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Abstract
Modelling of liquid–solid batch adsorption based on mass transfer and conservation equations results in differential equa-
tions that may have or not an analytical solution. Even when analytical solutions are available, several simplified models can 
be considered for evaluating kinetic data of batch adsorption experiments. However, these simplified models are commonly 
used regardless of the premises considered in its development, and the analysis of the kinetic experiments based on these 
simplified models may be severely compromised. For this reason, this work presents a detailed development of the phenom-
enological models, and the hypotheses considered in its development are clearly stated. Typical simplified models derived 
from the phenomenological ones are obtained, and the conditions considered in the simplification are critically assessed. 
It was observed that the simplified models fail mainly for considering the concentration of the bulk phase constant over 
time or considering a linear adsorption isotherm. It must be emphasised that even when phenomenological models must be 
solved through numerical procedures, its use must be preferred, since the agreement with model premises and experimental 
conditions are closer, ensuring the quality of the kinetic data analysis.

Keywords  Adsorption kinetics · Batch adsorption · Liquid–solid adsorption · Mass transfer · Phenomenological models · 
Simplified kinetic models

Introduction

Adsorption is a separation technique widely used in 
water and effluent treatment processes (Gupta and Suhas 
2009; Fallou et al. 2016). The commonly used adsorbents 
include activated carbon, zeolites, silica, ion exchange res-
ins and some other low-cost materials (Ruthven 1984; Do 
1998; Gupta and Suhas 2009). The understanding of the 

equilibrium and kinetics of the adsorption process is essen-
tial for evaluation and comparison of different adsorbents, 
providing information about the adsorption capacity and 
time required to reach equilibrium. Additionally, obtaining 
information on performance and mechanisms that are occur-
ring during the adsorption process is also an important step 
to evaluate an adsorbent (Qiu et al. 2009).

Several models were developed to describe the processes 
that occur in adsorption. These models are usually based on 
phenomenological principles using conservation equations, 
equilibrium relation and mass transport equations, as the 
homogeneous surface diffusion model (HSDM), pore vol-
ume diffusion model (PVDM) and pore volume and surface 
diffusion model (PVSDM) (Roy et al. 1993; Leyva-Ramos 
and Geankoplis 1994; Lyn 1996; Souza et al. 2017). The 
mass transfer phenomenon comprises a sequence of steps: 
(i) The mass is transferred from the bulk phase through 
the stagnant liquid film around the adsorbent particle to its 
external surface (convective external mass transfer); (ii) the 
intraparticle diffusion of the solute within the adsorbent 
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porous that can happen by diffusion in the fluid phase con-
fined in the particle porous and by surface diffusion of the 
adsorbed molecules of solute; and (iii) adsorption of solute 
from fluid phase in the particle porous to the porous surface 
(this is the actual adsorption step) (Malash and El-Khaiary 
2010; Yao and Chen 2015, 2017; Schwaab et al. 2017).

Any single step or combination of these steps can be 
defined as the process control mechanism. In porous materi-
als, the adsorption step is typically much faster than the mass 
transfer steps, and it is usually assumed that the porous fluid 
phase and surface phase concentrations are locally at equi-
librium (Malash and El-Khaiary 2010; Yao and Chen 2017).

When intraparticle diffusion is considered, the phenom-
enological approaches lead to a partial differential equation 
for prediction the concentration profile as a function of par-
ticle length and time. This equation only has analytical solu-
tion when kinetics of adsorption inside particle porous (step 
iii) are considered at equilibrium (a reasonable hypothesis) 
and the equilibrium is well described by a linear adsorp-
tion isotherm; that is, it follows the Henry Law. This last 
assumption is only valid when concentrations are low inside 
adsorbent particle, as it is in the beginning of the batch 
adsorption experiment. Otherwise, this is not a reasonable 
assumption since nonlinearity of the adsorption isotherm 
must be considered. In this case, the model equations do not 
have an analytical solution and must be solved with the help 
of numerical procedures (Silva et al. 2014; Schwaab et al. 
2017; Souza et al. 2017).

In order to avoid the numerical solution of the partial 
differential equations (Digiano and Weber 1973; Letterman 
et al. 1974; Yao and Chen 2015), simplified procedures and 
models are commonly used, although the conditions consid-
ered for simplification of the solution are not usually com-
patible to the conditions of the experimental setup.

For this reason, the objective of this study is to review 
the development of phenomenological models, with special 
attention to the initial and boundary conditions considered 
to solve model equations and other additional premises (usu-
ally considered to allow model solution or simplification), 
with special attention in the reliability of these conditions 
and assumptions for applications in the analyses of batch 
adsorption experiments. It will be shown that the conditions 
considered in the development and simplifications of the 
models are generally not in good agreement with the condi-
tions typically found in batch adsorption experiments. Since 
these simplified models are typically used for estimation of 
mass transfer parameters and evaluation of the adsorption/
mass transfer principal mechanism, one can argue if these 
simplified models, based on unreasonable assumptions, are 
adequate for the analysis of kinetic data of batch adsorption. 
Finally, it is emphasized that the use of numerical proce-
dures for solution of partial differential equations is nowa-
days available in many software and different computational 

languages and its use must be preferred since the conditions 
considered can be much closer to the actual experimental 
ones, improving the analysis quality of batch adsorption 
experimental data.

Intraparticle mass transfer model

This section is focused on derivation of phenomenological 
models based on intraparticle mass transfer for liquid–solid 
adsorption in batch systems. The adsorbent particle is con-
sidered porous, and the mass transfer flux inside particle 
is described by the Fick law in the pore space and in the 
adsorbed phase; that is, pore and surface diffusion are con-
sidered. Initially, it is presented a mass balance in the adsor-
bent particle and some analytical solutions when the batch 
adsorber is considered an infinite bath, that is, with concen-
tration of the liquid bulk phase constant over time. Then, it 
is presented the mass balance of the liquid bulk phase that 
is needed for considering the batch adsorber as a finite bath 
with its concentration varying over time.

Mass balance in the adsorbent particle

Adsorbents are usually composed by solid porous particles. 
Inside these particles, a single adsorbate in a liquid phase, 
for instance, can be transferred through pore phase and sur-
face diffusion. Although there are some complex models that 
consider separated mass transfer equations for macropore 
and micropore particle regions (Ruthven 1984; Do 1998; 
Inglezakis et al. 2018) or variable diffusivity (Inglezakis 
et al. 2019), the scope of this paper is to discuss the com-
mon simplified models used in the literature. Furthermore, 
Lagergren pseudo first and second order models (Ho and 
McKay 1999; Ho 2004; Tien and Ramarao 2014; Rodri-
gues and Silva 2016), Elovich model (Turner 1975; Chien 
and Clayton 1980; Largitte and Pasquier 2016) and kinetic 
models based on Langmuir adsorption/desorption rate (Ho 
et al. 2000; Largitte and Pasquier 2016; de Assis Filho et al. 
2021) were not considered in this work, since these models 
are not based on mass transfer phenomenon.

Then, considering a homogenous porous particle, an uni-
dimensional mass balance leads to Equation (1) (Do 1998), 
where the two terms in the left side describes the time vari-
ation of the concentrations in the pore fluid phase Cp and 
on the solid surface q, and (Do 1998) the two terms in the 
right side described the mass transfer by pore and surface 
diffusion, respectively. Besides, Dp and Ds are the porous 
and surface diffusivities, that are considered constant, t is 
the time, r is the spatial distance in the particle, and S is 
the particle shape factor, that is equal to 0, 1 and 2 for slab, 
cylinder and sphere, respectively. Finally, ε is the particle 
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porosity and ρp is the particle density, that is related to the 
solid density ρs, according to �p = �s(1 − �).

The second term in the left side of Equation (1) can be 
seen as the actual rate of adsorption. As briefly discussed in 
the “Introduction” section, the rate of mass transfer by diffu-
sion is usually much slower than the adsorption rate, and it is 
reasonable to consider that concentrations in the fluid phase 
inside particle pores are at equilibrium with concentration on 
the pore surface. Since these concentrations at equilibrium 
are usually related to each other by an adsorption isotherm, 
it can be written that q is a function of Cp and its variation 
as a function of time t and space r can be written according 
to Equation (2), where x stands for t or r:

Substituting Equation (2) into Equation (1) leads to Equa-
tion (3). It must be observed that the derivative �q∕�Cp is 
usually an implicit function of spatial variable r and when 
the last term of Equation (3) is expanded through the differ-
entiation, a second order derivative appear, that is, �2q∕�C2

p
 . 

This expansion will not be shown here since it is not nec-
essary for the development of the simplified models usu-
ally considered in the literature, although it is an important 
observation to be done, especially when nonlinear isotherms 
are considered (Do 1998; Souza et al. 2020).

When adsorption isotherm is well described by a liner 
equation, that is, follows the Henry law, the derivative of q 
with respect to Cp is a constant K, as shown in Equation (4), 
and Equation (3) can be rewritten as Equation (5), where 
Dapp is the apparent diffusivity defined in Equation (6) that 
takes into account both porous and surface diffusivities, 
equilibrium constant and porosity and density of particle.
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The definition of the apparent diffusivity in Equation (6) 
shows that it has a weighted contribution of both porous and 
surface diffusivities, and this model is then called a pore 
volume and surface diffusion model, PVSDM; when surface 
diffusion can be neglected, Ds is assumed to be null, and the 
model is called pore volume diffusion model, PVDM; on the 
other side, when diffusion in the porous of the particle can 
be neglected, that is Dp and/or ε is null, apparent diffusiv-
ity is equal to surface diffusivity, and the model is called 
surface diffusion model, SDM, or homogeneous surface dif-
fusion model, HSDM (Do and Rice 1987; Roy et al. 1993; 
Ocampo-Pérez et al. 2013; Viegas et al. 2014).

Equation (5) is a partial differential equation for its an 
initial condition, Equation (7), and two boundary condition, 
Equations (8) and (9), are necessary. The initial condition 
defines a uniform initial concentration inside particle pores, 
and, since it is usually used a fresh adsorbent, this value is 
commonly equal to zero. Boundary condition in the particle 
centre, that is, at r equal to 0, is the symmetry condition. In 
Equation (9), km is the convective mass transfer coefficient in 
the stagnated liquid film surrounding the adsorbent particle, 
and Cb is the concentration of the liquid bulk phase of the 
batch adsorber. This condition states the boundary condition 
at the external particle surface, that is, at r equal to R, and is 
defined by equalling the flux of mass transfer by convection 
from the liquid bulk phase to the external particle surface, 
with the flux of mass transfer by pore volume and surface 
diffusion.

An important dimensionless number that arises from the 
boundary condition at the external particle surface is the 
Biot number and is defined as.

The Biot number is the ratio between the internal to 
external resistances to mass transfer. Considering that batch 
adsorption experiments are usually performed with small 
adsorbent particles and in well agitated baths, Biot number 
tends to be very high (in fact, it usually tends to infinity), 
and the external resistance to mass transfer can be neglected, 
leading the boundary condition at the external particle sur-
face to be simplified to:

(7)Cp
|||t=0 = 0

(8)
�CP

�r

||||r=0
= 0

(9)−
(
�Dp + �pKDs

) �Cp

�r

|||||r=R
= km

(
Cp

|||r=R − Cb

)

(10)Bi =
kmR

�Ds + �pKDs
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In this way, under the assumption of constant pore volume 
and surface diffusivities and, principally, considering that the 
adsorption equilibrium is well described by a linear adsorption 
isotherm, the mass transfer model for a porous solid adsorbent 
is described by Equation (5), together with initial and bound-
ary conditions defined in Equations (7), (8) and (9) or (11).

Analytical solutions for infinite bath

The partial differential equation can be solved analytically, 
and this solution provides the concentration inside adsorbent 
particle as a function of time and position. However, the major 
interest usually is not in the concentration profile inside par-
ticle, but in the total adsorbate removal. This value is closely 
related to the average concentration inside particle, Cp , that can 
be related to the fractional uptake, F, according Equation (12) 
(Do 1998; Schwaab et al. 2017). According to this equation, at 
time equal zero, fractional uptake is null, since bulk concentra-
tion is equal to its initial value Cb0 and also in accordance to 
the initial condition in the particle, Equation (7); by the other 
side, when the average concentration inside particle reaches 
the concentration in the liquid bulk phase, Cb, fractional uptake 
is equal to 1.

It is important to point out that this definition considers 
that bulk concentration can vary over time that characterizes 
a finite bath system. However, when an infinite bath system is 
considered, Cb is constant over time. Then fractional uptake is 
computed according to Equation (13), that is the ratio between 
average concentration inside particle, and its maximum value, 
that is equal to Cb, or the ratio between the average concentra-
tion on the solid surface and its maximum value, that is equal 
to product KCb.

Using the method of separation of variables, a general solu-
tion can be written for the three classical geometries (Crank 
1975; Do 1998; Schwaab et al. 2017) as a function of the shape 
factor S, according to Equation (14), where τ is the dimension-
less time, also known as the Fourier number, and is defined 
in Equation (15):
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When external resistance to convective mass transfer is 
negligible, Biot number tends to infinite, and Equation (14) 
is rewritten according to the Equation (16):

In Equations (14) and (16), the values of γn are the posi-
tive roots of characteristic equations defined in Table 1. 
When external resistance to mass transfer is negligible, these 
characteristic equations have analytical solutions for plane 
and spherical geometries.

Although these analytical solutions involve a sum of 
infinite terms, these series usually converges rapidly when 
dimensionless time τ is high, and only the first term of these 
solutions is necessary to provide reasonable predictions.

By the other side, these solutions converge slowly for low 
values of τ, and alternative solutions should be considered. 
These solutions can be obtained with the Laplace transform 
method (Crank 1975; Albadarin et al. 2011; Schwaab et al. 
2017) and are presented in Table 2, only considering the case 
with negligible external resistance to mass transfer these. It 
must be pointed out that solutions for plane and spherical 
geometries can be presented in a closed analytical form, but 
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n
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Table 1   Characteristic values or equations for the three typical geom-
etries

Shape Characteristic values 
or equations

Negligible external mass 
transfer resistance

Slab �
n
= (2n − 1)

�

2

Cylinder J0
(
�
n

)
= 0

Sphere �
n
= n�
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mass transfer resistance
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n
tan

(
�
n

)
= Bi

Cylinder �
n
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(
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n

)
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n
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(
�
n

)
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Table 2   Solutions obtained with the Laplace transform method 
for infinite bath with negligible external resistance to mass transfer 
(Schwaab et al. 2017)

Shape Solution

Plane
F = 2

√
�{

1√
�
+ 2

∞∑
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(−1)nierfc(
n√
�
)}
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F = 4
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3
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�3 +⋯
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√
�[
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�
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n√
�
)] − 3�
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for cylindrical geometry, only an open and approximated 
solution could be developed (Schwaab et al. 2017).

At this point, it is important to notice that the solu-
tions presented in this section are strictly valid only for 
infinite baths where bulk concentration remains constant 
over time and considering a linear adsorption isotherm. 
Furthermore, some solution are only valid for negligible 
external resistance to mass transfer, that is, when Biot 
number tends to infinite and concentration at external par-
ticle surface is equal to the Bulk concentration, according 
to the boundary condition presented in Equation (11).

Analytical solutions for finite bath

When bulk concentration decreases significantly, an 
infinite bath approach can not be considered and a mass 
balance equation for the bulk phase must be considered, 
according Equation (17). This equation must be solved 
simultaneously with Equation (3), that is, the mass balance 
in the solid adsorbent particle. In this case, any adsorp-
tion isotherm can be considered, but the solution generally 
only is obtained through numerical procedures (Do 1998; 
Schwaab et al. 2017; Souza et al. 2017).

In Equation (17), M is the adsorbent mass, V the volume 
of the bulk phase, and rb is the rate of mass transfer from 
the bulk phase to the interior of the particles (the value of rb 
is negative in the adsorption process, since bulk concentra-
tion decrease over time). This rate is closely related with the 
boundary condition defined in Equation (9). Then, this rate 
can be defined with respect to the convective mass transfer 
from bulk phase to the external surface of particles or with 
respect to the diffusive mass transfer from the external sur-
face of particles into the particle, according to Equations 
(18) and (19), respectively. In both equations,  (S + 1)/R is 
the ratio of external surface area to volume (Ap/Vp) of each 
particle shape, and Jconv and Jdif are the convective and dif-
fusive mass transfer fluxes at the external particle surface 
(both values are negative in the adsorption process).

Both Equations (18) or (19) can be inserted into Equa-
tion (17), and, also considering Equations (6) and (10), one 

(17)
dCb

dt
=

M

V�p
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(18)rb,con =
AP

Vp

Jconv =
(S + 1)

R
km(Cp|r=R − Cb)

(19)rb,dif =
AP

Vp

Jdif =
(S + 1)

R
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�Cp

�r
|
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]

may obtain Equations (20) and (21). Particularly in Equation 
(21), η is a dimensionless spatial variable, defined as η = r/R:

In Equations (20) or (21), ξ is the mass capacity factor 
(Rodrigues and Silva 2016), a constant defined according to 
Equation (22). When ξ tends to zero, this finite bath model 
will lead to similar results obtained with the infinite bath 
models presented in the previous section.

Once again, if the adsorption isotherm is linear, analytical 
solution can be obtained through Laplace transform (Crank 
1975). For the case without external resistance to mass trans-
fer, solutions can be concisely written according to Equation 
(23), with γn the roots of characteristic equations presented 
in Table 3. Sometimes, in these solutions, it is considered 
the constant α (Crank 1975) that is the inverse of the mass 
capacity factor ξ, defined in Equation (22).

General solutions for the finite bath model consider-
ing a linear adsorption isotherm can be developed. These 
solutions consider the cases with significant and negligible 
external resistance to mass and are based on generic Bessel 
functions that can be readily simplified to classical forms 
when particle geometry is chosen. Do (1998) presented the 
solution for spherical particle, and in Equation (24), generic 
solutions for the three traditional particle shapes are pre-
sented, with γn the roots of characteristic equations presented 
in Table 4.
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Table 3   Characteristic equations for computation of finite bath solu-
tions with negligible external resistance to mass transfer (Crank 1975)

Shape Characteristic equation

Plane �tan(�
n
) = −�

n

Cylinder �
n
J0
(
�
n

)
= −2�J1

(
�
n

)
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(
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Equation (24) is the same for PVSDM, PVDM and SDM 
(or HSDM), since it was considered a linear adsorption equi-
librium relationship, that is, the Henry Law. This equation 
will be continuously considered in this paper to evaluate 
some model simplification, and it will be called as finite bath 
diffusion model, FBDM.

As it happens with solution presented in Equation (16) for 
infinite bath, the solutions presented in Equations (23) and 
(24) converge rapidly when dimensionless time τ is high, and 
then, only the first term of the sum is sufficient to provide 
reasonable values (Lyn 1996).

It is important to notice that in adsorption systems involv-
ing adsorption in well-agitated baths, intraparticle diffu-
sional resistance is usually the step that controls the adsorp-
tion rate; that is, the Biot number usually tends to infinite. It 
is worthwhile to analyse the lower Biot number value that 
one can assume a value high enough to neglect the exter-
nal resistance to mass transfer. Figure 1 presents contour 
lines comparing the deviations between Equation (23) and 
Equation (24), that is, neglecting and considering external 
resistance to mass transfer. In Fig. 1, this comparison can be 
seen, considering spherical particles and with mass capacity 
factor ξ equal to 1 (graphical comparison for other geom-
etries and ξ are presented in the Supplementary Material). 
Considering a percentual deviation of 1% as the minimum 
required accuracy, at Biot number equal to 1000, neglect-
ing the external resistance to mass transfer is only suitable 
when fractional uptake is higher than 0.4. For lower values 
of Biot number, even higher fractional uptakes are needed. 
It is important to observe that at such high Biot number, the 
fractional uptake increases extremely rapid at the beginning 
of the process. Furthermore, it is in accordance with Fig. 1B, 

where relatively low values of Biot number can lead to a 
good accuracy if the dimensionless time is not so close to 
zero. For instance, considering a τ equal to 0.2, an accuracy 
of 1% is obtained with a Biot number around 15, a consider-
ably small value that already allows one to neglect external 
resistance to mass transfer.

In Fig. 2, it is presented the fractional uptake computed 
as a function of dimensionless time τ for different values of 
mass capacity factor ξ, for spherical particles and Bi equal 
to 1. It was used Equation (16) when ξ is equal to 0, since 
it defines an infinite bath, and Equation (24) for values of 
ξ higher than zero. It is important to notice that the typi-
cal values of ξ usually are in the range from 0.1 to 10 that, 
for a linear adsorption isotherm, lead to percentual removal 
from 0.91 to 0.09. It becomes clear that the infinite bath 
predictions (black line in Fig. 1) are quite different than the 
usual behaviour. Although one could suppose that when its 
measured values of adsorbed concentration, q, are normal-
ized with the equilibrium values qe, leading to calculation of 
the fractional uptake according to Equation (12), it becomes 
clear from Fig. 2 that this normalization does not lead to 
similar prediction. Furthermore, when researchers consider 

Table 4   Characteristic equations for computation of finite bath solu-
tions with external resistance to mass transfer

Shape Characteristic equation

Plane (�2
n
− �Bi)tan(�

n
) = �

n
Bi

Cylinder (�2
n
− 2�Bi)J1(�n) = �

n
BiJ0(�n)

Sphere (�2
n
− 3�Bi)[1 − �

n
cot(�

n
)] = �2

n
Bi

Fig. 1   Contour lines of percen-
tual deviations between predic-
tions neglecting (Equation (23)) 
and considering (Equation (24)) 
external resistance to mass 
transfer for spherical particles 
and ξ equal to 1

Fig. 2   Fractional uptake computed for finite bath with different val-
ues of mass capacity factor ξ and for infinite bath (ξ = 0), with Bi = 1 
and spherical particles
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equations derived from an infinite bath approach to estimate 
the mass transfer parameters, they should be aware of the 
estimation of biased values, since the parameter values will 
be dislocated to compensate for different model predictions.

Consequently, these solutions considering the change in 
the bulk concentration over time can lead to predictions that 
are much closer to the usual experimental conditions when 
compared with prediction obtained with models based the 
infinite bath approach. Despite this, analytical solutions for 
finite bath systems with a linear adsorption isotherm are 
rarely considered (Edeskuty and Amundson 1952; Dotto and 
Pinto 2012; Brandani 2020).

EMT model

Until now, the mass transfer-based models presented in this 
paper always considered internal resistance to mass trans-
fer, that is usually the common case, since rate of diffusion 
inside the particle pores tends to be the rate-limiting step. 
However, when particle characteristic length is small and the 
bulk phase is not vigorously agitated, one may find condi-
tions where only external mass transfer is significant and 
concentrations inside particle do not vary significantly along 
the space. In this case, two ordinary differential equations 
describing the mass balance in the bulk phase and the mass 
balance in the solid phase, respectively, Equations (25) and 
(26), are sufficient to describe the entire system. (A detailed 
derivation of these equations is presented in Section S1 of 
the Supplementary Material.)

Initial conditions are still necessary. At the beginning, bulk 
concentration is equal to CB0, and adsorbed concentration q is 
usually equal to zero, since usually a fresh adsorbent is used in 
the experiments. Furthermore, concentration in the adsorbed 
phase q and concentration at the particle CP can be assumed at 
equilibrium and are related to each other through the adsorp-
tion isotherm, as shown in Equation (2). In general, this system 
of two ordinary differential equations does not have analytical 
solution because the nonlinearity that was introduced by the 
equilibrium relation. However, since it is being considered a 
linear adsorption isotherm, simultaneous solution of Equations 
(25) and (26) lead to Equations (27) and (28):

(25)
dCb

dt
= −

M

�pV

(S + 1)

R
km(Cb − Cp)

(26)
dCp

dt
=

1

(� + �pK)

(S + 1)

R
km(Cb − Cp)

(27)Cb =
Cb0

(1 + �)
{1 + �exp[−(1 + �)(

S + 1

� + �pK
)
km

R
t]}

From Equation (28), it can be seen that the equilibrium 
concentration (taking the limit as t goes to infinity) is equal 
to the term outside the brackets. Then, the fractional uptake 
can be computed according to.

The EMT model is sometimes called the Furusawa and 
Smith model, since these authors probably were one of the 
firsts to publish this model (Furusawa and Smith 1973; 
McKay and McConvey 1981; McKay et al. 1986).

One question that frequently arises is the definition of 
the critical value of Biot number that defines the validity 
of EMT model. On straightforward way to evaluate this is 
a comparison between prediction with EMT model and the 
FBDM, presented in Equation (24), that consider both intra-
particle and external resistance to mass transfer. For this, 
Equation (29) is rewritten according to Equation (30), where 
fractional uptake is written as a function of Biot number and 
dimensionless time τ.

In Fig. 3, these model predictions are compared for spher-
ical particles, S equal to 2, and with a mass capacity factor 
ξ equal to 1. It is important to notice that this comparison 
considers that adsorption equilibrium follows a linear rela-
tionship, that is, follows Henry Law, since this assumption 
was done in the development of Equations (24) and (30).

Observing Fig. 3A, where the percentual deviations of 
EMT model with respect to Equation (24) are presented, 
it can be seen that with a Biot number lower than 0.1, the 
percentual deviation of EMT model is lower than 1%. 
In Fig. 3B, a similar trend is observed, but it also can be 
seen that when that even when Biot number is high, that is 
Bi > 10, if dimensionless time τ are higher than 0.3, EMT 
model becomes suitable. This happens because fractional 
uptake is close to 1 for EMT model and FBDM, and both 
model predictions are similar.

Additional evaluation of EMT model (see the Sup-
plementary Material) for the three traditional geometries 
showed that slightly lower values of Biot number are nec-
essary to achieve the same accuracy for cylindrical par-
ticles and even slightly lower for slab particles. It also 
evaluated different values of the mass capacity factor ξ, 
and it was found that the value of ξ has a marginal effect 
on the contour levels: An increase of the value of ξ leads 
to a slight increase in the EMT accuracy. However, it is 
important to observe that the effects of particle geometry 
and ξ value are small and the critical value of Biot equal 

(28)Cs =
Cb0

(1 + �)
{1 − exp[−(1 + �)(

S + 1

� + �pK
)
km

R
t]}

(29)F = 1 − exp[−(1 + �)(
S + 1

� + �pK
)
km

R
t]

(30)F = 1 − exp[−(1 + �)(S + 1)Bi �]
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0.1 is a good value to compute values with an accuracy 
(percentual deviation) around 1%. One can argue that 
experimental measurements are usually not obtained with 
such accuracy, and it is not imperative for the model to be 
so accurate; in this case, one can find appropriate the use 
of EMT model even with when Biot number is equal 1. Do 
and Rice (1990) stated that EMT model can be considered 
valid when Biot number is lower than 0.2, although they 
did not define the level of deviation with this Biot value. 
By the other side, if someone is interested in more accu-
rate predictions, EMT model should be considered only 
for even lower values of Biot number.

LDF model

The linear driving force model was suggested by Coates and 
Glueckauf (1947) and Glueckauf (1955) in order to describe 
intraparticle mass transfer in adsorption processes in a sim-
plified form. Rather than considering the partial differen-
tial equation presented in Equation (3),  LDF model simply 
defines that the rate of adsorption is proportional to the dif-
ference between an hypothetical adsorbed concentration q∗ 
that would be at equilibrium with bulk concentration CB 
and the current average adsorbed concentration q , accord-
ing to the Equation (31), where kLDF is the proportionality 
constant that can be related to the homogeneous particle 
diffusivity, Dh, and particle size for spherical particles as 
shown in Equation (32) (Glueckauf 1955; Li and Yang 1999; 
Rodrigues and Silva 2016).

A generic version of Equation (32) can be obtained for 
other tradition particle geometries (different values of S) and 
also considering a generalized concentration profile (Liaw 

(31)
dq

dt
= kLDF(q

∗ − q)

(32)kLDF =
15Dh

R2

et al. 1979; Li and Yang 1999; Sircar and Hufton 2000a; 
Patton et al. 2004). Considering a parabolic concentration 
profile, Equation (33) is obtained. (Development of this 
equation is shown in the Supplementary Material.)

The change in the bulk concentration can be defined 
according to the Equation (34):

Considering a linear adsorption isotherm, Equations (31) 
and (34) can be solved leading to an analytical solution, as 
shown in Equation (35). Factional uptake can again be read-
ily computed according to the Equation (36):

It is important to observe the similarities between 
Equations (29) and (36) for computation of the fractional 
uptake, respectively, with the EMT and LDF models 
applied to batch adsorption process. The mathematical 
behaviour of both equations is similar; the difference is 
only related to the value of constant kLDF and the value 
of the group (S + 1)km∕(R�pK) . Consequently, when these 
models are used to describe experimental data from batch 
adsorption experiments and the values of parameters kLDF 
and km are estimated, the quality of both model fits will be 
the same, not allowing the discrimination between these 
two models, although being based on different theoretical 
approaches.

In order to compare LDF model with FBDM based on 
Equation (24), Equation (33) was used in Equation (36), 
leading to Equation (37), allowing fractional uptake pre-
dicted by LDF model to be plotted as a function of dimen-
sionless time τ, as shown in Fig. 4.

(33)kLDF =
(S + 1)(S + 3)Dapp

R2

(34)
dCB

dt
= −

M

V
kLDF(q

∗ − q)

(35)q =
Cb0K

1 + �
{1 − exp[−(1 + �)kLDF t]}

(36)F = 1 − exp[−(1 + �)kLDF t]

Fig. 3   Contour lines of percen-
tual deviations of EMT model 
with respect to FBDM (Equa-
tion (24)) for spherical particles 
and ξ equal to 1
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However, Equation (37) is valid only when external 
resistance to mass transfer is negligible, that is, when Biot 
number tends to infinity. Considering Equation (25) for 
description of bulk phase concentration variation, Equa-
tion (31) for adsorbed concentration and Equations (9) and 
(10) as a boundary condition between these two phases, a 
solution can be derived leading to a LDF model that take 
into account external resistance to mass transfer, as shown 
in Equation (38) (Rice 1982; Hills 1986):

In order to compare this LDF model with finite Biot 
values, Equation (38) is rewritten according to Equation 
(39), where Equation (33) is also considered to allow the 
computation of the fractional uptake as a function of the 
dimensionless time. Then, predictions with this model 
were compared with FBDM in order to evaluate the appli-
cability of LDF model, as shown in Fig. 4.

(37)F = 1 − exp[−(1 + �)(S + 1)(S + 3) �]

(38)q =
Cb0K

1 + �
{1 − exp[−(1 + �)(

Bi

(S + 3) + Bi
)kLDF t]}

It can be seen in Fig. 4 that LDF model prediction are 
close to predictions from FBDM when Biot number is lower 
than 1. It is expected since at low Biot values, external resist-
ance is the rate controlling step and these two models (and 
EMT model) lead to similar results. However, at high Biot 
values, LDF model is not able to predict values close to 
FBDM. Some works (Glueckauf 1955; Yang 1997) stated 
that LDF model is valid only when dimensionless time τ 
is higher than 0.1, since at the beginning of the adsorption 
batch process, the quadratic approximation for the concen-
tration profile inside adsorbent particle is not adequate. 
However, when Biot number is high, the fractional uptake 
increases very quickly, as shown in Fig. 4.

In order to allow a better evaluation, percentual deviations 
between LDF and FBD model were computed for several 
values of dimensionless time, fractional uptake and Biot 
number, and the contour lines of the percentual deviation 
are shown in Fig. 5 (figures for different values of ξ and dif-
ferent particle geometries can be found in the Supplementary 
Material). It is reasonable to define that LDF model is suit-
able when dimensionless time is higher than 0.1 (Fig. 5B). 
However, considering Fig. 5A, if a maximum percentual 
deviation of 1% is considered, LDF model is not suitable 
when Biot is higher than 5 (in fact, it will be suitable only in 
a narrow range around a fractional uptake of 0.8 and when 
this value is close to 1). However, if one considers 5% as the 
maximum allowable percentual deviation, that LDF model 
can be considered suitable when fractional uptake is higher 
than 0.76 (this is the value for conditions considered to draw 
Fig. 5; although this value is different for other conditions, 
the overall conclusions are similar, according to figures pre-
sented in the Supplementary Material).

It also can be seen in Fig. 5 that LDF model is suitable for 
low values of Biot number. However, this happens because 
it was considered a LDF model with external resistance to 
mass transfer. It seems that LDF model is suitable at critical 
Bi values slightly higher than EMT model (see Fig. 3). It is 
important to observe that when adsorption on heterogeneous 

(39)F = 1 − exp[−(1 + �)(S + 1)(S + 3)(
Bi

(S + 3) + Bi
) �]

Fig. 4   Fractional uptake computed with LDF model (dashed lines) 
and FBDM (full lines) considering external resistance to mass trans-
fer with, ξ equal to 1 and for spherical particles

Fig. 5   Contour lines of percen-
tual deviations of LDF model 
with respect to FBDM (Equa-
tion (24)) for spherical particles 
and ξ equal to 1
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solids is considered, LDF model usually works for descrip-
tion of adsorption kinetics because the details of the adsorp-
tion kinetics are lost particularly in the evaluation of overall 
uptake (Sircar and Hufton 2000b). However, one should be 
aware when using LDF model in the estimation of diffusivi-
ties, since it can be obtained biased values due to model dif-
ferences from more rigorous models that considers a more 
accurate concentration profile inside adsorbent particle 
(Hills 1986; Do and Rice 1990).

Further simplified models

In this section, it presented two simplified models usually 
considered to describe kinetic data from batch adsorption 
experiments. Both models are based on analytical solutions 
obtained for infinite bath without external resistance to mass 
transfer and considering a linear isotherm to describe the 
equilibrium of adsorption.

Time square root model

The solutions presented in Table 2 can be simplified consid-
ering only the term where dimensionless time is raised to 
1/2; that is, the fractional uptake (or the adsorbed concentra-
tion q) is considered proportional to the square root of time, 
according to the Equation (40):

This simplification is only reasonable if some condi-
tions are observed. The principal restriction is that this 
simplification is reasonable only when applied to the 
beginning of the batch adsorption processes and it is so 
because of three reasons: Firstly, the solutions presented in 
Table 2 were developed considering that bulk concentra-
tion remains constant over time, that is, an infinite bath; 
secondly, it was considered a linear adsorption isotherm 
that is also suitable at the beginning when concentrations 

(40)F = 2(S + 1)

�
�

�
= 2(S + 1)

�
Dapp

�R2

√
t

inside adsorbent particles are still at a low level; thirdly, 
considering only the term with the square root of time 
is only reasonable at low values of time, since the other 
terms can be neglected. These three conditions are rea-
sonable satisfied at the beginning of the batch adsorption 
process. However, it is important to clearly state the dura-
tion of this initial part of the process when the square root 
model is adequate.

In Fig. 6, the difference between fractional uptake form 
square root model and infinite bath model are presented as 
a function of fractional uptake and dimensionless time. For 
plane adsorbent particle (S = 0), the square root model can 
provide reasonable prediction (deviation lower that 0.01) 
for fractional uptake up to 0.7. However, when cylindri-
cal (S = 1) and spherical (S = 2) particles are considered, 
reasonable predictions are obtained only for fractional 
uptakes lower than 0.2. Figure 6B also shows that for 
these particle geometries, reasonable predictions are only 
obtained at very low dimensionless time values. It can 
be observed in Table 2 that for cylindrical and spherical 
particles, a linear term of τ must be discarded to obtain 
the square root model. For plane particles, only the sum of 
integrals of complementary error function are discarded, 
and these values are only relevant at high time values. For 
this reason, the square root model works better for plane 
particles and does not seem a good choice when working 
with cylindrical or spherical particles.

Although this clear limitation on its prediction quality, 
the square root model is routinely used to evaluate intra-
particle diffusion, and it is commonly called as “Weber and 
Morris intraparticle diffusion model” (Weber and Morris 
1963). Usually, this model is represented by Equation (41), 
where the adsorbed concentration q varies linearly as a func-
tion of the square root of time, where Kid is defined as the 
intraparticle diffusion rate constant (in fact, Kid is a lumped 
parameter (Simonin and Bouté 2016), as can be seen through 
comparison between Equations (40) and (41)), and C is a 
constant that is usually erroneously related to the thickness 
of the boundary layer (Ahmad and Rahman 2011; Chen and 
Zhang 2014; Vinhal et al. 2015; Basu et al. 2018).

Fig. 6   Comparison between 
square root and infinite bath 
models (dashed lines indicate 
where difference between model 
predictions is 0.01 and 0.05)
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It is important to notice that solutions presented in Table 2 
were obtained for the case when external resistance to mass 
transfer can be neglected. If the experimental data follows 
this assumption, the line plot of q versus square root of time 
will pass through the origin. If there is significant external 
resistance to mass transfer, the line will not pass through the 
origin. Unfortunately, there are too many papers published 
in the literature that erroneously compute a positive value 
of constant C and ascribe it to the thickness of the bound-
ary layer (Srivastava et al. 2006; Ahmad and Rahman 2011; 
Basu et al. 2018). However, when an additional resistance is 
considered, it seems reasonable that it must have a negative 
effect on the rate of adsorption, leading to a negative value 
of C. This was clearly shown in a previous paper (Schwaab 
et al. 2017), when solutions for semi-infinity slabs with and 
without external resistance to mass transfer were compared, 
showing that when external resistance to mass transfer is 
significant, the constant C must be negative. Positive val-
ues of constant C have been found in the literature probably 
because experimental values measured at high time values 
are being used, that is, experimental conditions where time 
square root model is not more suitable to describe the batch 
adsorption behaviour.

Another common mistake when considering this model 
is to represent the data as a sequence of linear sections and 
assigning a specific mass transfer mechanism to each one 
(Allen et al. 1989; Ho and McKay 1998; Koumanova et al. 
2003; Alkan et al. 2007). There are some works (Malash 
and El-Khaiary 2010; El-Khaiary and Malash 2011) that 
even proposed the use of a piecewise linear regression tool 
to clearly identify each one of the linear segments. However, 
the use of this sequence of linear sections does not have 
any rigorous physical foundation and should not be used 
to analyse kinetic data from batch adsorption experiments 
(Chatterjee and Schiewer 2014; Da Ros et al. 2017; Ingleza-
kis et al. 2019).

For these reasons, the linear relationship between 
adsorbed concentration (or fractional uptake) with square 
root of time must be carefully considered and, in our opin-
ion, should not be used to describe kinetic data, since it is 
based in an approximation of model that considers an infinite 
bath that already is a rough approximation of actual condi-
tion considered in batch adsorption experiments.

Boyd‑Reichenberg model

Another model based on mass transfer that is frequently 
considered is the Boyd model (Boyd et al. 1947). How-
ever, in this work, Boyd and co-workers considered the 
model presented in Equation (16) for spherical particles 
with characteristic values computed according Table 1, as 

(41)q = Kid

√
t + C shown in Equation (42). It is important to keep in mind 

that this solution is only valid for an infinite bath, where 
adsorption equilibrium follows a linear isotherm and with-
out external resistance to mass transfer.

However, the model usually called as Boyd model was 
indeed proposed by Reichenberg (1953) that considered a 
model that combines Equation (42) with only the first term 
in the summation with the solution presented in Table 2 
for spherical particles, taking into account the square root 
and linear terms, as shown in Equation (43). In fact, (Boyd 
et al. 1947) considered only the term with the square root 
of time for the initial period. This simplified model based 
on solution found through Laplace transform method is 
suitable for low time values, that is, 𝜏 < 𝜏crit . By the other 
side, considering only the first term of summation in Equa-
tion (42) is suitable for high time values, that is, � ≥ �crit . 
Consequently, it seems reasonable that combining these 
two models, a simplified model with reasonable prediction 
quality can be obtained.

In fact, Boys model is usually presented according 
Equation (44), where B is a parameter defined in Equa-
tion (45):

In Fig.  7, the Boyd-Reichenberg model presented in 
Equation (43) is compared with solution for infinite bath, 
presented in Equation (16) (Equation for sphere from Table 2 
could also be considered).

In this figure, the dashed lines indicate the values of �crit 
and Fcrit that are approximately equal to 0.1575 and 0.875. 
At this point, the deviation of the fractional uptake com-
puted from Boyd-Reichenberg model from the value com-
puted with complete solution of infinite bath is the highest 
value and is only 0.0003; that is, Boyd-Reichenberg model 
is a very good option to simplify the complete solution. The 
Boyd-Reichenberg model was presented only for spheri-
cal particles, although solutions for plane and cylindrical 

(42)F = 1 − 6
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n=1

1

(n�)2
exp(−

(n�)2Dappt

R2
)

(43)F =

�
6√
𝜋

√
𝜏 − 3𝜏 𝜏 < 𝜏crit

1 −
6

𝜋2
exp(−𝜋2𝜏) 𝜏 ≥ 𝜏crit

(44)F =
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⎪
⎨
⎪
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6
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particles can be readily obtained (see the Supplementary 
Material).

It must be pointed out that, although Boyd-Reichenberg 
model is able to reproduce almost perfectly the prediction 
from infinite bath model, these both models are based in the 
assumption that bulk concentration does not change over 
time. There are some mass transfer problems where this 
assumption is valid (Perez et al. 2011; Mercali et al. 2021). 
However, the commonly conditions considered in the study 
of kinetic batch adsorption are not in agreement with this 
assumption, since it is the decrease in the bulk concentra-
tion that is used to analyse the kinetics of batch adsorption 
experiments. Furthermore, Boyd-Reichenberg and infinite 
bath models also assume that there is no significant external 
resistance to mass transfer (that is usually a good assump-
tion) and that adsorption equilibrium can be described by a 
linear isotherm (that is reasonable only in the beginning of 
the process when the true adsorption isotherm is nonlinear).

Consequently, one should be aware when considering 
Boyd-Reichenberg model and square root model to evalu-
ate mass transfer parameter, that is, intraparticle diffusion 
coefficients, since even if model predictions are close to 
experimental data, the estimated parameter values are likely 
to be biased.

Final considerations

The mathematical models presented in the previous sections 
are based on mass transfer phenomena and are described 
by partial differential equations whose analytical solutions 
are possible only when equilibrium of adsorption can be 
described by a linear equation, that is, the Henry Law. When 
adsorption equilibrium must be described by a nonlinear 
equation, numerical methods can be promptly employed to 

solve the mass transfer-based models. However, even though 
numerical methods are available in many different compu-
tational languages and software, most of published papers 
still consider simplified models that are based on inaccurate 
assumptions.

In Table 5, a summary of assumptions considered in the 
development of each model are presented. One assumption 
that is usually satisfied is the negligible external resistance to 
mass transfer. It happens because the baths used for kinetic 
adsorption experiments are usually very well mixed and, 
consequently, intraparticle mass diffusion is the only rate 
limiting step. It is important to notice that this fact does 
not invalidate the models that consider external resistance, 
since these models will reproduce the behaviour of models 
that neglect external resistance to mass transfer when Biot 
number is set at high values, as shown in Fig. 1.

In this way, the external mass transfer model is very 
unlikely to provide a detailed description of experimental 
kinetic data. Even if this model could be able to describe a 
single experiment, its use to predict batch adsorption perfor-
mance at different conditions will be probably meaningless.

Similarly, the linear driving force model, that is based on 
simplifications of the intraparticle diffusion models, con-
sists in an equation that are mathematically equivalent to 
the external mass transfer model, and should not be consid-
ered suitable for a detailed description of batch adsorption 
processes.

But without any doubt, the weakest hypothesis is the 
assumption that bulk concentration does not vary during the 
batch adsorption experiment. Time square root and Boyd-
Reichenberg models are solutions based on this hypothesis, 
also known as infinite bath assumption. Considering con-
stant bulk concentration, from an optimistic point of view, 
would be a reasonable assumption for the data just at the 
beginning of the experiment since it could be assumed that 
bulk concentration has not varied significantly. But the 

Fig. 7   Comparison between Boyd-Reichenberg model (red and blue 
dashed lines) and infinite bath model (black line)

Table 5   Summary of the model assumptions (all these models con-
sidered a linear adsorption isotherm)

* Internal resistance is considered in simplified form

Model Equation External 
resistance?

Internal 
resistance

Variable bulk 
concentra-
tion?

FBDM Eq.(24) Yes Yes Yes
Eq.(23) No Yes Yes

IBDM Eq.(14) Yes Yes No
Eq.(16) No Yes No

EMT Eq.(30) Yes No Yes
LDF Eq.(39) Yes Yes* Yes

Eq.(37) No Yes* Yes
TSR Eq.(40) No Yes No
BR Eq.(43) No Yes No
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extent of this initial stage is usually very short, since the 
decrease in the bulk concentration is very fast in the initial 
adsorption period. For this reason, one must be very careful 
in considering these simplified models; in fact, these models 
should not be considered for description of batch adsorption 
processes.

An interesting option is the analytical solution for finite 
bath diffusion model, FBDM, although it is rarely consid-
ered. The only weakness of this solution is considering a 
linear isotherm (Henry Law). However, when adsorption 
is considered for removal of low concentration pollutants, 
FBDM model can be promptly considered, since in this case 
it can be expected that a linear isotherm will provide a good 
description of the adsorption equilibrium.

Finally, one could argue that even using these simpli-
fied models, it is possible to predict the behaviour of batch 
adsorption kinetics. And it really can be true, because the 
shape of all curves predicted by the models presented pre-
viously are very close. Then, when just one kinetic curve 
is considered, almost any model can describe this data by 
adjusting the values of some parameters, like mass transfers 
constants or even adsorption equilibrium constants. How-
ever, if someone uses this model, with parameters fitted 
to one specific batch adsorption experiment, to predict the 
behaviour at different experimental conditions, probably the 
quality of prediction will be very poor. It can be expected 
that rigorous models, like FBDM, will provide a reasonable 
prediction even when experimental conditions are modi-
fied. For this reason, it is very important that batch adsorp-
tion experiments were carried out at different experimental 
conditions such as initial concentration, solution volume 
to adsorbent mass ratio and, if possible, different particle 
adsorbent sizes. Then the mathematical model that is being 
considered must be able to describe all kinetic curves with 
the same estimated parameters. Furthermore, a good strat-
egy to evaluate a model is letting some of the experimental 
kinetic curves out of the parameter estimation step and using 
these data later to observe if the model can predict these 
experimental data that was not considered in the parameter 
estimation step, providing a validation test to the model. 
Although it seems a hard and laborious procedure, this will 
provide an actual evaluation of the mathematical models 
considered to describe the batch adsorption data, and this 
model with its estimated parameters can be used with more 
confidence for optimization, design and any other purposes.

Conclusions

In this critical review, some simplified models were ana-
lysed, and the assumptions considered in their development 
were highlighted. Although negligible external resistance 
to mass transfer is usually a reliable assumption, infinite 

bath consideration is completely inaccurate, since it is just 
the decrease in the bulk concentration that is usually meas-
ured to determine the kinetic of batch adsorption process. 
Another common assumption is the Henry Law (linear 
adsorption isotherm); although it is not a widely correct 
assumption, it is valid when one works with solution at low 
concentration levels.

It must be emphasized that nowadays numerical proce-
dures are widely available and rigorous solution for finite 
bath adsorption, with or without external resistance to mass 
transfer, can be obtained when a nonlinear isotherm is con-
sidered. Consequently, the analysis of kinetic adsorption 
data from batch experiments is much more reliable and per-
mits to researchers a deeper understanding of the kinetic 
adsorption mechanism that also allow model improvement 
and are very useful for development of adsorption processes.
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