ma et al. 2020; Tang et al. 2015) may 
have led to a decrease in the concentration of 5–6 ring PAHs.

Comparing PAH deposition records from lake sediments 
in other parts of China (Fig. 8), the concentrations of PAHs 
in the southern Dianchi Lake were higher than those in 

Table 3  Toxicity equivalent concentrations of PAHs in the sediments 
of Dianchi Lake  (TEQBap) (ng/g)

TEQBaP

Mix Min Mean

BaA 0.72 3.20 1.52
Chr 0.03 0.55 0.10
BbF 1.68 0.48 1.05
BkF 8.85 1.10 3.39
BaP 65.64 5.25 17.23
InP 14.08 8.47 11.35
DBA 1.64 1.04 1.42
∑7PAHs 22.38 87.79 36.05
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Fig. 7  Risk assessment of 16 PAHs in Dianchi Lake pore water
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Fig. 8  Sediment records of 
PAHs in different lakes from 
China. Note: The above figures 
are referenced and modified 
from the literature (Zhang 2018; 
Li et al. 2016; Shanying Li 
2016; Sun and Zang 2013; Guo 
et al. 2011; Wang et al. 2010; 
Guo et al. 2010; Yang et al. 
2016)
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western China and remote lakes on the Qinghai-Tibet Pla-
teau, such as Erhai Lake (Guo et al. 2011), Qinghai Lake 
(Wang et al. 2010), Sugan Lake (Guo et al. 2010), Bosten 
Lake (Guo et al. 2010), and Cona Lake (Yang et al. 2016). 
However, they were lower than that of Chaohu Lake (Li 
et al. 2016), Donghu Lake, and Qianhu Lake (Li 2016) 
in the middle and lower reaches of the Yangtze River and 
lower than that of Lianhua Lake in northeast China (Sun 
and Zang 2013). The PAH concentrations in the southern 
part of Dianchi Lake is equivalent to that in Taihu Lake 
(Zhang 2018).

The peak times of PAHs in lake sediments from different 
regions of China era also different. The lakes in the middle 
and lower reaches of the Yangtze River have PAH peaks 
earlier, mainly between the 1980s and the 1990s. In contrast, 
Lianhua Lake in the northeastern region has a PAH peak in 
the 2000s. In western China (northwest and southwest) and 
remote areas of the Qinghai-Tibet Plateau, the peaks also 
appeared later, mainly between the 1990s and the 2000s. The 
PAH peak in the middle and lower reaches of the Yangtze 
River appeared earlier, which may be due to the rapid devel-
opment of urbanization and industrialization in the region. 
Dianchi Lake is located near Kunming, the capital city of 
Yunnan Province, and its industrial development occurred 
relatively early, so the peak also appeared earlier. The late 
occurrence of PAH peaks in western China and remote areas 
of the Qinghai-Tibet Plateau may be due to their slower local 
economic and social development.

Compared with the PAH records from lake sediments in 
developed countries in Europe and the USA, the peak timing 
of PAH concentrations in Dianchi Lake was significantly 
later, and the concentration levels were also significantly 
lower than that of developed countries (Fig. 9). The PAH 
concentrations in lakes in developed countries gradually 
increased from around 1880, which may be consistent with 
the beginning of the industrial revolution (Furlong et al. 
1987; Fernández et al. 2000). Pollution levels usually peaked 
in the 1950s and the 1980s (Kannan et al. 2005; Fernández 
et al. 2000). By the 1970s and 1980s, the PAH concentra-
tions showed a declining trend, which may be related to 
the adjustment of the energy structure in developed coun-
tries in recent decades (Kannan et al. 2005), where coal is 
being replaced with cleaner fuels such as oil and natural gas 
(Gschwend and Hites 1981; Gevao et al. 1998).

Developed countries usually completed industrialization 
and urbanization before the 1980s. However, China was still 
in the developing stage at this time, especially after reforms 
and opening policies were implemented in 1978, at which 
point the rapid development of industrialization and urbani-
zation began. Therefore, the different patterns in PAH con-
centrations as recorded in lake sediments between China 
and developed countries are consistent with their different 
development histories of industrialization and urbanization.

Energy utilization structure affects 
the source composition and pollution level 
of PAHs

The southern part of Dianchi Lake is mainly located in a 
rural and mountainous area. Biomass and coal combus-
tion are the main energy sources for household cooking 
and heating in this area. Some studies have shown that the 
household energy utilization structure in Yunnan Province 
is dominated by coal and biomass (Xu et al. 2006; Zhang 
et al. 2007). In this study, the main sources of PAHs in the 
sediments of southern Dianchi Lake were coal combus-
tion and biomass combustion, which also demonstrated 
the accuracy of the source analysis results.

According to the risk assessment of PAHs, most of the 
PAH concentrations in the sediments and pore water were 
within a safe range. However, the concentration of some 
4–6 ring PAHs in the pore water reached a chronic toxicity 
pollution level, and some even reached the acute toxicity 
pollution level. This may be related to an increase in fossil 
fuel burning, such as coal and oil, caused by the develop-
ment of industrialization and urbanization since the reform 
and opening up (Li et al. 2018; Ma et al. 2021b; Nemr 
et al. 2007; Wang et al. 2016).

Dianchi Lake is the largest freshwater lake in Yunnan 
Province and is an important source of water that sup-
ports human life and economic activities in Kunming. 
The ecological environment of Dianchi Lake has a greater 
impact on local residents. Therefore, it is necessary for the 
government to take more effective measures and increase 
investment to help control the environmental problems in 
Dianchi Lake. For example, central heating in residen-
tial areas can replace small coal stove heating. Briquettes 
should be selected for industrial use so that the coal can 
be fully burned. Clean energy should be developed, and 
natural gas should replace the use of coal and oil. In cities, 
the emissions of automobile exhaust are strictly controlled, 
and devices are installed to treat automobile exhaust. 
Implementing these measures for pollution control may 
reduce the input of PAHs to some degree in the lake.

Conclusion

The concentration of ΣPAH16 in the sediments of Dianchi 
Lake ranged from 368 to 990 ng/g, with an average value 
of 572 ng/g and a maximum value in 1988. The concen-
trations of 2–3, 4, and 5–6 ring PAHs in the sediments 
were 240–634, 57–285, and 66–182 ng/g, respectively. 
Population and GDP were the main influencing factors 
of 2–6 ring PAHs, and coal consumption was the main 
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influencing factor for the 4–6 ring HMW PAHs. Moreo-
ver, population, GDP, and coal combustion have a greater 
impact on HMW PAHs than on LMW PAHs. The results 
of the diagnostic ratios and PCA model show that the main 
sources of PAHs were coal and biomass combustion, as 
well as fossil fuel combustion in a few individual years. 

PAH concentrations in the sediment were within a safe 
range. In the sediment pore water, 2–3 ring LMW PAHs 
were within a safe range for the past 100 years, except 
for Phe, which reached chronic toxicity pollution levels in 
some years. With the development of industrialization and 
urbanization, the burning of fossil fuels such as coal and 

Fig. 9  Sediment records of 
PAHs in different lakes from 
different countries. Note: The 
above figures are referenced 
and modified from the literature 
(Furlong et al. 1987; Kannan 
et al. 2005; Fernández et al. 
2000)
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petroleum has increased, and some 4–6 ring HMW PAHs 
have reached chronic toxicity or even acute toxicity in the 
sediment pore water.
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