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Abstract
Tin oxide  (SnO2) with versatile properties is of substantial standing for practical application, and improved features of the 
material are demonstrated in the current issue through the integration of nanotechnology with bio-resources leading to what 
is termed as biosynthesis of  SnO2 nanoparticles (NPs). This review reveals the recent advances in biosynthesis of  SnO2 NPs 
by chemical precipitation method focused on distinct methodologies, characterization, and reaction mechanism along with 
a photocatalytic application for dye degradation. According to available literature reviews, numerous bio-based precursors 
selectively extracted from biological substrates have effectively been applied as capping or reducing agents to achieve the 
metal oxide NPs. The major precursor obtained from the aqueous extract of root barks of Catunaregam spinosa is found to 
be 7-hydroxy-6-methoxy-2H-chromen-2-one that has been proposed as a model compound for the reduction of metal ions 
into nanoparticles due to having highly active functional groups, being abundant in plants (67.475 wt%), easy to extract, 
and eco benign. In addition, the photocatalytic activity of  SnO2 NPs for the degradation of organic dyes, pharmaceuticals, 
and agricultural contaminants has been discussed in the context of a promising bio-reduction mechanism of the synthesis. 
The final properties are supposed to depend exclusively upon a number of factors, e.g., particle size (< 50 nm), bandgap 
(< 3.6 eV), crystal defects, and catalysts dosage. With this contribution, it has been perceived not only to provide an over-
view of recent advances in the biosynthesis of  SnO2 NPs but also to indicate the main issues in need aiming to show vision 
towards innovative outcomes.
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Introduction

Nanoparticles (NPs) have attracted huge interest from both 
fundamental science and technological standpoints because 
their properties exhibit very dramatic differences from 
higher dimensional counterparts. NPs have immense appli-
cation in the fields of catalysis, solar cells, sensors, water 
treatment, and energy storage due to their excellent physical, 
chemical, electrical, magnetic, optical, and surface proper-
ties (Balzani, 2005; Tiwari et al., 2012). Recently, semicon-
ductor NPs have exhibited a broad range of applications in 
photocatalysis (Chen et al., 2014; Suthakaran et al., 2020), 
optoelectronics (Nabi et al., 2003), and solar energy conver-
sion (Chappel and Zaban, 2002), owing to their extraordi-
nary features.

Nanostructured materials are single-phase or multiphase 
polycrystalline solids and are generally characterized by 
their size, shape, surface area, and disparity (Shahverdi 
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et al., 2011). The surface area (i.e., surface-to-mass ratio) of 
nanometric particles is a thousand times higher than that in 
micrometric levels (Savolainen et al., 2013). Nanoparticles 
are technologically advanced in improved strength, chemi-
cal reactivity, and conductivity associated with attractive 
research materials, e.g., carbon nanotubes, metal particles, 
and polymer composites, devoid of nanoscale features of 
different shapes and sizes (Fig. 1) (Scott, 2005). Various 
metal oxide NPs (2–100 nm) are characterized by mostly 
electromagnetic radiation in the UV/visible range.

Tin oxide NPs typically show striking physical and 
electrical properties and optical transparency in the vis-
ible region (300–800 nm) (Finn et al., 2015).  SnO2 NPs are 
of particular interest for a variety of applications such as 
gas sensors (Kennedy et al., 2002); catalysts (Jeong et al., 
2014); anodes in lithium batteries (Chandra Bose et al., 
2002); raw materials for transparent films, infra-red mir-
rors, or optoelectronic devices (Mohan et al., 2015); and 
improved fuel-cells (Guo, 2011). Further studies showed 
state-of-the-art catalytic performance of  SnO2 NPs with 
small diameter (~ 2 nm) deposited on a polycrystalline 
metallic electrode en route for oxidation of methanol or 
ethanol (Magee et al., 2014).  SnO2 NPs are competent 
to adsorb water molecules after dissociation results in 
easier production of  CO2 from total oxidation of ethanol 
(Li et al., 2013). The reasons behind huge applications 

of  SnO2 NPs are small particle size as well as the large-
specific surface area being essential for high catalytic per-
formances (Zhang and Liu, 1999).

Photocatalytic application of NPs is of current attention 
in dye degradation because dyes are major toxic chemicals 
that create environmental pollution (Kostedt et al., 2008; 
Safavi and Momeni, 2012; Zhang et al., 2009a, 2009b) 
through discharging effluents and solid wastes all over the 
world from textiles, cosmetics, foods, drug, and paper indus-
tries (Nipa et al., 2019). Complex structures of these dyes 
are thermodynamically more stable results in difficulties 
to degrade or eliminate from the effluents. Many physical, 
chemical, and biological methods were successfully prac-
ticed to remove these dyes (Mascolo et al., 2007; Wang 
et al., 2010a, 2010b). Nanoparticles are stimulated by UV/
visible irradiation that generates a redox environment in the 
system during catalytic degradation (Fatima et al., 2019; 
Beydoun et al., 1999). In particular,  SnO2 NPs show strong 
photocatalytic activity towards different dyes under many 
radiation sources reported elsewhere (Bhattacharjee and 
Ahmaruzzaman, 2015b; Haritha et al., 2016; Tammina and 
Mandal, 2016). As photodegradation reaction is influenced 
by photocatalysts (Ajoudanian and Nezamzadeh–Ejhieh, 
2015; Derikvandi and Nezamzadeh–Ejhieh, 2017; Ahmad 
et al., 2016), new strategies are currently demanded to syn-
thesize different nanoparticles with desired properties.

Fig. 1  Properties of nanoparticles
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Varied physical and chemical methods are generally 
employed for synthesizing and fabricating nanostructured 
materials (Ong et al., 2018). The methods for preparing 
NPs usually involve either a “top-down” or a “bottom-up” 
approach (Fig. 2). Size reduction of suitable macro-mole-
cules is starting material for the top-down method; whereas, 
the bottom-up points out the fabrication of particles from 
micro-entities. The top-down method suffers drawbacks 
from surface imperfection structures of the NPs (Thakkar 
et al., 2010), and the bottom-up mostly counts on chem-
ico–biological methods, where nanostructured building 
blocks are initially formed and then assembled to obtain the 
preferred products.

Synthetic methods of  SnO2 NPs, in particular, have been 
developed in the last few years based on peroxide (Hoffmann 
et al., 1995) and polymeric precursors (Fu et al., 2011; 
Yang et al., 2011) such as hydrothermal (Chu et al., 2014), 
sol–gel (Wang et al., 2015), co-precipitation (Agrahari et al., 
2015), microemulsion (Zamand et al., 2014), and chemical 
precipitation methods (Bhattacharjee et al., 2015) because 
of their wide range of applications. Temperature is an 
obviously important factor for the heat treatment method as 

the precursors are processed at different temperatures and 
time intervals to achieve materials with a single crystalline 
phase (Stanulis et al., 2012). Solid-state reactions are the 
basis of  SnO2 synthesis over the peroxide precursor method 
(Guo et al., 2016). Polymeric precursor–based techniques, 
in general, are complying with an esterification reaction 
between metallic citrate and ethylene glycol through 
chelation of metallic cation designed for polymeric chain 
formation (Lei et al., 2007).

Among these strategies, the chemical precipitation 
method is particularly attractive thanks to its fast produc-
tion period, clean phases, amazing crystal structure forma-
tion, and being cost-effective. The synthesis of innovative 
materials is combined with versatility in process design that 
offers good chemical homogeneity due to proper mixing at 
the molecular level (Das, 2001).  SnO2 NPs can be prepared 
by the method using either chemical reagents (Cocco et al., 
1987; Kawashima et al., 2012; Naje, 2003) or green biologi-
cal precursors known as biosynthesis (Elango et al., 2015; 
Gaber et al., 2013; Viju Kumar and Prem, 2018). Biosynthe-
sis uses biological substrates obtained from the extracts of 
plants, bacteria, fungus, and algae to substitute commercially 

Fig. 2  Various methods for pre-
paring nanoparticles (Madkour, 
2017)
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available chemical solvents and stabilizers to reduce toxic 
properties of the process (Kharissova et al., 2013; Król 
et al., 2017). In the case of  SnO2 NPs synthesis, numerous 
bio-based precursors selectively extracted from biological 
substrates have effectively been applied as capping or reduc-
ing agents to achieve metal oxide NPs. Recently, Matussin 
et al. (2020) reported green biosynthesis of  SnO2 NPs using 
various plant extracts and demonstrated their effects on the 
optical and structural properties of the as-prepared  SnO2 
NPs with possible applications in practical arenas (Matussin 
et al., 2020). In general, the biosynthesis of  SnO2 NPs is a 
very straightforward process in which tin salts are added to 
a biological extract for bio-reduction or complex formation, 
followed by the proper centrifugation and thermal treatment 
of the precipitate after the reaction, and finally,  SnO2 nano-
powder is obtained (Celina Selvakumari et al., 2018; Haritha 
et al., 2016). In fact, the particle size of dispersed phases is a 
function of temperature, pH, and degree of distribution (Lq 
et al., n.d.). Elevated temperatures, in contrast, are needed to 
obtain outstanding crystalline  SnO2 NPs with the drawback 
of the high degree of aggregation during successive drying 
and calcination processes.

Even though an extensive quantity of research outcomes 
have been reported in this field, however, there is no com-
prehensive review article based on the biosynthesis of  SnO2 
NPs by mostly using the chemical precipitation method. In 
addition, the reaction mechanism of the nanoparticle forma-
tion and photocatalytic degradation of dyes have still to be 
defined and understood due to the high complexity of the 
biological extracts besides thermodynamically stable struc-
tures of dyes. From this viewpoint, the review summarizes 
recent advances in the synthetic methods of  SnO2 NPs; in 
particular, the chemical precipitation method focused on 
distinct methodologies applied, characterization, and bio-
reduction mechanism of the synthesis with different biologi-
cal substrates along with the photocatalytic application for 
dye degradation.

Properties of  SnO2 NPs

Semiconductor metal oxide nanoparticles, predominantly 
 SnO2 NPs with rutile structure, play a vital role in the 
conversion of metal ions into nanoparticles, photocata-
lytic degradation of textile dyes, reduction of heavy met-
als, etc. because of higher surface area, less toxic effect, 
more thermal conductivity, and sensitivity (Cao et al., 2006; 
Kawashima et al., 2012).  SnO2 is an amphoteric white- or 
gray-colored solid that represents high optical transparency 
and reflectivity in the region of IR radiation. It is one of the 
n-type (oxygen-deficient) semiconductor materials with a 
wide bandgap (3.6 eV). Oxygen vacancies are responsible 
for n-type behavior that corresponds to photoactivation in 

the UV range of 350 nm, making this material an ideal pho-
tocatalyst for the degradation of a variety of organic pollut-
ants and has large excitation binding energy (130 meV) (Liu 
et al., 2010). Moreover, it works as a chemical sensor that 
instigates a decrease in the surface barrier properties and 
leads to a change in conductance through oxidation reaction 
between chemical species and chemisorbed oxygen (Kar and 
Patra, 2014). Some physical and crystallographic properties 
of  SnO2 NPs are shown in Table 1 (Houari et al., 2014).

SnO2 NPs are available in the form of faceted high sur-
face area diamagnetic oxide nanostructures. Nanoscale  SnO2 
is typically 20–40 nm with a specific surface area in the 
range of 10–80  m2g−1 and is also available in rutile, ultra-
high purity, transparent, coated, and dispersed forms.

Tin element is practiced with mostly three oxidation states 
(+ 2, + 3, and + 4); therefore, it forms three oxides, e.g., SnO, 
 Sn2O3, and  SnO2, known as amphoteric oxide of tin, and 
three Sn states exist in the oxide films that can be labeled 
as metallic, quasimetallic, and oxidic Sn. The quasimetallic 
Sn is an intermediate state resulting from oxidized Sn and is 
still alloyed within other metal surface layers. Tin(II) oxide 
(SnO, stannous oxide) is a stable blue–black and metastable 
red form. Tin(IV) oxide  (SnO2, stannic oxide) is called cas-
siterite, and it is the main ore of tin. When SnO is heated 
in an inert atmosphere, initially disproportionation reac-
tion occurs, producing  Sn3O4 that further reacts to generate 
 SnO2 (Wiberg, 2002). In fact, SnO is a thermodynamically 
unstable phase that leads to the formation of the more sta-
ble tetragonal rutile-type  SnO2 structure and β-Sn over rela-
tively high temperatures (Cusack, 1998; Giefers et al., 2005; 
Krishnakumar et al., 2008; Moreno et al., 2001).

The standing of metal substrates in striking structure and 
crystallographic orientation on oxide films is demonstrated 
by spectrometric analysis. To evaluate the purity of  SnO2 
NPs in the form of powder samples, crystal structure and 
crystallinity are assessed by X-ray diffraction (XRD) 
analysis (Rahman et  al., 2011). Mevada et  al. (2020) 
reported the XRD pattern of commercial  SnO2 NPs (Sigma 

Table 1  Selected physical and crystallographic properties of  SnO2 
NPs (Houari et al., 2014)

Element (wt%) Sn: 78.76 and O: 21.21

Molecular weight (g/mol) 150.69
Density (g/cm3) 6.90
Melting point (℃) 1500–1630
Boiling point (℃) 1800–1900
Crystal system Tetragonal
Space group P42/mnm
Lattice constant (nm) a = b = 0.47374 and c = 0.31864
Electronic configuration Sn: [Kr]  4d10  5s2  5p2

O: [He]  2s2  2p4
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Aldrich Chemie GmbH, Steinheim, Germany) shown 
in Fig. 3 (Mevada et al., 2020). The diffraction peaks for 
the  SnO2 NPs obtained at 26.20°, 33.9°, 37.96°, 51.80°, 
54.78°, 57.80°, 61.90°, 64.74°, 65.98°, 71.32°, and 78.74° 
corresponding to the planes (110), (101), (200), (211), (220), 
(002), (310), (112), (301), (202), and (321) (Fig. 3a). It is 
well known that the sensing features of  SnO2 are dominantly 
controlled by surface properties. In particular, the (110) 
plane is one of the most thermodynamically stable surfaces 
among the indexed surfaces (Oviedo and Gillan, 2002, 2001; 
Wang et al., 2008; Zhang et al., 2011), and it has widely 
been used to investigate the surface characteristics of  SnO2 
(Batzill et al., 2003).  SnO2 NPs of the tetragonal crystal 
system with rutile structure were confirmed by the observed 
peak positions (Batzill et al., 2004; Celina Selvakumari et al., 
2018; Letia and Groza, 2009) and compared with standard 
Bragg positions (Fig. 3a) point out a good agreement with 
standard database (JCPDS 41–1445) (Begum et al., 2016; 
Patil et al., 2012). The packing diagram of  SnO2 NPs is 
shown in Fig. 3b (Veerabhadrayya et al., 2018).

SnO2 has space group P42/mnm, and symmetries of opti-
cal modes (k = 0), including IR and Raman, are D4h. Its unit 
cell crystallizes to rutile structure where each Sn atom (blue) 

is coordinated by six O atoms (red), i.e., the coordination 
number of Sn 6; whereas, each O atom is coordinated by 
three Sn atoms, i.e., the coordination number of  O3 (Fig. 3b) 
(Batzill et al., 2004; Chen et al., 2012; Greenwood and Earn-
shaw (n.d.); Veerabhadrayya et al., 2018). The octahedral 
structure of  SnO2 shares the edges and forms a linear chain 
along the c-axis, where maximum electron density and high 
polarization are observed (Celina Selvakumari et al., 2018).

In addition, the crystallite size of nanomaterials is usu-
ally calculated by Scherrer’s equation, and the average size 
of  SnO2 NPs was found to be ~ 20 nm for a stronger peak at 
(110) reported elsewhere (Bhattacharjee et al., 2015, 2014; 
Bhattacharjee and Ahmaruzzaman, 2015a). The particle size 
and strain, annealing temperature, and orientation of crystals 
affect the height and shape of the diffraction peaks across 
various planes of Miller indices (hkl), as revealed from the 
XRD patterns (Mevada et al., 2020).

TEM analysis is typically employed to identify the mor-
phology, size, d-spacing, and crystalline nature of  SnO2 NPs. 
Figure 4 shows TEM, particle size distribution, HR-TEM, 
and SAED pattern of the photocatalyst. The spherical shape 
of  SnO2 NPs with an average radius of 2–3 nm was detected 
by the TEM image (Fig. 4a) (Bakrania and Wooldridge, 

Fig. 3  (a) XRD pattern of com-
mercial  SnO2 ; 
modified from Mevada et al. 
(2020) and (b) Packing diagram 
of tetragonal crystal system of 
 SnO2 NPs with a unit cell of 
rutile  SnO2 (below) (Batzill 
et al., 2004
Veerabhadrayya et al., 2018)

Fig. 4  (a) TEM image of  SnO2 
NPs with 20 nm magnification 
and histogram (inset) showing 
the particle size distribution; 
(b) HR-TEM for d-spacing and 
SAED pattern (inset) (Bhat-
tacharjee and Ahmaruzzaman, 
2015c; Celina Selvakumari 
et al., 2018; Thakkar et al., 
2010)
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2009). Size distribution of  SnO2 NPs is represented by a 
histogram shown in Fig. 4a (inset), resulting in a mean par-
ticle radius of 2.25 nm (Bhattacharjee and Ahmaruzzaman, 
2015b).

HR-TEM image of  SnO2 NPs clearly demonstrates 
lattice fringes of the nanomaterials, and inter-planar 
spacing obtained is d211 = 1.76 Å that corresponds to lattice 
plane (211) (Fig. 4b). The crystalline nature of  SnO2 NPs 
is perceived in the SAED pattern (Fig. 4b, inset), and the 
lattice spacing was calculated corresponding to (110), 
(101), (211), and (301) planes (Celina Selvakumari et al., 
2018). The bright field with multiple rings denoted in the 
SAED pattern revealed polycrystallinity of  SnO2 NPs, and 
Miller indices (hkl) values of the rings verified the rutile 
crystal structure of the nanoparticles (Bhattacharjee et al., 
2014; Bhattacharjee and Ahmaruzzaman, 2015b; Celina 
Selvakumari et al., 2018).

Moreover, it can be exposed from the TEM analysis that 
particle size is influenced by the annealing temperature of 
the precursor materials towards  SnO2 NPs synthesis. The 
crystallinity of the NPs increases with increasing tem-
perature thru reducing the defects owing to the systematic 
arrangement of the atoms in the unit cell that leads to a rise 
in particle size. It is interesting to be mentioned that  SnO2 
NPs can be synthesized with desired size monitoring calci-
nation temperature (Babar et al., 2010; Celina Selvakumari 
et al., 2018; Tammina et al., 2018). In a nutshell, the electron 

microscopic results point out that the particle size and lattice 
plane of the nanoparticles are in well agreement with XRD.

Classification of  SnO2 NPs

Diverse nanostructures of  SnO2 viz., namely nanocrystals, 
nanowires, nanotubes, nanodots, and nanobelts, are techno-
logically important due to their size-dependent properties. 
Additional nanostructures include nanorods, nanohorns, 
nanowhiskers, nanopyramides, and nanocomposites. The 
particles are preferentially adsorbed at the surface interface 
using chemically bound polymeric materials on account 
of surface-functionalized properties (Nilavazhagan et al., 
2014).

Based on dimensions,  SnO2 can be divided into one-
dimensional (1D), two-dimensional (2D), and three-dimen-
sional (3D) nanostructures. They exhibit novel physicochem-
ical characteristics that considerably differ from conventional 
bulk materials (Park et al., 2007). Figure 5 shows the mor-
phologies of tin oxides having different dimensions. 1D 
nanostructures have an intense impact on nanoelectron-
ics, nanocomposites, nanodevices, energy resources, and 
national security (Zhang et al., 2012). 2D structures are 
exclusively interesting, owing to understanding the basic 
mechanism of nanoparticle growth besides investigation 
and application in nanosensors and photocatalysis (Zeng 

Fig. 5  TEM images of different 
nanostructured  SnO2 NPs: (A) 
1D nanorods, (B) 1D nanorib-
bons, (C) 2D nanosheets, and 
(D) 3D-nanostructures (Cheng 
et al., 2004; Hu et al., 2002; Wu 
et al., 2011; Zhong et al., 2006)
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et al., 2009). In addition, 3D nanostructures are frequently 
employed as catalysts, magnetic materials, and electrodes 
for batteries (Kim, 2014). In general, 1D includes nanorods 
(Park et al., 2007), nanowires (Meduri et al., 2009), nanor-
ibbon (Dai et al., 2001), and nanotubes (Dai et al., 2002); 
whereas, 2D consists of nanosheets, branched structures, 
nanoprisms, nanoplates, nanowalls, and nanodisks (Parwaz 
Khan et al., 2016), and 3D comprises flower-type hollow or 
porous nanostructures (Wang et al., 2010a, 2010b). It can 
be pointed out that nanostructure materials with low-dimen-
sional, for instance, 1D or 2D, are more competent to with-
stand volume change during the charge–discharge process 
(Wang et al., 2010a, 2010b). Momeni et al. (2016a, 2016b) 
used the atomistic simulation method to reveal the intrin-
sic structural change of  SnO2 that brings down dimensions 
from 2D nanosheets to 1D nanorods of monolayer materials 
(Momeni et al., 2016a, 2016b). It is attractive for having a 
higher surface-area-to-volume ratio and supplies adequate 
absorption molecules aimed at various nanostructures (1D, 
2D, and 3D) involved in a small space (Jung et al., 2008; 
Chang et al., 2020).

Biosynthesis of  SnO2 NPs

Various physical and chemical methods are, in general, 
employed to synthesize and fabricate nanostructured mate-
rials (Haritha et al., 2016). Researchers are currently explor-
ing biosynthetic methods to improve the production of metal 
and metal oxide NPs using clean technologies rather than 
chemical and physical methods commonly used in industry 
(Kharissova et al., 2013; Król et al., 2017; Muthuvinothini 
and Stella, 2019; Shah et al., 2015; Zikalala et al., 2018). 
Recently, the biosynthesis of  SnO2 NPs has gained huge 
attention for its various important applications. Neverthe-
less, commercially available  SnO2 are considered much 
expensive due to costly precursor materials, difficulties in 
synthetic technique, complications in separation, etc. This 
has led to a growing research interest in the production of 
 SnO2 NPs from bio-resources, renewable, widely available, 
nontoxic, and cost-effective precursors. The chemical pre-
cipitation method is now considered as one of the best avail-
able processes for the synthesis of  SnO2 NPs. The NPs can 
be synthesized either by using chemical reagents (Cocco 
et al., 1987; Kawashima et al., 2012; Naje, 2003) or from 
green biological precursors (Elango et al., 2015; Gaber et al., 
2013; Viju Kumar and Prem, 2018); whether the later one 
is predominant and will be discussed in the current issue.

Reaction procedures

Haritha et al. (2016) showed the green chemical production 
of  SnO2 NPs using  SnCl2 solution mixed with Catunaregam 

spinosa aqueous extract and placed in a water bath at 60℃ for 
2 h. Then, the mixture was centrifuged, followed by washing 
and heating at 450℃ for 2 h to get the NPs (Haritha et al., 
2016). A biological method was discussed by Hong et al. 
(2017). The group placed  SnCl2 solution in an incubator, 
and aqueous extract of the Litsea cubeba fruit was added at 
room temperature with an agitation of 100 rpm for 10 min. 
Then, the precipitate was centrifuged in turn washing and 
drying at 50℃ for 2 h (Hong and Jiang, 2017). Elango et al. 
(2015) reported an additional biological method using an 
almost similar procedure. In this case, methanolic extract of 
P. americana seed was mixed with  SnCl2.2H2O at 60℃ for 
12 h (Elango et al., 2015). Merlin et al. (2018) proposed a 
simple method using Stevia rebaudiana extract. Ethanolic 
extract of S. rebaudiana was mixed with  SnO2 aqueous 
solution and heated at 80℃ (Viju Kumar and Prem, 2018). 
Bhattacharjee et al. (2015) showed the synthesis method by 
using amino acid and arginine.  SnCl2.2H2O was treated with 
an equimolar aqueous solution of arginine and irradiated 
with 300 W shots in a microwave oven (Bhattacharjee and 
Ahmaruzzaman, 2015c). Tammina and Mandal (2016) 
exposed the use of amino acid and tyrosine to synthesize 
 SnO2 NPs.  SnCl2.2H2O was added with tyrosine solution 
and stirred at 100℃ for 4 h (Tammina and Mandal, 2016). 
Gaber et al. (2013) presented the conventional precipitation 
method by using an ammonia solution.  NH3.H2O (30%) was 
added with  SnCl4.5H2O dropwise to control pH 8 at 40℃. 
After that, it was centrifuged at 3000 rpm for 20 min and 
obtained white gel precipitation, followed by annealing at 
a temperature in the range of 300–1050℃ for 2 h (Gaber 
et al., 2013). Similar methods are also reported elsewhere 
(Drzymała et al., 2017). Santhi et al. (2016) explored the 
method of dissolving  SnCl2.2H2O in NaOH, and HCl was 
added dropwise up to pH 5 (Santhi et al., 2016). Another 
method was studied by Ibarguen et  al. (2007) using 
ammonium hydroxide and diethylamine (Ibarguen et al., 
2007). Song and Kang (2000) proposed urea instead of 
ammonia or ammonium hydroxide. Urea (0.1–1.0  M) 
was dissolved in  SnCl4.5H2O aqueous solution. Then, it 
was hydrolyzed at 90℃ for 4 h and cooled down to get the 
final product. Prior to this, the mixture was successfully 
centrifuged at high speed (8500 rpm for 30 min), dried in an 
oven at 100℃ for 24 h, and annealed at 600℃ for 2 h (Song 
and Kang, 2000). Selvi et al. (2018) used urea along with 
Ni(NO3)2·6H2O for the synthesis of  SnO2 NPs (Thamarai 
Selvi and Meenakshi Sundar, 2018). Shaikh et al. (2018) 
used  SnCl4.5H2O, Sr(NO3)2.6H2O, and liquor ammonia 
in defined proportion (Shaikh et  al., 2018). Deosarkar 
et  al. (2013) exhibited the use of graphene oxide and 
 SnCl2·2H2O under ultrasonic irradiation (Deosarkar et al., 
2013). Bhattacharjee et al. (2016) showed the utilization 
of glycerol with stannic chloride by microwave heating 
method for green synthesis (Bhattacharjee et al., 2016). The 
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low-temperature situ-precipitation technique was reported 
by Jia et al. (2014) using Zn(Ac)2·2H2O,  Na2HPO4·12H2O, 
and  (CH2)6N4 (Chu et al., 2014). In parallel, Nilavazhagan 
et al. (2014) used  SnCl4.5H2O with some other chemicals 
like  LaCl3.7H2O and  CuCl2.2H2O, and the method followed 
the previous procedures (Nilavazhagan et al., 2014). Metal 
Sn, HCl,  HNO3, and ethanol were used to synthesize  SnO2 
NPs by Liang et al. (2017). Firstly, Sn was dissolved in HCl/
HNO3 mixture, and a fixed amount of  HNO3 and ethanol was 
mixed into it. The solution was then added into deionized 
water, and pH 3 was controlled at 65℃ by adding polyvinyl 
alcohol and  NH4OH solution. The precipitate was dried 
at 100℃ and calcined at 350–600℃ for 2 h after filtration 
and washing with water and ethanol in succession (Liang 
et al., 2017). Begum and Ahmaruzzaman (2018) showed an 
additional chemical precipitation method using surfactant 

(CTAB), anhydrous aspartic acid with  SnCl2.2H2O solution 
following the technique discussed earlier (Begum and 
Ahmaruzzaman, 2018). From the literature reviews, it can 
be pointed out that most of the researchers are interested in 
tin salts (e.g.,  SnCl2.2H2O and  SnCl4.5H2O) as a source of 
Sn because they are cheap and available worldwide. Of the 
different capping/reducing agents listed in Table 2, green 
bio-based chemicals are preferred with reaction conditions, 
e.g., centrifugation rate 100–5000 rpm at controlled pH, 
calcination temperature 100–800℃ for ~ 2 h. Table 2 shows 
varied synthesis methods of  SnO2 NPs, capping/reducing 
agents, crystal structures, and particle size.

In addition, various characterization methods were used 
to determine the properties of  SnO2 NPs: FTIR (Cusack, 
1998; Moreno et  al., 2001), UV/visible spectroscopy 
(Giefers et  al., 2005; Moreno et  al., 2001), XRD 

Table 2  Synthesis methods of  SnO2 NPs, capping/reducing agents for tin salts reduction, crystal structures, and particle size

Sl. no Synthesis method Capping/reducing agent Crystal structure Particle size (nm) Reference

1 Green synthesis by chemi-
cal precipitation (ppt)

Catunaregam spinosa root 
bark

Spherical 47 ± 2 Elango et al. (2015)

2 Biological synthesis by 
chemical ppt

Litsea cubeba fruit Irregular morphology 30 Viju Kumar and Prem (2018)

3 Green synthesis by chemi-
cal ppt

Persia americana seed – 4 Tammina and Mandal (2016)

4 Green synthesis by micro-
wave irradiation

Amino acid, arginine Spherical 4–5 Bhattacharjee and 
Ahmaruzzaman (2015b)

5 Conventional ppt Ammonia Tetragonal 3.45–23.5 Naje (2003)
6 Chemical ppt and micro-

wave irradiation
Ammonia, citric acid, 

ethylene glycol
Tetragonal 2–10 Santhi et al. (2016)

7 Chemical ppt Amino acid, tyrosine Tetragonal, polycrystalline 15–20 Drzymała et al. (2017)
8 In situ chemical ppt Graphene oxide – 3–5 Jia et al. (2014)
9 Green synthesis by micro-

wave irradiation
Glycerol Spherical 8–30 Nilavazhagan et al. (2014)

10 Low-temperature situ ppt Zn(Ac)2·2H2O, 
 Na2HPO4·12H2O, 
 (CH2)6N4

– – Liang et al. (2017)

11 Simple co-ppt LaCl3.7H2O,  CuCl2.2H2 O, 
NaOH

Tetragonal rutile – Begum and Ahmaruzzaman 
(2018)

12 Microwave irradiation NaOH, HCl Tetragonal – Thamarai Selvi and 
Meenakshi Sundar (2018)

13 Chemical ppt HCl,  HNO3, ethanol – Tunable size Arularasu et al. (2017)
14 Controlled ppt NH4OH –  < 50 Thamarai Selvi and 

Meenakshi Sundar (2018)
15 Chemical ppt Ammonia Tetragonal rutile 73 Ibarguen et al. (2007)
16 Homogeneous ppt Urea – 3–4 Shaikh et al. (2018)
17 Green synthesis Stevia rebaudiana – – Gaber et al. (2013)
18 Microwave-assisted solvo-

thermal
Ni(NO3)2·6H2O, urea Tetragonal rutile 10–14 Deosarkar et al. (2013)

19 Co-ppt Ammonia Tetragonal – Chen et al. (2014)
20 Chemical ppt Aspartic acid, surfactant 

(CTAB)
– 8–13.5 Ashour (2018)

21 Chemical synthesis Ammonia Tetragonal 14 Chen et al. (2014)
22 Facile co-ppt Ammonia, Sr(NO3)2.6H2O –  ~ 3.7 Bhattacharjee et al. (2016)
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(Bhattacharjee and Ahmaruzzaman, 2015b, Bhattacharjee 
and Ahmaruzzaman, 2015b; Moreno et al., 2001), SEM 
(Bakrania and Wooldridge, 2009; Krishnakumar et  al., 
2008), TEM (Bhattacharjee and Ahmaruzzaman, 2015a; 
Rahman et al., 2011), STEM (Zhang et al., 2011), SPM (Patil 
et al., 2012), SAED (Bhattacharjee and Ahmaruzzaman, 
2015a; Rahman et al., 2011), TGA (Begum et al., 2016; 
Mevada et al., 2020), DTA (Begum et al., 2016; Mevada 
et  al., 2020), DLS (Oviedo and Gillan, 2001), BET 
(Greenwood and Earnshaw (n.d.); Patil et al., 2012), DRS 
(Batzill et al., 2003), XPS (Batzill et al., 2003; Bhattacharjee 
et al., 2014), PLS (Bhattacharjee et al., 2014; Chen et al., 
2012), GC–MS (Moreno et al., 2001), EDX (Bakrania and 
Wooldridge, 2009; Batzill et al., 2004; Krishnakumar et al., 
2008; Moreno et al., 2001; Oviedo and Gillan, 2001; Zhang 
et  al., 2011), VSM (Bhattacharjee and Ahmaruzzaman, 
2015d), HR-TEM (Bhattacharjee and Ahmaruzzaman, 
2015c; Oviedo and Gillan, 2001), FE-SEM (Batzill et al., 
2003; Bhattacharjee and Ahmaruzzaman, 2015b), TG-DSC 
(Batzill et al., 2004, 2003), UV-DRS (Celina Selvakumari 
et al., 2018), TEM/EDAX (Moreno et al., 2001), SEM/
EDAX (Bhattacharjee and Ahmaruzzaman, 2015c; Giefers 
et al., 2005), DTA/TGA (N. N. Greenwood, n.d.), etc.

Reaction mechanism

Recently, biosynthesis of nanoparticles has been a more 
interesting method to reduce metal ions into metal oxide 
nanoparticles. Bio-based precursors are hydrophilic, bio-
compatible, nontoxic, and cost-effective in nature and used 
in diversified fields with exciting morphologies and varied 
sizes. There are three crucial factors to synthesize and sta-
bilize nanoparticles, i.e., reaction medium, capping, and 
reducing agents. The reducing agents or complex-forming 
compounds involved include various water-soluble plant 
metabolites (e.g., alkaloids, phenolic compounds, terpe-
noids, flavonoids, saponins, steroids, tannins, and other 
nutritional compounds), co-enzymes, and bio-waste mate-
rials (Batzill et al., 2004). The bio-based resources are com-
prised of polysaccharides, proteins, and lipids that act as 
a capping agent that limits the uses of non-biodegradable 
commercial surfactants. Many researchers showed their 
interest in the biosynthesis of different metals and metal 
oxide NPs available in the literature.

Tammina et al. (2018) synthesized  SnO2 NPs of different 
sizes from  SnCl2.2H2O and ascorbic acid and reported a 
plausible mechanism of the redox reaction (Tammina et al., 
2018). Haritha et al. (2016) prepared  SnO2 NPs using C. 
spinosa root bark and identified the phytoconstituents of the 
bark. The major component of the extract (67.475 wt%) was 
found 7-hydroxy-6-methoxy-2H-chromen-2-one that can act 
as an active capping agent for the conversion of  Sn2+ salts 
into  SnO2 NPs (Elango et al., 2015). Sargassum muticum 

extract consisted of basic polysaccharides that reduce ferric 
salts into metal oxide NPs. Protein, as a major component 
of alga, is responsible for the reduction of nanoparticles 
and their stabilization (Mevada et  al., 2020; Nagarajan 
and Arumugam Kuppusamy, 2013). The leaf of Delonix 
regia that consisted of gallic acid is responsible for the 
biosynthesis of palladium NPs (Dauthal and Mukhopadhyay, 
2013). Elango et al. (2015) synthesized  SnO2 NPs using 
the seed of Persia americana to have methanolic extract 
annealed at 300–500℃ and described the phyto-synthesizing 
property of transition metals, thanks to biocompatibility, low 
toxicity, eco-friendly, and green phenomena (Elango et al., 
2015). Selvakumari et al. (2018) also investigated eggshell 
membrane (ESM) and pointed out that the key constituents 
of the membrane are amino acids and aldehydes having 
functional groups of amino, carboxyl, and carbonyl on the 
ESM, which acts as a reducing agent, and its properties are 
comparable to the published results (Celina Selvakumari 
et al., 2018).

From the discussion, it can be noted that various bio-
based capping, reducing, or complexing agents with almost 
similar properties are accountable for cationic reduction. 
The hetero-compound 7-hydroxy-6-methoxy-2H-chromen-2-
one obtained from the C. spinosa extract has been proposed 
as a model complex or adduct forming agent for the trans-
formation of metal ions into NPs because it is bio-based, 
abundant in a plant, easy to extract, and has highly active 
functional groups. On the other hand, the bio-precursor 
having aldehyde functional groups can react with tin salts 
for the reduction of surface-adsorbed  Sn2+ into  Sn0. Fur-
ther conversion of  Sn0 into  SnO2 NPs is carried out through 
atmospheric oxidation. The schematic presentation of the 
chemical precipitation method for the production of  SnO2 
NPs over the reduction of  Sn2+ salt by reducing agents (e.g., 
aldehyde, amino acid) is shown in Scheme 1.

According to Scheme 1, stannous ion  (Sn2+) is reduced 
to elemental tin that is precipitated out from the first step 
of the biosynthesis, where bio-based precursors are used 
as reducing agents. In fact, the biological substrates having 
hydrophilic and hydrophobic domains contribute to surface 
adsorption where the hydrophilic end groups absorb  Sn2+ 
ions and hydrophobic parts interact through the formation 
of  H2 bonding (Celina Selvakumari et al., 2018; Devi et al., 
2012). In the second step, the elemental tin (Sn) is oxidized 
to stannic(IV) oxide  (SnO2) thru calcination in the presence 
of air. It is noted that the oxidation of elemental tin in an 
aqueous medium is usually inactive, and it starts to oxidize 
at a temperature of over 150℃ (Cho et al., 2005), possibly at 
232℃ (mp of Sn) or onward temperature settings. The basic 
reaction of this conversion is as follows:

Sn(l) + O2(g)

Δ

⇒ SnO2(s)
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Celina Selvakumari et al. (2018) also described a mecha-
nism comparable to Scheme 1, where the eggshell mem-
brane was used as a bio-precursor (Celina Selvakumari 
et al., 2018). It was reported that the aldehyde group shows 
reducing properties as well as reduced the surface-adsorbed 
Sn(II) into Sn(0) prior to annealing at 600℃ in natural air 
to obtain  SnO2 NPs.

The reaction mechanism of  SnO2 synthesis by a reduc-
ing agent 7-hydroxy-6-methoxy-2H-chromen-2-one (HMC) 
proposed in the context has been illustrated in Scheme 2. 
The HMC is a water-soluble polar compound being a source 
of electrons from the chromenone ring and carbonyl dou-
ble bonds. In addition, the electrons obtained from the lone 
pair of hydroxyl groups  (OH−) and double bonds take part 
in the conjugated reaction to form vinyl-based carboxylic 
compounds prior to the generation of electrons and protons 
in the system. The p-orbitals of the tin atoms may be occu-
pied by these electrons results in the formation of a complex 
that controls the nanoparticle growth while annealing the 
precipitate.

Most of the researchers characterized the final product, 
 SnO2 NPs, rather than the intermediate-precipitated prod-
uct before calcination. It appraises that the characterization 
of the intermediate product (colloidal hetero-crystal) may 
indicate the reaction mechanism involved during the forma-
tion of stannic oxide  (SnO2) at a certain temperature. Some 
researchers (Elango et al., 2015; Hong and Jiang, 2017; 
“Konstantin Stanislavsky – Bella Merlin – Google Books,” 
n.d.) explained various bio-based precursors as reducing 
agents and annealed the intermediate product from 50 to 
80℃; however, it is incredible to oxidize Sn(0) into  SnO2 
under the stated conditions. The phenomena behind the con-
cept can be described through Scheme 2, where biological 
substrates are used as complex-forming agents (or ligands) 
that may be decomposed easily at lower temperatures pro-
ducing tin hydroxides and their oxides. Moreover, the as-
prepared metal oxide NPs may be coated with a layer of 
organic ligand molecules at the precipitation stage. These 
colloidal hetero-nanocrystals are further converted to  SnO2 
NPs through proper centrifugation and calcination processes. 

Scheme 1  Schematic presentation of chemical precipitation method for the preparation of  SnO2 NPs by a reducing agent

Scheme 2  Plausible reac-
tion mechanism of  SnO2 NPs 
synthesis in the presence of a 
reducing agent (7-hydroxy-6-
methoxy-2H-chromen-2-one) 
obtained from Catunaregam 
spinosa extract
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Besides, the bio-based substrates also act as capping agents 
to provide colloidal stability and prevent agglomeration dur-
ing the nucleation process. In addition, the effect of inter-
molecular and intramolecular forces, nonchemical interac-
tion, and electrostatic consequence disposes the biological 
substrate results in ease of nanoparticle formation and their 
shape (Zhang et al., 2009a, 2009b). The size and features of 
the nanoparticles may be affected by the nature and types of 
functional groups of the reducing agents. Similar phenom-
ena were also reported elsewhere (Drzymała et al., 2017; Sk 
and Yue, 2014; Tammina et al., 2018; Xiong et al., 2011).

Photocatalytic application

Nanoparticles exhibit favorable photocatalytic properties due 
to high capacity, selectivity, and specific adsorption en route 
for various waste products (Coston et al., 1995). Numer-
ous adsorbents of nanosized metallic oxides and selectively 
oxides of Fe, Mn, Al, Ti, Mg, Ce, Pd, Sn, etc. are typically 
promising materials to uptake industrial pollutants from 
liquid systems (Bhattacharjee and Ahmaruzzaman, 2015b; 
Dauthal and Mukhopadhyay, 2013; Elango et al., 2015; 
Haritha et al., 2016; Van Benschoten et al., 1994) due to size 
quantization effect and high catalytic activities (El-Sayed, 
2001). The physicochemical properties of  SnO2 as photo-
anodes are very crucial in dye-sensitized solar cells, which 
are characterized by recombination resistances, charge trans-
port, and size distributions to a greater extent (Xi and Ye, 
2010). Many scientists exposed the catalytic properties of 
 SnO2 NPs intended for photodegradation of organic dyes in 
different conditions, and pharmaceuticals and agricultural 
degradation are discussed as follows.

Congo red degradation

Bio-green synthesis of metal oxide NPs, especially, Catunar-
egam spinosa–mediated nanosized  SnO2, was applied for 
photodegradation of toxic diazo congo red dye studied by 
Haritha et al. (2016). Heber Multilamp Photoreactor was 
introduced into the system to degrade the dye at 365 nm. 
The as-prepared  SnO2 NPs were placed in the photoreactor, 
followed by mixing well with congo red (1 ×  10−4 M) and 
investigating the samples thru UV/visible spectroscopy for 
5-min intervals. When  SnO2 NPs were introduced into the 
system, the peaks corresponding to azo dye were started 
to degrade and completely disappeared within 20 min. The 
experiment results in the rate constant of dye degradation 
(92%) to be k = 0.0952 ×  10−3  min−1 and kinetic data fit-
ted with pseudo-first-order model in good agreement that 
relies at a time on increases C/C0 (concentration ratio at any 
time to initial) decreases (Haritha et al., 2016). Hong et al. 
(2017) also analyzed the photocatalytic activity of  SnO2 NPs 

formed from the biological source of Litsea cubeba fruit. A 
glass-made batch reactor of circular shape together with a 
source of UV light, e.g., mercury vapor lamp, was employed 
for the degradation system. In general, the NPs were dis-
persed in congo red dye solution to ameliorate the catalytic 
effect in a photocatalytic process (Viju Kumar and Prem, 
2018). The photodegradation of the dye typically examined 
by the UV/visible spectra points out that dye absorption 
peak is a function of annealing temperature and they are 
inversely proportionated. The reason behind the extensive 
catalytic activity of  SnO2 nanomaterial (annealed at 600℃ 
during synthesis) might be owing to effective surface area 
(26.14  m2g−1), and better interaction of the dye molecules 
on the catalyst surfaces reported elsewhere (Viju Kumar and 
Prem, 2018).

Phenol red degradation

Elango et al. (2015) showed photodegradation of organic 
dyes, especially phenolsulfonphthalein (commercially 
known as phenol red), tarnished by  SnO2 NPs prepared 
from the seed of Persia americana (Elango et al., 2015). 
Nearly 1 ×  10−3 L of phenol red (1 ×  10−4 M) in addition to 
2.5 ×  10−4 g  SnO2 NPs was transferred to a UV chamber to 
carry out the photochemical reaction at 365 nm in the vis-
ible light region. The surface plasmon resonance (SPR) of 
dye degradation was detected evidently at 426 nm, and the 
SPR band was disappeared within 2 h, proving that catalytic 
activity of the nanoparticles under UV light irradiation is 
predominant (Tammina and Mandal, 2016).

Methylene blue degradation

Photocatalytic activity of methylene blue dye was carried out 
thru the preparation of  SnO2 NPs from amino acid arginine 
reported by Bhattacharjee et al. (2015). After  SnO2 addition, 
the absorption band of the dye degradation decreased 
with the exposure time of irradiation (Bhattacharjee 
and Ahmaruzzaman, 2015b). The absorption band was 
almost disappeared at 663  nm within 4  h, and the dye 
solution was faded away in succession (Bhattacharjee 
and Ahmaruzzaman, 2015b). The rate constant of 
photodegradation of methylene blue was obtained, 
k = 1.3 ×  10−2   min−1. The dye degradation efficiency of 
methylene blue was found to be 96.4% within 4 h of solar 
irradiation (Bhattacharjee and Ahmaruzzaman, 2015b).

Violet 4 BSN dye degradation

Tammina and Mandal (2016) exhibited remarkable photo-
catalytic activity of  SnO2 NPs prepared from amino acid 
tyrosine for Violet 4 BSN dye. The dye, commercially 
known as V4BSN/Acid Violet 3, was irradiated with UV 
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light (125 W, 254 nm). The quartz tube was operated at con-
stant time intervals in the visible light expanse (554 nm) 
after being filled it with an aqueous solution of V 4 BSN 
dye (25  mgL−1) and  SnO2 NPs (10 mg) (Drzymała et al., 
2017). During photodegradation, it was witnessed to per-
ceive complete reduction of the dye molecules through a 
change in color over UV exposure for 40 min. Additionally, 
total organic carbon (TOC) measures the rate of degrada-
tion results in 83.30% TOC that was degraded after 80 min 
of UV irradiation, and finally, the process reached a steady 
state after 2 h (Drzymała et al., 2017).

Photocatalytic activity of  SnO2 NPs for various dyes 
under different irradiation sources is summarized in Table 3. 
Particularly, violet 4 BSN dye shows 100% degradation in 
40 min under 125 W UV lamp; whereas, methylene blue 
demonstrates excellent photodegradation for solar irradia-
tion, and the additional results are comparable to them. In 
fact, photodegradation of dyes is a function of various fac-
tors, for example, source and intensity of radiation, exposure 
time, reaction kinetics, surface properties of the catalysts, 
and process temperature.

Pharmaceutical degradation

Pharmaceuticals are present in medicines, over-the-counter 
therapeutic, and veterinary drugs. There are available active 
natural or synthetic chemicals which can be absorbed into 
the bloodstream even at low concentrations and persist in 
the body for full therapeutic effects (Mezzelani et al., 2018). 
They are classified as (i) antibiotics, e.g., nitrofurantoin, lev-
ofloxacin, and chloramphenicol; (ii) antiviral, e.g., Tamiflu 
and zanamivir; (iii) antidepressant, e.g., alprazolam; (iv) 
antiepileptic, e.g., felbamate and carbamazepine; (v) analge-
sic, e.g., acetaminophen, Ibuprofen, and naproxen; and (vi) 
hormonal, e.g., estriol and 17-β Estradiol (Cuervo Lumbaque 
et al., 2019). Sources of pharmaceutical contamination to the 
environment include municipal wastewater, improper dis-
posal of drugs, human excretion, intensive livestock farming, 

and effluents from hospitals and pharmaceutical industries 
(Mezzelani et al., 2018; Patel et al., 2019). These contami-
nants need to be removed from wastewater to protect our 
environment from the adverse effect of continuous exposure 
to pharmaceutical drugs in water (Patel et al., 2019).

Much work has been conducted to investigate pharma-
ceutical degradation which often involves simulation of a 
real wastewater treatment plant. Current process plants are 
equipped for the removal of simple organic substances and 
particulate materials at a macro/micro-scale. A large num-
ber of pharmaceutical drugs are, however, very soluble in 
water and mobile and are easily integrated into the general 
environment, even at nanoscale levels, making them hard to 
remove (Majumder et al., 2019).

Advanced oxidation processes (AOPs) rather than con-
ventional methods are becoming attractive alternative tech-
niques because of higher chances of production of harm-
less byproducts during pharmaceutical degradation. The 
fundamentals of advanced technology in water treatment 
for pharmaceutical compounds is the production of highly 
reactive species that may generate through irradiation by 
external energy sources like solar, ultraviolet (UV) light, 
visible light, microwave, or other energy sources like elec-
tricity and sound or addition of oxidizing agents. Advanced 
processes based on UV include photocatalysis (e.g.,  SnO2/
TiO2/UV), sulphate/UV, ozonation/UV, peroxide/UV, Fen-
ton/UV, and UV/ultrasound aimed at degrading and mineral-
izing organic contaminants (Serpone et al., 2017). Although 
the new trends of emerging these processes result in more 
effective degradation of organics, the new trends are rather 
expensive operationally. Velempini et al. (2021) studied 
various modified and unmodified photocatalysts in hetero-
geneous photocatalytic degradation of pharmaceutical drugs 
(Velempini et al., 2021).

Up to date, a number of reviews have surveyed the 
treatment of pharmaceuticals using metal oxides (Gautam 
et al., 2020; Gusain et al., 2019), especially  SnO2 (Diallo 
et al., 2016),  TiO2 (Prieto–Rodriguez et al., 2012; Sarkar 

Table 3  Photocatalytic activity of  SnO2 NPs for various dyes

Sl. no Dye Light source Results Ref

1 Methylene blue Solar irradiation 96.4% within 4 h Bhattacharjee and Ahmaruzzaman 
(2015b)

2 Rhodamine B 250 W Hg lamp (≥ 365 nm) Excellent photocatalytic activity Wu et al. (2009)
3 Congo red UV Fair photocatalytic activity Hong and Jiang (2017)
4 Rhodamine B UV 94% degradation after 1 h Sangami and Dharmaraj (2012)
5 Methylene blue, 

eosin Y, Congo 
red

UV 50% degradation after 20–30 min Diallo et al. (2016)

6 Congo red Multilamp Photoreactor (365 nm) Pseudo 1st order; 
k = 0.0952 ×  10−3  min−1

Haritha et al. (2016)

7 Violet 4 BSN 125 W UV lamp (254 nm) 100% degradation of the dye in 40 min Tammina and Mandal (2016)
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et al., 2014), doped  TiO2 (Varma et al., 2020), metal–organic 
frameworks (MOFs), and  SnO2-based photocatalysts 
(Mohammad et al., 2021) for photocatalytic oxidation of 
organic contaminants. Recently, Velempini et al. (2021) have 
proposed a compound parabolic collector (CPC) that ensures 
high degradation efficiencies of pharmaceutical drugs 
through maximizing the harness of solar energy (Velempini 
et al., 2021). Predominantly, degradation of amoxicillin 
trihydrate was investigated over parabolic trough collector 
(PTC) which is a more advanced technological method 
than CPC (Dixit et al., 2016). In pilot studies, a number of 
common strategies to improve degradation efficiencies are 
adopted, i.e., combining different AOPs, dye sensitizations 
of metal oxides, and the addition of reagents to contaminated 
wastewater. Oxidative removal of diclofenac, for example, is 
possible when a dye is used as a photosensitizer to amplify 
the rate of photon absorption of  SnO2 at pilot levels with a 
capacity of 7.7 L for a single reactor (Diaz-Angulo et al., 
2020).

Agricultural degradation

Agricultural degradation, especially soil erosion and water 
pollution, means a decline in soil and water conditions 
caused by improper use of chemicals or poor management. 
The utilization of various chemical fertilizers, herbicides, 
and insecticides in agricultural fields has led to soil pol-
lution, and the accumulation of such toxic chemicals in 
water bodies is a serious threat to the aquatic ecosystem and 
human health (Anju and Sarita, 2010; Singh et al., 2018). 
Particularly, carbofuran and imidacloprid are the common 
insecticides utilized on a large scale in agricultural fields. 
They are neonicotinoid types of insecticides, being the most 
toxic broad-spectrum and high stability in the aquatic envi-
ronment (Mishra et al., 2020; Tiˇsler et al., 2009). Prolonged 
exposure to these hazardous substances, including fertilizers 
(e.g., urea, TSP, and DAP) and herbicides (e.g., atrazine, 
cynazine, hexazinone, metribuzin), are detrimental to mam-
mals, birds, fish, wildlife, as well as humans due to their 
anticholinesterase activity (Otieno et al., 2010; Campbell 
et al., 2004). They may cause serious reproductive disor-
ders, endocrine disruption, and cytotoxic and genotoxic 
abnormalities in humans (Mishra et al., 2020). Therefore, 
the design and development of effective state-of-the-art tech-
nologies to eradicate such xenobiotics from soil and water is 
of utmost significance to the aquatic ecosystem and public 
health (Bolong et al., 2009).

The addition of nanomaterials in agriculture is to reduce 
the extent of chemicals, minimize nutrient losses in fertili-
zation, and increase yield through pest and nutrient man-
agement. Mahanta and Ahmaruzzaman (2021) demon-
strated a cost-effective hydrothermal technique designed 
for the fabrication of  SnO2-based novel nanohybrids, e.g., 

 Fe3O4-SnO2-gC3N4 and Au-SnO2-CdS, with a view to the 
photodegradation of the toxic chemicals (Mohanta and 
Ahmaruzzaman, 2021a, 2021b). The heterojunctions showed 
sound photocatalytic degradation against emerging pollut-
ants like carbofuran and imidacloprid under LED irradiation 
with a degradation efficiency up to ~ 95%. In fact, superox-
ide anion radical has been reported to be the major reactive 
oxygen species. The visible light absorption ability of  Fe3O4, 
Au, CdS, etc., followed by the heterojunction structures of 
energy levels to hinder charge recombination, facilitates 
enhanced LED light-induced photocatalytic degradation of 
the organic pollutants. Prasad et al. (2017) reviewed nano-
technology in sustainable agriculture that includes specific 
applications like nanofertilizers and nanopesticides to trail 
levels of products and nutrients to increase the productiv-
ity without decontamination of soil, water, and protection 
against some insect pest and microbial diseases (Prasad 
et al., 2017).

Mechanism of dye degradation

Organic dye degradation by means of  SnO2 NPs is the most 
common application, and corresponding photodegradation 
perception is available in the literature. Nonetheless, the 
mechanism of photocatalytic activity, still an open question, 
mostly depends upon the free radical generation simultane-
ously either from the excited dye molecules or/and nanopar-
ticles exposed to UV/visible irradiation.

Firstly, the electrons produced from the free radicals of 
dye molecules are got excited into singlet and triplet states. 
The electrons were injected into the conduction band  (eCB

−) 
of the photocatalyst prior to the formation of cationic dye 
radicals  (dye+) (Nilavazhagan et al., 2014).  SnO2 NPs as 
dye-sensitized photocatalysts react with atmospheric oxygen 
to form oxidizing species  (O2*−, HOO*, and *OH radicals) 
which are effective towards oxidization of the dye effluents. 
The probable reaction scheme for the degradation of organic 
dyes by means of  SnO2 NPs was discussed by Bhattacharjee 
et al. (2016) as follows, and the mechanism is shown in 
Fig. 6 (Nilavazhagan et al., 2014):

Dye + h� → Dye∗

Dye∗ + SnO2 → Dye∗+ + SnO2(e
−
CB
)

SnO2(e
−
CB
) + O2 → O∗−

2
+ SnO2

O∗−
2

+ H+
→ OOH+

OOH+ + O∗−
2

+ H+
→ O2 + H2O2

H2O2 + O∗−
2

→ OH∗ + OH− + O2

Dye∗+ + OH∗
→ Degradation_products

Dye∗+ + O∗−
2

→ Degradation_products

Dye∗+ + O2 → Degradation_products
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Secondly,  SnO2 NPs are exposed to irradiation; elec-
trons get excited and generate holes (h+) spontaneously 
in the valence band (VB) located below the Fermi energy 
level (FEL). Electron acceptors, e.g., surface oxygen spe-
cies (O2), readily capture the as-generated photoelectrons 
(e−) results in the production of superoxide free radi-
cals ( O∗−

2
 ). It is noted that during dye degradation, the 

number of photoelectrons (e−) is proportional to that 
of the free radicals ( O∗−

2
 ). Consequently, the holes are 

trapped by electron donors, for instance, surface water 
or organic effluents, and ultimately reduced. Holes are a 
strong oxidizing agent that generally influences the oxi-
dizing power of photogenerated holes. As a result, pho-
togenerated electrons (e−) and holes  (h+) competitively 
separate and recombine during the photochemical reac-
tion, finding out the fact that these electrons constrain 
the recombination of e− and h+ on the surface of the 
photocatalyst in line for oxygen vacancies or existence 
of surface defects (Liqiang et al., 2006). An alternative 

hypothetical mechanism of the photocatalysis system has 
been illustrated in Fig. 7.

Photocatalytic activity of  SnO2 NPs towards 
photodegradation of hazardous dyes under UV/visible 
irradiation exclusively depends upon a number of factors, 
e.g., particle size, bandgap, defects, and dosage of the 
catalysts. Bandgap plays a vital role in dye degradation. 
Semiconductor NPs, in general, influence quantum 
confinement features, i.e., bandgap energy is inversely 
related to particle size focusing on nanoparticles with 
lower crystallite size that shows a higher rate of dye 
degradation or requires time shorter enough (Bhattacharjee 
and Ahmaruzzaman, 2015b). Besides, particle size is a 
function of temperature as well as bandgap (Babar et al., 
2010; Celina Selvakumari et al., 2018; Tammina et al., 
2018). Tammina et  al. (2018) investigated the effect 
of temperature on crystallite size of the  SnO2 NPs and 
calculated corresponding bandgaps from Tauc plots (Fig. 8) 
(Tammina et al., 2018). The bandgap values obtained to be 

Fig. 6  Probable mechanism 
of dye degradation using 
dye-sensitized  SnO2 photo-
catalyst under direct sunlight 
(dye molecules excited first) 
(Nilavazhagan et al., 2014)

Fig. 7  Hypothetical mechanism of dye degradation using dye-sensitized  SnO2 photocatalyst under direct sunlight  (SnO2 NPs excited first)

10884 Environmental Science and Pollution Research (2022) 29:10871–10893



1 3

2.5 eV, 3.0 eV, and 3.2 eV of the as-prepared samples were 
calcined to produce crystallite size ~ 2 nm at 170℃, ~ 12 nm 
at 500℃, and ~ 20 nm at 900℃, respectively. The decrease 
in bandgap from the standard value of 3.6 eV is attributed to 
the crystal defects, leading to come-off electronic transitions 
from VB to FEL (Diallo et al., 2016). These defects create 
oxygen vacancies as well as generate charge carriers that 
contribute to reduce the rate of electron–hole recombination 
on the catalyst surface (Esmaielzadeh Kandjani et al., 2010). 
In parallel, free radicals may be generated by the charge 
carriers through the reaction between absorbed  O2 and  H2O 
on the surface; the additional reaction may achieve with 
these free radicals and dye molecules to form azo bonds 
in the direction of degradation or mineralization of dyes 
discussed earlier.

Furthermore,  SnO2 NPs alter the absorption band 
of the dye molecules, and this band decreases with the 
exposure time of irradiation over catalyst addition. It has 
been reported that particle size is an important factor that 
strongly influences the adsorption of dyes and smaller size 
NPs enhance interaction between the macro-molecules 
and free radicals created on the surface (Bhattacharjee and 
Ahmaruzzaman, 2015b; Jiang et al., 2008; Suttiponparnit 
et al., 2010). Bhattacharjee et al. (2015) reported that the 
absorption band of methylene blue almost disappeared 
within 4 h after the addition of  SnO2 NPs at 663 nm of 
irradiation (Fig. 9) (Bhattacharjee and Ahmaruzzaman, 
2015b) results in the reduction of the complex dye structure 
of chromophore. Haritha et  al. (2016) inferred almost 
similar findings point out that congo red dye showed strong 
degradation (92%) of a high-intensity peak at 502 nm for 

20 min by using the nanoparticles (Haritha et al., 2016). In 
fact, dye degradation with various nanoparticles is a subject 
of different conditions, e.g., catalyst/dye ratio, radiation 
source, synthetic methods, and irradiation time, presented 
in Table 4.

This assessment revealed that  SnO2 NPs prepared basi-
cally from ascorbic acid exhibited strong photocatalytic 
activities (Tammina et al., 2018). Besides, various creative 
findings have been reported in the literature on nanocompos-
ites of  SnO2 that enhance remarkable visible-light-induced 
photodegradation of organic contaminants from wastewa-
ter (Mohanta et al., 2018; Mohanta and Ahmaruzzaman, 
2021c, 2021b, 2021a). Likewise, heterojunction nanocom-
posites (Cu/ZnO, Pd/ZnO, etc.) demonstrated better results 
(⁓100% dye degraded) (Momeni et al., 2016a, 2016b) than 
the rest reported in Table 4. The reason behind the higher 
degradation rate of dye molecules with reduced size of  SnO2 
NPs has been reported that molecules with higher molar 
absorptivity are more stable and establish surface plasmon 
resonance (Heger et al., 2005).

Technological challenges

Integration of nanotechnology with bio-resources towards 
practical application is of current challenges in the field of 
nanoparticle synthesis and utilization (Chen et al., 2014). 
The focal point of the biosynthesis of  SnO2 NPs is to 
develop traditional methods as well as create biodegradable 
materials from available green resources which are nontoxic, 
cost-effective, and environmentally benign in nature.

To produce  SnO2 NPs through the bio-reduction pro-
cedure at moderate temperature and pH yields controlled 

Fig. 8  Tauc plots of  SnO2 NPs of crystallite size 2  nm calcined 
at 170℃ (bandgap 2.5  eV), 12  nm at 500℃ (bandgap 3.0  eV), and 
20 nm at 900℃ (bandgap 3.2 eV) (Tammina et al., 2018)

Fig. 9  Photodegradation of methylene blue dye by solar radiation 
using  SnO2 NPs (Bhattacharjee and Ahmaruzzaman, 2015b)
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particle size, there should be an improvement in the sur-
face morphology and crystallographic properties. In order 
to enhance the feasibility of chemical precipitation methods 
in the future, extensive efforts are needed to overcome some 
technological challenges.

Firstly, chemical precipitation methods involve the com-
plexity of the process and frequently required high tempera-
ture which results in large-grain sizes. At times, this method 
includes some toxic chemicals a threat to the environment 
(Chen et al., 2014).

Secondly, an inevitable introduction of byproducts shows the 
supplementary problem with the methods which require sub-
sequent purification steps. As a result, such processes are time-
consuming and entail extra costs (Seabra and Durán, 2015).

Thirdly, in the literature, there are plenty of studies on the 
removal of organic pollutants; most of them have used dyes as 
model contaminants for the treatment process. These dyes can 
simply be removed in comparison to some other organic prod-
ucts, such as pesticides and endocrine-disrupting compounds. 
However, a deeper understanding is required for a state-of-the-
art mechanism of dye degradation and plausible interaction with 
organic pollutants containing complex molecular structures.

Fourthly, most of the researchers used tin chlorides 
 (SnCl2 or  SnCl4) to synthesize  SnO2 NPs owing to cost-
effective, available, and easy handling properties. Neverthe-
less, the fact behind the studies is the difficulty to remove 
chloride ions from the system, and it badly affects the super-
ficial and electrical features of the material (Thamarai Selvi 

and Meenakshi Sundar, 2018). The chloride tricky can be 
removed through the usage of organic tin compounds, such 
as alkoxides, but these reagents are quite expensive which 
makes their industrial implementation hardly possible.

Fifthly, further improvement is still a current demand in 
the preparation of nanomaterials. There are three key factors, 
e.g., reaction medium, capping, and reducing agents, which 
must be sincerely designed from the green chemistry and 
economic viewpoints for the synthesis and stabilization of 
nanoparticles. Additional needs to be investigated the qual-
ity and performance of  SnO2 NPs based on biological sub-
strates, as the chemicals used are quite costly when chemical 
precipitation methods are chosen.

Finally, even if the application of metal oxide NPs is 
increasingly tremendous in various fields, including water 
treatment, food technology, medicine, and agriculture, but 
still there are some adverse effects of the NPs on the health 
of living organisms (Chen et al., 2014; Galdiero et al., 2011). 
There are various studies on the toxicity of metal oxide NPs, 
and there is also a rising trend in the cytotoxic potential of 
these nanoparticles (Carmona–Quiroga et al., 2021; Seabra 
and Durán, 2015). Recently, Lang et al. (2021) reviewed sus-
tainable smart technology of biosynthesis of nanomaterials 
to utilize their beneficial effects devoid of posing a threat to 
living entities. It is a global challenge of preparing ecologi-
cally benign  SnO2 NPs with better efficiency and minimum 
toxic effect on humans and to the environment towards sus-
tainability. Therefore, future research must be conducted, 

Table 4  Comparison of azo dye degradation by various NPs in different conditions

Material Dye Catalyst/dye ratio Radiation source/method Irradiation 
time (min)

Degradation (%) Reference

SnO2 Methylene blue 22.20 UV lamp 180 79 Kim et al. (2016)
SnO2/SnO Methylene blue 50.00 UV lamp 180 90.28 Song and Kang (2000)
SnO2 Methylene blue 26.67 UV lamp 120 90 Vatanparast and Taghizadeh 

(2016)
SnO2 Methylene blue 28.57 UV lamp 30 90 Tammina et al. (2018)
TiO2 Congo red – Solar radiation – 69 Ljubas et al. (2015)
CeO2/Nylon Congo red – Solution casting – 96 Latha et al. (2016)
Au Congo red – Self-reduction – 95 Subair et al. (2016)
Cu/ZnO Congo red – Green synthesis – 100 at 5th cycle Kim et al. (2016)
Co–Ni Congo red – Microwave – 90–96.8 at various pH Liu et al. (2016)
Cu Congo red, 

methylene 
orange

– In situ preparation – 75 Kamal et al. (2016)

WO3 Congo red – Surfactants as capping 
agents

– 95 Shukla et al. (2016)

ZnO Congo red – Microwave hydrothermal – 43 Vatanparast and Taghizadeh 
(2016)

Pd/ZnO Congo red – Microwave hydrothermal – 98 Vatanparast and Taghizadeh 
(2016)

SnO2 Congo red – UV multilamp 20 92 Haritha et al. (2016)
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suggesting that a series of standard safety evaluations and 
toxicological risk assessment associated with metal oxide 
NPs synthesis, characterization, distribution, and environ-
mental emission towards practical application.

Conclusion

There is a current lacking in a review article on the bio-
synthesis of  SnO2 NPs through the chemical precipitation 
method; nevertheless, huge studies report the possibility 
of obtaining  SnO2 NPs from bio-resources accompanied 
by photocatalytic application of the NPs. The method is 
interesting, thanks to nontoxic, cost-effective, and eco-
friendly approaches, but it still remains a challenge due to 
a number of factors that possess a barrier to the elucidation 
of the reactions and mechanism of formation. Hence, the 
review includes a summary of various capping or reduc-
ing agents extracted from biological substrates and meth-
odologies applied to the synthesis. The substrate found in 
abundance from the extract of root bark of Catunaregam 
spinosa is chromenone compound  (C10H8O3) that has been 
recommended as a model complex-forming agent (or ligand) 
for the transformation of metal salts into  SnO2 NPs, and a 
promising reaction mechanism has been discussed. Besides, 
photodegradation of dyes, pharmaceuticals, and agricul-
tural contaminants over  SnO2 NPs has been discoursed, and 
according to the literature review, it has been reported that 
the photocatalytic activity mainly depends upon the mecha-
nism of free radical generation during UV/visible irradia-
tion. In fact, the bio-reduction mechanism of the nanopar-
ticle formation and photocatalytic degradation features of 
the metal oxide has still to be defined and understood due 
to the high complexity of the biological extracts and ther-
modynamically stable structures of dyes, respectively. With 
the considerable progress over the last few years and clear 
goals that emerged from the study, a sensible increase in 
research on the subject matter and related fields is expected 
in the near future.
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