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Abstract
Despite the apparent improvement in air quality in recent years through a series of effective measures, the concentration of 
 PM2.5 and  O3 in Chengdu city remains high. And both the two pollutants can cause serious damage to human health and 
property; consequently, it is imperative to accurately forecast hourly concentration of  PM2.5 and  O3 in advance. In this study, 
an air quality forecasting method based on random forest (RF) method and improved ant colony algorithm coupled with 
back-propagation neural network (IACA-BPNN) are proposed. RF method was used to screen out highly correlated input 
variables, and the improved ant colony algorithm (IACA) was adopted to combine with BPNN to improve the convergence 
performance. Two datasets based on two different kinds of monitoring stations along with meteorological data were applied 
to verify the performance of this proposed model and compared with another five plain models. The results showed that 
the RF-IACA-BPNN model has the minimum statistical error of the mean absolute error, root mean square error, and mean 
absolute percentage error, and the values of R2 consistently outperform other models. Thus, it is concluded that the proposed 
model is suitable for air quality prediction. It was also detected that the performance of the models for the forecasting of the 
hourly concentrations of  PM2.5 were more acceptable at suburban station than downtown station, while the case is just the 
opposite for  O3, on account of the low variability dataset at suburban station.

Keywords Hourly  PM2.5 and  O3 concentration prediction · Random forest · Improved ant colony algorithm · BP neural 
network

Introduction

Air pollution has become a major concern around the world 
since it is highly correlated with a variety of adverse effects 
on public health, especially in some developing countries. 
Nearly 91% of the world’s population inhales polluted air, 
and about 4.2 million deaths occur every year because of 
ambient air pollution, according to air pollution program of 
the World Health Organization (WHO) (Krishan et al. 2019). 
Among the six conventional air pollutants,  PM2.5 and  O3 

constitute the greatest harm to the human bodies. Long-term 
exposure to  PM2.5 (fine particles measuring less than 2.5 μm 
in diameter) air pollution is an important environmental risk 
factor for cardiopulmonary and lung cancer mortality (Arden 
Pope III 2002).  O3 (formed as a secondary pollutant through 
photochemical reactions of NOx and VOCs) is known to sig-
nificantly decrease crop yield and a key ingredient of smog 
that is potentially toxic to animal and plant life (Wang et al. 
2019). High concentrations of  O3 and everlasting haze pol-
lution are also the main concerns for China at present, espe-
cially for Chengdu, Southwest China (Wang et al. 2017a, b). 
Hence, considering the serious harm and damage of air pol-
lution to human health and agricultural economy, accurate 
air quality forecasting is of great significance, so as to assist 
and support the government in city atmospheric early warn-
ing, crisis response, and emergency planning and contribute 
to making travel plan in advance for citizens (Corani and 
Scanagatta 2016, Fan et al. 2018, Lauret et al. 2016, Prasad 
et al. 2016, Yang et al. 2018, Yang and Christakos 2015). 
Especially, short-term air pollution forecast (with lead time 
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of 1 or 2 days) plays an important role in the daily operation 
of Local Emergency Management Agency.

Generally, the air quality forecasting models can be clas-
sified into two main types: the numerical prediction models 
and the statistical prediction models (Liu et al. 2018; Yang 
and Wang 2017). The numerical prediction models tradition-
ally consist of the simulation of dispersion and transform 
mechanisms using emission source data and the knowledge 
of the transformations in the atmosphere (Zhang et al. 2012; 
Cobourn 2010; Hoshyaripour et al. 2016). Chemical trans-
port model (CTM) refers to a type of atmospheric composi-
tion models relevant for air quality forecasting, which has 
been successfully used for decades since middle 1990s in 
the USA, China, Europe (Jakobs et al. 2002), and Canada 
(Pudykiewicz et al. 1997). This model can forecast the con-
centrations of air pollutants under both typical and atypi-
cal scenarios but will be independent of a large quantity 
of measurement data (Stern et al. 2008, Sun et al. 2012). 
Meanwhile, it is physically based and provides scientific 
insights of pollutant formation processes; thus, it can address 
issues that cannot be handled by other forecasting models 
such as long-range transport of air pollutants, emissions, 
and changes in air quality under different meteorological 
and emission scenarios (Vautard et al. 2001; Mchenry et al. 
2010). By contrast, the statistical approaches usually require 
a large quantity of historical measured data under a variety 
of atmospheric conditions, which can produce good estima-
tion results in the short-term forecasting (Wang et al. 2015a, 
b, Konovalov et al. 2009). They are easy to set up and fast to 
compute to handle nonlinear and chaotic chemical system at 
a site (Pires and Martins 2011). The statistical models have 
several common drawbacks. First, the nature of statistical 
modeling does not enable better understanding of chemical 
and physical processes (Gao et al. 2018). Second, they can-
not predict concentrations under extreme air pollution con-
ditions that deviate significantly from the historical records 
(Zhang et al. 2012). Third, they are usually confined to a 
given site and cannot be generalized to other sites (Stockwell 
et al. 2002). Throughout the course of air quality prediction 
research, scores of statistical prediction models were used, 
such as linear or nonlinear regression model, time series 
model, Markov model, gray model, artificial neural networks 
(ANNs), and so on.

Among most statistical prediction methods, artificial neu-
ral networks (ANNs) are easier and faster to establish and 
have a more flexible nonlinear modeling capability, adding 
to its strong adaptability and massive parallel computing 
abilities, and it proved effective to predict environmental 
parameters, especially for wind speed, water temperature, 
and air quality (Feng et al. 2015; Taylan 2017; Wang et al. 
2015a, b). For instance, adaptive neuro-fuzzy inference 
system (ANFIS), Elman neural network (ENN), long short-
term memory networks (LSTMs), multi-layer perceptron 

(MLP), the backpropagation neural networks (BPNN), and 
the support vector machine (SVM) have been extensively 
used for modelling air quality (Noori et al. 2009; Krishan 
et al. 2019; Li et al. 2018; Taylan 2017; Voukantsis et al. 
2011; Wang et al. 2014, 2016; Wen and Yuan 2020; Zhou 
et al. 2020). Considering the atmospheric environment is 
an extremely complex huge and nonlinear system, which is 
under dynamic changing. And the concentration of air pol-
lutants is influenced by a number of complex factors such as 
human activity, atmospheric pressure, wind direction, wind 
speed, temperature, humidity, temperature inversion, and 
rainfall (Wang et al. 2019). And even some physicochemical 
processes have significant impacts; as for chemical process, 
ozone is formed through the reaction of nitrogen oxides and 
volatile organic chemicals when there is strong sunshine 
and high temperatures (Wei et al. 2021), and nitrogen-oxide 
and sulfur oxide can react with other pollutants in the air 
to generate particles such as nitrate and sulfate, thus turn-
ing gaseous pollutants into solid pollutants and increasing 
PM2.5 concentration in the air (Luo et al. 2020). As for 
physical process, amines combine with sulfuric acid to form 
highly stable aerosol particles under typical atmospheric 
concentrations (Almeida et al. 2013). Moreover, most of the 
interrelationship between the various factors is uncharted. 
This is consistent with the multilayer mapping and nonlin-
ear modeling ability of back propagation neural network 
(BPNN), a fairly common used ANNs (Guo et al. 2011; 
Wang et al. 2006), also referred to as error back propagation 
network that minimizes an error backward while information 
is propagated forward (Wang et al. 2015a, b). However, one 
apparent shortcoming of BPNN is that it easily gets in the 
local minimum, due to its randomly allocated initial connec-
tion weights and thresholds, leading to an inaccurate result.

To overcome the aforementioned shortcomings, many 
researchers have proposed various of improved methods to 
improve precision. There are generally three sub-catego-
ries, firstly, single intelligent evolution algorithms, such as 
particle swarm optimization (PSO) (Huang et al. 2020; Jin 
et al. 2012; Qiu et al. 2020; Ren et al. 2014; Wen and Yuan 
2020) and genetic algorithm (GA) (Feng et al. 2011; Wang 
et al. 2016; Zhang et al. 2020), were used to select the ini-
tial connection weights and thresholds of BPNN. Secondly, 
the application of two joint intelligent evolution algorithms, 
Hu et al. (2019) proposed a forecasting model based on the 
hybrid GA-PSO-BPNN algorithm to avoid the defect that the 
prediction result easily falling into local optimum. Thirdly, 
the combination of BPNN with another algorithm, such as 
Bayesian regularization (Tang et al. 2020), support vec-
tor machine (SVM) (Sun et al. 2020), and empirical mode 
decomposition (EMD) (Liu et al. 2016). Results demonstrate 
that the above proposed models are superior to traditional 
BPNN models on the basis of convergence rate or predic-
tion precision.
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Nevertheless, to our knowledge, the optimization of 
BPNNs using the ant colony algorithm which possess the 
property of fast global searching and strong robustness has 
not been attempted in air quality forecasting. Last but not 
least to mention is that only limited attention appears to have 
been given to input parameters that largely determines the 
level of prediction precision (Hu et al. 2019). Too many 
input variables can not only prolong the training time but 
irrelevant or noisy variables may have adverse effects on 
the training process, leading to an unacceptable convergence 
speed and poor generalization power. Consequently, A quan-
tifiable random forest method (RF) is used to select input 
parameters carefully to achieve desired results.

In summary, this paper proposes a novel air quality fore-
casting method based on a hybrid RF and IACA-BPNN neu-
ral network method. The RF method was used to remove 
the irrelevant factors after the original data was processed. 
And then the chosen input variables were loaded into the 
improved IACA-BPNN model for air quality forecasting 
both in two sites. Furthermore, horizontal and longitudinal 
contrast were carried out to assess the forecasting perfor-
mance of the proposed model based on a series of models 
which contains BPNN, IACA-BPNN, ACA-BPNN, PSO-
BPNN, GA-BPNN, and RF-IACA-BPNN.

The specific structure of the paper is organized as follows. 
The second section are a general introduction of the three 
concerned algorithms, two improvements to the ant colony 
algorithm, and procedure of IACA-BPNN prediction model. 
The third section are data pre-processing and description and 
then screening results of input variables. The fourth section 
are results and discussion of predictive simulation experi-
ments both in two sites (the traffic site and the park site) in 
Chengdu, as well as the results under four evaluation indica-
tors between observed and predicted value. The last section 
is the conclusion of the whole paper.

Method

The hybrid method of RF-IACA-BPNN plus the other five 
kinds of artificial neural networks (ANNs) were adopted for 
air quality forecasting in this paper. The models mentioned 
above were programmed in MATLAB version R2018a 
(Mathworks Inc., Natick, USA). The random forest (RF) 
algorithm involved in this study was implemented by python 
3.6 to calculate the importance evaluation values.

Related theoretical basis

BPNN

By mimicking the behavior characteristics of biological neu-
ral networks, ANN is an algorithmic mathematical model 

in essence endowed with parallel and distributed informa-
tion processing ability (Wang et al. 2016). As one of the 
most widely used ANNs, BPNN is an adaptive and nonlin-
ear dynamic system composed of interconnected neurons, 
known for its forward propagation of information and error 
backward propagation, proposed by Rumelhart in 1986. 
Generally, the steepest descent method was adopted dur-
ing the error propagation process to minimize the error of 
the network; meanwhile, the weights and thresholds adjust 
successively to form an expected model to properly reflect 
the mapping relationship between input and output values. 
BPNN usually consists of three layers (input layer, hidden 
layer, and output layer) (Park et al. 2017); theoretically, one 
single hidden layer BPNN is able to approximate any non-
linear function with satisfactory accuracy (Aslanargun et al. 
2007). The brief structure of BPNN is shown in Fig. 1.

The random forest

As an ensemble supervised learning method from machine 
learning based on bagging algorithm, random forest (RF) 
composes of multiple mutually independent decision trees 
which are the combination of classification and regression 
tree together (Wei et al. 2018). In virtue of the characteristic 
of fast calculation speed and effectively applied to a wide 
range of problems that are nonlinear and involving com-
plex high-order interaction effects, coupled with reliably 
identifying relevant predictors from a large set of candidate 
variables, random forests have been widely applied to vari-
ous fields relate to bioinformatics (Strobl et al. 2007) and 
environmental sciences (Wen and Yuan 2020) for prediction 
and variable selection. Whereupon, the variable importance 
score (VIS) derived from RF is adopted in this research to 
measure relative importance of factors affecting  PM2.5 and 
 O3. Using  PM2.5 as an example, D represents the overall 

Fig. 1  Structure of one possible BPNN model used in this study
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training sets, and vector X represents the sets of 10 factors 
affecting  PM2.5. X = X1, X2, …Xj, …X10 ∣ j = {1, 2, …, 10}.

The bootstrap method was adopted to randomly sample k 
training subsets from the overall training sets; thus, the k-th 
training subset represented as DK ∣ k = 1, 2, …K.

ACA 

Ant colony algorithm (ACA) was originally theorized by 
Dorigo proposed in 1991 (Liu et al. 2019) (Dorigo and Stüt-
zle 2003), through observing the ants foraging behavior, 
which is actually a random searching algorithm in nature 
that successfully applying to many optimization problems 
(Liu et al. 2007). On account of the ability that ACA is able 
to successfully find the optimal path through the positive 
feedback and distributed cooperation, which has been widely 
combined with BPNN to improve its convergence speed and 
avoid trapping into the local minimum.

ACA improvements

Improved content

Generally, the better a solution is, the more likely it is to find 
the optimal solution around it (Yu and Zhou 2006). Hence, 
the basic idea of this algorithm rests with enhancing excel-
lent solutions and weakening inferior solutions. With the 
increasing differences of pheromone between excellent and 
inferior solutions, it is more likely that the searching path 
of ants concentrates in the vicinity of the optimal solution.

(a) Improvement on pheromone updating rule

Ants are sorted according to the length of their paths. 
The more excellent ants pass by, the stronger pheromone 
they leave behind. The pheromone is adjusted according to 
Eq. (1):

where τ(r, s) represents the pheromone intensity between 
city r and s; ε0∈(0,1] is the pheromone penalty factor; Lworst 
is the length of the tour of the worst ant; Ln is the path length 
of the nth ant.

(b) Adaptive improvement on evaporation rate of phero-
mone

Pheromone volatile factor (ρ) measures the reduction 
extent during the evaporation process, which greatly affects 

VIS = VIS1,VIS2,… ,VISj,… ,VIS10 ∣ j = j = {1, 2,… , 10}

(1)�(r, s) = (1 − �)�(r, s) + �0
Lworst

Ln

global searching ability and convergence speed of the algo-
rithm. To avoid trapping into local optimization, the phero-
mone volatile factor was improved by

where φ and λ both are constant coefficient; nc remains 
iteration times; ncmax represents maximum iterations. The 
analysis reveals that the convergence speed of the algorithm 
accelerating due to the large value of ρ (nc) at the beginning. 
Hereafter, the accumulation of ∆τij (t) leads to the algo-
rithm falling into local optimum. As can be seen from Eq. 
(8) above, the ρ (nc) gradually decreases, making it easy for 
the algorithm to jump out of local optimization.

IACA-BPNN prediction model

Suppose the BPNN possesses m weights and thresholds in 
total, and each weight or threshold has n values to choose 
from, which are randomly generated within [0,1] and thus 
forming set Ai (1 ≤ i ≤ M).

Based on the above improvement of ACA, the process 
structure of the developed RF-IACA-BPNN prediction 
model is shown as Fig. 2. The specific steps of ACA opti-
mizing the initial weight and threshold of BPNN are as 
follows:

Step 1:  Set the initial pheromone value τ (Ai) (0), ant num-
ber (m), maximum iteration number (ncmax), and other 
parameters (including the parameters of BPNN).

Step 2:  Elements from each set were selected by m ants 
according to Eq. (2), and all the elements selected by 
each ant constitutes a set of initial weights and thresh-
olds of the neural networks.

Step 3:  When m ants complete one cycle, m sets of ini-
tial weights and thresholds selected in Step 2 are used 
to train the BPNN model, and the output error of the 
network is calculated simultaneously according to Eq. 
(2). Record the set of weights and thresholds with the 
smallest error, and compare the error with the expected 
error ε. If it is less than the expected error ε. Then output 
algorithm results and enter Step 6. Otherwise, entering 
step 4.

Step 4:  Pheromone of each element in the set Ai (1 ≤ i ≤ M) 
is updated according to Eqs. (4) and (5).

Step 5:  Repeat the steps (2) and (3) until all ants converge 
to the same path or reach the maximum iteration number 
ncmax.

Step 6: Take the optimal initial solutions selected by 
IACA as the weights and thresholds of BPNN. The neural 
network is further trained until the exit status is reached.

(2)� (nc) =
�

1 + �
nc

encmax
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Data

Data source

Chengdu, being the capital city of Sichuan province and 
one of the biggest cities in west China, has been regarded 
as commercial and cultural center for its strong economic 
growth and numerous cultural heritages. As an inland city 
located in the west of Sichuan Basin, with diversified land-
forms, the area covering 14335  km2 is mainly composed of 
fertile plains that are surrounded by mountains. Independent 
of effective measures that have been taken by local gov-
ernment, air pollutants remain to be problematic in certain 
seasons especially for  PM2.5 and  O3. Generally, there are 
plenty of distinctive factors which impact the air pollution 
levels in Chengdu such as multitudinous populations (20 
million in 2020), a large number of industrial enterprises and 
ever-increasing motor vehicles within the city, unfavorable 
local meteorological conditions due to distinct geographical 
location and topographic condition such as a high frequency 
of quiet wind throughout the year, and noteworthy tempera-
ture inversion in autumn and winter which result in negative 
atmospheric dispersion and transport mechanisms (Alimis-
sis et al. 2018). Specifically, as the site of the FISU World 
University Games in 2022, it is indispensable and benefi-
cial to accurately forecast of  PM2.5 and  O3 concentrations 

such that regional air quality can be managed and controlled 
appropriately.

Fifteen citywide air quality stations were established by 
Ministry of Ecological Environment of China to monitor air 
quality trends, coupled with twelve meteorological monitor-
ing stations (Fig. 3). In this study, two different air quality 
monitoring stations were selected, station A1 (Dashi Road 
West, a downtown station located in areas of heavy traffic) 
and station A2 (Long-Quan, a suburban station near the for-
est park), to validate the stability of the prediction model. 
The A1 station is located in the inner part of the Chengdu 
city, the density of population around this station is sub-
stantially higher as well. While the A2 station is far away 
from the downtown area, which is located in the Chengdu 
Forest Park, involving a country lane and higher percentage 
of open and green spaces. The concentration of air pollutants 
at A1 station are obviously higher than A2 station, except 
for  O3, which is 1.5 times less than A2 station (Table 1). 
The hourly data of six air quality factors  (PM2.5,  PM10,  NO2, 
 SO2,  O3, CO) are acquired automatically by each monitor-
ing station to form a dataset ranging from 8 January 2019 
to 8 November 2021, accompanied by five meteorologi-
cal parameters including wind speed (WS), wind direction 
(WD), relative humidity (RH), temperature (TEMP), and 
atmospheric pressure (ATM) for the same period from the 
China Weather Website Platform, which is maintained by 

Fig. 2  Flow chart of the proposed RF-IACA-BPNN based forecasting model
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China Meteorological Bureau. The air quality data were 
matched corresponding to the closest meteorological param-
eters (Feng et al. 2015). The forecasting models under inves-
tigation will forecast  PM2.5 and  O3 concentrations over the 
next 24 h.

Data preprocessing

Due to the power failures or equipment breakdown, 
some data were missing. These missing data need to be 
properly processed to develop a well model. Rows with 
consecutive hourly gaps of more than 4 h of missing 
data were discarded; other missing data were supple-
mented. Given the datasets developed are sequences 
of random variables indexed by time, it is feasible to 

employ nearest neighbor interpolation method to re-
fill the datasets, which is a method that interpolates 
the gray value with the nearest point (Hu et al. 2019). 
After that, a total of 24200 and 24200 hourly datasets 
left for A1 and A2 stations, respectively. The air quality 
and meteorological data involved in each station were 
randomly divided into training sets, validation sets, and 
test sets according to a ratio of approximately 6:2:2. 
Subsequently, random forest method was used to cal-
culate the relative importance between input variables 
(meteorological and air quality factors) and output vari-
ables  (PM2.5,  O3).

To eliminate the adverse effects caused by the singular 
data and improve the convergence speed of the model, the 
datasets are linearly scaled to within the range [0,1] by 

Fig. 3  Location of the air qual-
ity and meteorological measure-
ment sites in Chengdu

Table 1  Basic statistics for the 
air quality and meteorological 
parameters of the two stations

A1 Jan, 2019–Nov, 2021 (data rows: 24,200) A2 Jan, 2019–Nov, 2021 (data rows: 24,200)

Pollutant Mean Std Min Max Pollutant Mean Std Min Max

PM2.5 (μg/m3) 38.3 29.9 0 271 PM2.5 (μg/m3) 28.1 19.5 0 148
PM10 (μg/m3) 66.0 44.0 0 366 PM10 (μg/m3) 44.0 28.7 0 372
SO2 (μg/m3) 8.3 4.6 1 471 SO2 (μg/m3) 7.0 2.2 1 34
NO2 (μg/m3) 48.1 25.7 2 183 NO2 (μg/m3) 17.4 10.9 0 115
CO (mg/m3) 0.7 0.3 0 23.7 CO (mg/m3) 0.4 3.6 0 2.8
O3 (μg/m3) 48.4 48.0 0 346 O3 (μg/m3) 72.0 44.7 0 297
WS (m/s) 1.3 0.7 0 7 WS (m/s) 1.3 0.8 0 7
RH (%) 72.0 16.5 13 100 RH (%) 73.3 16.8 12 100
TEMP (°C) 14.5 7.6 −3 38 TEMP (°C) 16.5 7.6 −3 37
ATM (hPa) 954.5 7.8 935 977 ATM (hPa) 949.1 11.7 926 984

39169Environmental Science and Pollution Research  (2022) 29:39164–39181

1 3



adopting linear transformation through the normal stand-
ardization formula (3):

where Xnorm is the normal standardization data, X is the 
original value, and Xmax and Xmin are the maximum and mini-
mum values of the series, respectively.

Data description

Based on the datasets aforementioned of the two sites, the 
basic statistics about the meteorological and air quality data 
were studied (Table 1).

The suburban station demonstrated significantly lower 
level of concentrations of pollutants, except for  O3, for 
which concentration was 1.5 times higher than the down-
town station. A couple of factors help to explain, one is the 
consumption of  O3 in the oxidation process with nitrogen 
oxides emitted by vehicles, ozone precursors are carried by 
the wind to the suburbs is another. Mean values of  PM2.5 
and  PM10 concentrations at the downtown station were 1.3 
and 1.5 times higher than the suburban station, respectively, 
on account of the mass emission sources, while the stand-
ard deviation was similar between the two stations. Besides, 
both of the 4 indicators for meteorological parameters of the 
two sites were nearly the same.

Model performance metrics

Till now, many researchers have employed various statistical 
indices to verify the predictive performance of the models, 
according to the literature (Alimissis et al. 2018; Li et al. 
2018; Yildirim and Bayramoglu 2006). In this study, four 
statistical indices were adopted: the mean absolute error 
(MAE), the mean absolute percentage error, the coefficient 
of determination (R-square), and the root mean-square error 
(RMSE) defined as

(3)Xnorm =
X − Xmin

Xmax − Xmin

(4)MAPE =
1

n

∑n

i=1

|||
|

yo − yp

yo

|||
|
∗ 100%

(5)MAE =
1

n

∑n

i=1

|||
yo − yp

|||

(6)RMSE =

√
1

n

∑n

i=1

(
yo − yp

)2

(7)R2 = 1 −

∑n

i=1

�
yo − yp

�2

∑n

i=1

�
yo − yp

�2

where yo and yp represent the observed and predicted 
value, respectively. yp is the average of observed value, and 
n represents the number of observed data. The superiority 
of the model performance was measured by smaller values 
of MAPE, MAE, RMSE, and values of R2 closest to one, all 
of the indices aforementioned manifests a model with high 
forecasting accuracy be related to the observed values in the 
testing data.

Screening of prediction indicators

The visual map of each input variable’s importance is shown 
in Fig. 4. It is important to note that this test was repeated for 
several times in order to assure that their selection was not 
biased. With regard to the results of RF, the first eight indi-
cators were sorted out as the input variables of each model 
in this study, as the importance of each single indicator was 
greater than 0.005 and the sum of the eight indicators was 
accounting for nearly 99%.

The reason why  PM10 had a strong positive correlation 
with  PM2.5 is that  PM2.5 is included in  PM10 and they can 
transform to each other under specified conditions. Higher 
RH is favorable for particulate matter to adhere to water 
vapor, which increases the mass concentration of particles 
(Zhang et al. 2017). Meanwhile, increases in RH favor 
nitric acid partitioning to the aerosol phase and therefore 
can lead to nitrate concentration increases (Dawson et al. 
2007). Increasing TEMP can lead to elevated sulfate con-
centrations due to the increased rate of  SO2 oxidation (Jacob 
and Winner 2009). TEMP also has a significant indirect 
effect on secondary organic aerosol (SOA) concentrations 
(Megaritis et al. 2014). CO concentrations had significant 
positive effects on  PM2.5, and this positive correlation was 
likely due to industrial emissions and exhaust fumes, which 
produce large amounts of  PM2.5 as well as CO. On the con-
trary, given that  PM2.5 can reduce the radiation flux during 
photochemical reactions, there was a significant negative 
nonlinear relationship between  O3 and  PM2.5 (Cheng et al. 
2021).

O3 is a secondary product of the oxidation of hydro-
carbons  (CH4 and NMHCs) and CO via reactions cata-
lyzed by  HOX and  NOX radicals (Jacob 2000), which helps 
to explain the high correlation of  O3 with  NOX and also 
weak correlation with CO. While the correlation of  O3 
with  NOX at A2 station is relatively low compared with 
A1 station, it can be contributed to low  NOX concentration. 
PM can affect the atmospheric photochemistry by scatter-
ing the solar and terrestrial radiation, indirectly altering 
the air temperature and subsequently affecting the forma-
tion process of  O3 (Sharma et al. 2016). The relationship 
between  O3 and temperature is indirect, which is realized 
through higher downward solar radiation, high temperature 
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promotes the propagation rate of the radical chains and 
the formation of  O3 (Tu et al. 2007; Martins et al. 2012). 
Furthermore, RH is also a vital factor for  O3 formation; an 
appropriate RH can promote the formation of  O3 (Xu and 
Zhu 1994).

Generally,  O3 and  PM2.5 showed little correlation with 
the WD, WS at both two sites. One reason may explain this 
phenomenon is that the variation range of the WD and WS 
during the study period was too limited (the annual average 
wind speed of Chengdu is less than 1.2m/s) to show distinc-
tive effects on O3 and  PM2.5 (Ahmad et al. 2019). AP affects 

the diffusion of  O3 and  PM2.5; if surface pressure field was 
mainly controlled by the huge clod high pressure, downdraft 
appears in the center, which inhibits the upward diffusion of 
 O3 and  PM2.5.

Results and discussion

Six models based on different artificial intelligence algo-
rithms and different input variables were adopted to predict 
 PM2.5 and  O3 in two stations, respectively. There are four 

Fig. 4  The visual graph of input variables’ importance. a  O3 at A1 station. b  PM2.5 at A1 station. c  O3 at A2 station. d  PM2.5 at A2 station

Table 2  Performances of 
different models for  O3 during 
the testing phases at A1 station

Air pollutants(A1 station) Model Testing

MAPE MAE RMSE R2

O3 BPNN 0.714 10.499 16.380 0.885
PSO-BPNN 0.423 10.928 15.924 0.891
GA-BPNN 0.419 10.775 15.607 0.896
ACA-BPNN 0.647 10.568 15.159 0.899
IACA-BPNN 0.498 10.264 15.553 0.906
RF-IACA-BPNN 0.453 10.448 15.336 0.912
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Fig. 5  Comparison between predicted and observed  O3 concentration using different models at A1 station during testing periods
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experiments in total; each experiment contains six differ-
ent models. The input variables of each experiment were 
solely selected by RF method and applied to six different 
models. It should be mentioned that each experiment in 
this study was independently carried out 15 times and the 
performance metrics (MAPE, MAE, RMSE, and R2) were 
calculated on account of predicted and observed values 
subsequently.

Case study 1

Accuracy of various models for  O3 forecasts at A1 station

The input variables screened out by RF were  NO2 
(0.378), TEMP (0.360), HM (0.182),  PM2.5 (0.020), 
 PM10 (0.016), AP (0.014), WS (0.009), and WD (0.008), 
respectively, for predicting hourly  O3 concentration at A1 
station. The results showed that  NO2 made the greatest 
contribution, as one important predecessor of  O3, which 
is an important material to produce  O3 along with VOCs 
in the presence of heat and sunlight (Abdul-Wahab and 
Al-Alawi 2002, Heo and Heo and Kim 2004). Further-
more, temperature and humidity were also two main 
meteorological factors that affect atmospheric photo-
chemical reaction of  O3.

Table 2 shows the performances of different models; 
the proposed RF-IACA-BPNN model provides signifi-
cantly better forecasts when compared with the other 5 
employed models for  O3 prediction in case study 1. The 
order of R2 among different models from highest to lowest 
were RF-IACA-BPNN, IACA-BPNN, ACA-BPNN, GA-
BPNN, PSO-BPNN, BPNN. GA-BPNN, and PSO-BPNN 
models yielded roughly similar results in terms of the four 
metrics. Despite RMSE, the rest of the three statistical 
criteria of IACA-BPNN outperform those of ACA-BPNN, 
which demonstrates that improvements on pheromone 
updating rule and evaporation rate of pheromone could 
enhance the fitting ability of ACA-BPNN. Moreover, the 
prediction results of 6 models were presented in Fig. 5. 
It can be seen that the scatters of the RF-IACA-BPNN 
model are closest and most concentrated on the regres-
sion line.

Performance of various models for  PM2.5 forecasts at A1 
station

As can be seen from Fig. 4b, the most influential factors 
of  PM2.5 were  PM10 (0.692), CO (0.152), TEMP (0.093), 
 NO2 (0.020),  O3 (0.011), HM (0.010),  SO2 (0.008), and 
AP (0.008), respectively.  PM10 contains  PM2.5, the dif-
ference between the two is the aerodynamic diameter, 
which exactly explains the highly correlation of  PM10 to 
 PM2.5 (Biancofiore et al. 2017). As an important com-
ponent of automobile exhaust, CO also has an impact on 
the concentration of  PM2.5, meanwhile, temperature can 
also influence  PM2.5 concentration by affecting boundary 
layer height.

The statistical metrics are listed in Table 3 and it can be 
seen more clearly in Fig. 6, the optimal indicator is marked 
in bold. The 3 metrics of RF-IACA-BPNN outperform the 
other 5 models. In the case of MAE, the RF-IACA-BPNN 
model is decreased by 2.06% compared with BPNN and by 
0.87% compared with IACA-BPNN. It can be noted that the 
performance of this model with two optimizations for ACA 
along with screening process was significantly improved.

Case study 2

Performance of various models for  O3 forecasts at A2 
station

Factors highly associated with  O3 included HM (0.492), 
TEMP (0.234), AP (0.112),  NO2 (0.084),  PM2.5 (0.025), 
 PM10 (0.020), WS (0.013), and WD (0.009), which is 
nearly the same with  O3 at A1 station but in a differ-
ent order (Fig. 4c). Although the smallest MAE (11.534) 
appeared in the ACA-BPNN, the RF-IACA-BPNN 
model performs 4.82%, 22.26%, and 2.66% superior in 
determining RMSE values, MAPE values, and R2 val-
ues, respectively, when compared with BPNN model 
(Table 4).

The prediction results of the RF-IACA-BPNN model are 
the closest to the actual values along with that even as peaks 
or valleys where the concentration fluctuates greatly, denoting 
that the RF-IACA-BPNN model performs the best (Fig. 7). 

Table 3  Performances of 
different models for  PM2.5 
during the testing phases at A1 
station

Air pollutants(A1 station) Model Testing

MAPE MAE RMSE R2

PM2.5 BPNN 0.185 4.765 8.522 0.919
PSO-BPNN 0.208 5.092 7.412 0.935
GA-BPNN 0.165 4.857 7.719 0.932
ACA-BPNN 0.182 4.694 7.254 0.934
IACA-BPNN 0.182 4.708 7.308 0.941
RF-IACA-BPNN 0.184 4.667 7.242 0.942
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Fig. 6  Comparison between predicted and observed  PM2.5 concentration using different models at A1 station during testing periods
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In allusion to the scatter correlation figure, the regression 
line indicates the observed value is exactly the same as the 
predicted value; therefore, the closer the scatters are to this 
line, the better the performance (Sun and Li 2020a, b). It can 
be observed that the scatters of the RF-IACA-BPNN model 
are hithermost and most centralized on the regression line.

Performance of various models for  PM2.5 forecasts at A2 
station

In this suburban station, the factors most closely related to 
 PM2.5 were  PM10 (0.740), CO (0.138),  NO2 (0.043), TEMP 
(0.041), HM (0.011),  O3 (0.008), AP (0.008), and  SO2 
(0.006), respectively. The components and order of its rela-
tive importance are very similar to that A1 station.

The observed and predicted  PM2.5 values during testing 
phase at A2 station were presented in Fig. 8, coupled with 
the 4 performance metrics among 6 models (Table 5). It 
was found that models with improvement had better per-
formance and were more easily and faster to converge to a 
better solution than a plain BPNN model; the screening pro-
cess of input variables is also helpful in improving predic-
tion performance. For example, the RF-IACA-BPNN model 
exhibits a 36.99% and 29.80% decrease in MAPE compared 
with the basis models IACA-BPNN and BPNN, respectively. 
Although the best metrics of MAE (3.280) did not appear in 
RF-IACA-BPNN model, however, the values of  R2 exhibit 
1.39%, 1.61%, 1.61%, 4.06%, and 5.68% increase compared 
with the models IACA-BPNN, ACA-BPNN, GA-BPNN, and 
PSO-BPNN, BPNN, respectively.

Comparison of the same pollutant between two 
stations

To verify the performance of the same model against data 
based on different kinds of monitoring sites, here, the 

performance of  PM2.5 and  O3 are compared at the two sta-
tions, respectively.

With regard to the forecasting results of  O3, the MAPE of 
each model at A2 station (0.319, 0.347, 0.252, 0.491, 0.335, 
and 0.248) are smaller than that of corresponding 6 models 
that made it up at A1 station; it is the same with R2. The R2 
of RF-IACA-BPNN at A1 station (0.912) is obviously higher 
than that of A2 station (0.887). As for  PM2.5, the MAE and 
RMSE values at A1 station significantly higher (p < 0.05) 
than those corresponding models at A2 station. While R2 
values at A2 station are generally higher than that of A1, 
furthermore, the R2 of RF-IACA-BPNN increased by 0.74% 
compared with A1 station.

Overall, for  PM2.5, the prediction results of the models 
at A2 station are more acceptable than those at A1 station, 
while the prediction results of the models showed a bet-
ter performance at A1 station for  O3. Part of the reason 
lies in variability of data. The mean value and standard 
deviation of  PM2.5 at A1 station are much higher than 
that of A2 station (Table 1). And the situation for  O3 is 
just the opposite.

Stability of the proposed model

In order to comprehensively test the robustness of the new 
air quality forecasting model, 10 additional sites were 
selected to verify the robustness of the model. Five of them 
are downtown sites (Di, i = 1, 2, 3, 4, 5) which close to the 
city center, and the others are suburban sites (Si, i = 1, 2, 
3, 4, 5) far from the highways and population centers. The 
stability test is implemented in this part according to Eq. (8). 
It is known that the stability of the forecasting performance 
can be indicated by the variance (Var) of the forecasting 
error (Sun et al. 2020, Hao et al. 2019, Wang et al. 2017a, 
b). Generally, a smaller variance represents a more stable 
model. The stability test results are shown in Table 6. As for 
 PM2.5, the Var values of the proposed model at the 5 down-
town sites are obviously higher than the Var values at the 5 
suburban sites. The average Var value of downtown sites is 
0.142, which is 73.17% more than that of suburban sites. As 
for  O3, conversely, the average Var value of downtown sites 
is 1.320, which is 4.90% less than that of suburban sites. In 
conclusion, the model can be more stable when it was used 
to forecast hourly  PM2.5 concentration at suburban sites. 
It’s just the opposite for  O3, which had a higher stability at 
downtown sites.

(8)SVar = var

(
|
|||

yo − yp

yo

|
|||

)

Table 4  Performances of different models for  O3 during the testing 
phases at A2 station

Air pollutants
(A2 station)

Model Testing

MAPE MAE RMSE R2

O3 BPNN 0.319 11.683 15.179 0.864
PSO-BPNN 0.347 12.286 15.915 0.875
GA-BPNN 0.252 12.151 15.997 0.873
ACA-BPNN 0.491 11.534 14.864 0.871
IACA-BPNN 0.335 12.055 15.764 0.875
RF-IACA-BPNN 0.248 11.826 14.448 0.887
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Fig. 7  Comparison between predicted and observed  O3 concentration using different models at A2 station during testing periods
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Fig. 8  Comparison between predicted and observed  PM2.5 concentration using different models at A2 station during testing periods
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Conclusions

Many studies have put their efforts to unilaterally improve 
the accuracy of air quality forecasting through various 
optimization algorithms. Nevertheless, few did it from the 
perspective of addressing original datasets, i.e., screening 
out highly related input variables, which have a significant 
impact on the forecasting precision and the training pro-
cess of ANNs. In this study, a new hybrid method based on 
improved ACA and BPNN model was proposed, with the 
combination of screening ability of RF method to forecast 
hourly concentration of  PM2.5 and  O3. Two datasets based 
on two different types of monitoring stations were used to 
compare the forecasting performance of RF-IACA-BPNN 
with those of other models and to verify the feasibility and 
effectiveness of ACA optimization and screening process. 
The following conclusions are drawn.

(1) With the determination of relative importance of input 
variables using RF method, results showed that the fac-
tors that most affected  O3 were similar at both down-
town and suburban stations, so is the case with  PM2.5. 

As for  O3, the five factors that have the greatest influ-
ence on ozone concentration were  NO2, TEMP, HM, 
 PM2.5,  PM10, respectively, while the top five highly 
corelated factors to  PM2.5 were  PM10, CO, TEMP,  NO2, 
 O3, respectively.

(2) In the case study 1, MAE and R2 of the RF-IACA-
BPNN model for  O3 were 10.448 and 0.912. As for 
 PM2.5 at downtown station, 3 statistical criteria of RF-
IACA-BPNN outperform other 5 models. And in the 
case study 2, MAPE, RMSE, and R2 of the proposed 
method for  O3 were 0.248, 15.448, and 0.887, in allu-
sion to  PM2.5 at suburban station; the value of MAPE 
and R2 were 0.172 and 0.949, respectively. It is con-
cluded that the proposed model is the ideal one com-
pared with the other plain models.

(3) On the whole, for  PM2.5, the prediction results of the 
models at A2 station are more acceptable than those 
at A1 station, while the prediction results of the mod-
els showed a better performance at A1 station for  O3, 
especially for RF-IACA-BPNN model, on account of 
the low variability at suburban station.

(4) The model can be more stable when it was used to fore-
cast hourly  PM2.5 concentration at suburban sites. It’s 
just the opposite for  O3, which had a higher stability at 
downtown sites.
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