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Abstract
To achieve a win–win situation for both urbanization and carbon emissions reduction from a spatiotemporal perspective, 
we need to identify the salient links between urbanization and carbon emissions in different dimensions. Using 2008–2018 
panel data on the Yangtze River Delta urban agglomeration, this paper constructs a Stochastic Impacts by Regression on 
Population, Affluence, and Technology (STIRPAT) model based on four dimensions of urbanization: population, economy, 
land, and ecology. Additionally, it uses a whole group of variables for reference, constructs a Spatial Durbin model (SDM) 
to estimate the spatial effect, and empirically investigates the spatial dependence of carbon emissions and the influence of 
various driving factors. The results show that (1) in the temporal dimension, the historical carbon emissions of the study 
area continue to increase. However, the extent to which they are doing so is slowing, the number of low carbon emissions 
areas has significantly decreased, the number of medium carbon emissions areas have significantly increased, the number 
of high and relatively high carbon emissions areas are relatively stable, and energy intensity continues to decline. (2) In the 
spatial dimension, Shanghai, Suzhou, and their surrounding cities have always been carbon emissions hotspots, high and 
relatively high carbon emissions areas are mainly concentrated in these cities. Low carbon emissions areas and cold spots are 
mainly distributed in Anhui Province. Medium carbon emissions areas show a great spatial and temporal evolution and are 
distributed in all provinces. (3) In the four dimensions of urbanization, per capita GDP will not only affect regional carbon 
emissions but also have a spatial spillover effect. For every 1% increase in the economic factors, carbon emissions in neigh-
boring regions will increase by 0.38–0.43%. Population, economic, and technological factors have significant positive effects 
on carbon emissions, and economic factor is the most important factor. (4) In different dimensions of urbanization, there are 
obvious heterogeneities in the impacts of different factors on carbon emissions. Among them, the elasticity coefficient of 
per capita GDP and energy intensity is the smallest among the dimension of land urbanization, and the elasticity coefficient 
of the total population is the smallest among the dimension of population urbanization. Therefore, when formulating carbon 
emissions reduction policies, it is necessary to fully consider the spatial spillover effects, determine the optimal population 
size threshold, advocate for a low-carbon lifestyle, promote clean technology, and realize information exchange and policy 
interaction across regions from the perspective of holistic governance.

Keywords  Multidimensional urbanization · Carbon emissions · STIRPAT model · Spatial Durbin model · Yangtze River 
Delta urban agglomeration

Introduction

Popular opinion recognizes carbon emissions as a key fac-
tor affecting the construction of an ecological civilization 
in China. The growth in carbon emissions is also a direct 
factor leading to global warming, greenhouse effects, and 
extreme weather events. Cities are China’s largest carbon 
source. Population agglomeration, industrial transformation, 
and land changes resulting from urbanization have also had 
a profound impact on carbon emissions (Martínez-Zarzoso 
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and Maruotti 2011). At the same time, with the advance-
ment of urbanization, the demand among people for a beauti-
ful environment is increasing. By implementing a series of 
effective carbon emissions reduction policies, China’s eco-
logical environment has been improved to a certain extent. 
However, the contradiction between urban development and 
ecological protection due to rapid urbanization still cannot 
be ignored (Song 2021). Achieving the goals of reaching 
peak of carbon emissions by 2030 and reaching carbon neu-
trality by 2060 represents a practical problem. Exploring 
the mechanism through which urbanization impacts carbon 
emissions hold great value for overcoming the environmen-
tal constraints on urbanization development and enhancing 
regional sustainable development.

Many scholars have performed exploratory research 
investigating urbanization and carbon emissions, and the 
streams of literature can be categorized as follows. The first 
stream of literature focuses on the factors influencing carbon 
emissions in urbanization from both the macro and micro 
perspectives. Zhang et al. (2019) divided China into three 
regions based on different levels of urbanization to assess the 
impacts of various factors on China’s carbon emissions at the 
national and regional levels. Adams et al. (2020) discussed 
the impact of factors such as electricity consumption on 
carbon emissions at various stages of urbanization in Sub-
Saharan Africa (SSA). Their study found that the predicted 
impact of urbanization and transportation energy consump-
tion on carbon emissions varies greatly among SSA coun-
tries. The second stream of literature focuses on the relation-
ship between urbanization and carbon emissions. There are 
three main perspectives. According to the first, urbanization 
can help reduce carbon emissions through scale effects or 
environmental governance (Wang et al. 2020; Sharma 2011; 
Yilmaz et al. 2021). According to the second, urbanization 
exacerbates carbon emissions through the agglomeration of 
factors such as population and the economy or through the 
transformation of land use (Yang et al. 2018; Chen et al. 
2019). According to the third, there is no obvious relevance 
between urbanization and carbon emissions (Sadorsky 
2014). The scholars who hold the first two views generally 
believe that carbon emissions have a restrictive effect on 
urbanization. The third stream of literature focuses on the 
impact of multidimensional urbanization on carbon emis-
sions. Scholars such as Liddle (2010) and Ahmad (2018) 
introduced land urbanization and other concepts based on an 
extension of urbanization into environmental research, and 
many scholars have begun to explore the mechanism driv-
ing the correlation between urbanization and carbon emis-
sions based on multidimensional urbanization. Chen et al. 
(2020) found that population, land, and economic urbaniza-
tion had significant positive effects on carbon emissions. At 
present, scholars recognize that urbanization is not unidi-
mensional concept, and different scholars have decomposed 

urbanization in different ways (Yang et al. 2020; Zhou et al. 
2019). He et al. (2017) decomposed urbanization into four 
dimensions: population, economy, society, and space. Du 
et al. (2019) decomposed the urbanization system into the 
following three subsystems: the economy, population, and 
land. Considering that urbanization is a current trend that 
will continue into the future, this paper empirically studies 
the issues above from the perspective of the impact of mul-
tidimensional urbanization on carbon emissions.

In summary, many valuable research results have been 
obtained in research on the mechanism of urbanization and 
carbon emissions. However, although the existing literature 
has focused on the driving effect of multidimensional urban-
ization on carbon emissions, few studies have included the 
dimension of ecological urbanization as a category of analy-
sis in a comparative analysis to explore the impact of multi-
dimensional urbanization on carbon emissions. In addition, 
more in-depth research that investigates the spatial spillover 
effects of urbanization on carbon emissions by combining 
the indicators of various dimensions is needed.

Therefore, this paper uses 2008–2018 data of the Yangtze 
River Delta urban agglomeration and constructs a STIRPAT 
model based on the following four dimensions urbanization: 
population, economy, land, and ecology. Additionally, it uses 
the idea of a whole group of variables for reference, con-
structs a spatial panel model while considering the spatial 
effect to conduct comparative analysis, and discusses the 
uncertainty of the relationship between urbanization and 
carbon emissions.

Study area

The Yangtze River Delta urban agglomeration (Fig.  1) 
includes 27 cities in the Yangtze River Delta, with Shang-
hai, Nanjing, Hangzhou, Hefei, and Ningbo being the central 
cities. Its total area is 225,000 km2, and it accounts for 2% of 
China’s territory and 20% of China’s GDP (Yu et al. 2020). 
Its rapid economic development has been accompanied by 
urbanization and regional integration of the Yangtze River 
Delta. In 2019, the State Council approved the overall plan 
for the Yangtze River Delta ecological and green integrated 
development demonstration zone, which started the con-
struction of the beautiful China pioneer demonstration zone. 
The study area contains the most high-quality capital, human 
resources, science, technology and other resource elements 
in China. At the same time, however, due to its increasing 
energy demand, the problem of carbon emissions contin-
ues to be prominent. Therefore, identifying the path for 
future urbanization and carbon emissions in the study area 
holds great practical significance for achieving the carbon 
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emissions reduction goals of both the urban agglomeration 
and the beautiful China pioneer demonstration zone.

Methodology and data sources

STIRPAT model

In studies investigating the relationship among economic 
growth, resources, and the environment, the IPAT frame-
work proposed by Erlich and Holdren (1971) has been 

widely used. This model is expressed as I = P*A*T, where 
I represents the environmental impact, P represents the 
population factor, A represents the economic factor, and 
T represents the technological factor. However, the IPAT 
model is too concise, and its assumption of unified unit 
elasticity conflicts with the hypothesis of the Environmen-
tal Kuznets Curve. To compensate for this weakness of the 
IPAT model, Dietz and Rosa (1997) built the STIRPAT 
model to make it possible to identify the driving factor 
with the most important environmental impact in empiri-
cal analyses. The basic equation is as follows:

Fig. 1   Location of Yangtze River Delta urban agglomeration in China. (a) China, (b) Yangtze River Delta, and (c) 27 prefecture-level cities in 
Yangtze River Delta urban agglomeration
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In Eq. (1), i represents the country (region), t represents 
the year, α, β, γ, and δ represent the coefficients of P, A, and 
T, respectively, and eit is the random error.

In addition, the STIRPAT model can be combined with 
the SDM to explore spatial correlation, heterogeneity, and 
spillover. The logarithmic form of the STIRPAT model can 
help eliminate some endogeneity problems. Referring to this 
practice, this paper constructs the model as follows:

In Eq. (2), i and t represent the prefecture-level city and 
year, respectively; b, c, d, and e are the coefficients of the 
above variables; a is the constant term; and ε is the regres-
sion residual term. I represents the carbon emissions of a 
city; P represents the total population of a city; A repre-
sents the wealth level of a city, which is measured by the per 
capita GDP of the city; T represents the technological level 
of a city, which is characterized by the energy intensity of 
the city; and U represents the urbanization level of a city, 
which is further decomposed into four subsystems: popula-
tion urbanization, economic urbanization, land urbanization 
and ecological urbanization (Li et al. 2019).

Exploratory spatial data analysis

Spatial autocorrelation statistics

Spatial autocorrelation refers to the potential correlation 
of variables in different spatial positions. Spatial autocor-
relation is a measure of spatial dependence, and it includes 
global and local indicators. The global spatial autocorrela-
tion indexes mainly include the global Moran’s I statistic 
and Geary’s C statistic, while the local spatial autocorrela-
tion indexes generally include the local Moran’s index and 
the Gi index. This paper mainly uses Moran’s I index to test 
whether spatial autocorrelation exists, and we can establish 
a spatial econometric model on the basis of the result. The 
equation is as follows:

In Eq. (3), xi represents the carbon emissions of city i, 
n represents the number of regions, and W represents the 
spatial weight matrix (Liu et al. 2018).

Spatial Weight Matrix

Before performing spatial econometric analysis, a spatial 
weight matrix is generally used to describe the adjacency 
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relationship between geographic units. The spatial weight 
matrix W generally uses a binary symmetric matrix to 
express the proximity between n spatial elements. W can be 
expressed as follows:

In Eq. (4), wij denotes the proximity between regions i and 
j, and wij = wji . Such a relationship can be measured based 
on the adjacency standard or distance standard, and the ele-
ments on the diagonal line are set to 0.

The weight matrix of adjacent space represents the rela-
tionship among geographical locations. In this paper, the 
weight matrix of adjacent space is defined by first-order 
R-adjacency, which is mainly used to measure the impact 
of carbon emissions between adjacent cities. It is expressed 
as follows in Eq. (5):

Spatial Durbin model

Spatial econometric models have the advantages of both 
spatial effects and time effects. When the spatial lag of the 
explanatory variables affects the dependent variables, we 
should consider establishing an SDM. The SDM includes 
many widely used models, including the spatial lag of not 
only the dependent variables but also the independent vari-
ables. The equation is as follows:

In Eq. (6), y is the explained variable; X is the explana-
tory variable, W is the spatial weight matrix; ρ is the spatial 
autoregressive coefficient; β and θ are the regression coef-
ficients; and ε is the residual term (Liu and Xiao 2014).

Variable selection and data description

Results obtained using variable accounting methods 
and data sources

This paper selects carbon emissions as the result variable. 
Currently, there are no specialized carbon emissions data 
in China; thus, many studies calculated carbon emissions 
through energy consumption. In this paper, combined with 
the characteristics found in the energy statistical data of the 
study area, the total amount of fossil fuel energy consumed 
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is used as the calculation basis, and the calculation formula 
is as follows:

In Eq. (7), CE represents carbon emissions, E� represents 
the consumption of energy i, and �i is the carbon emissions 
coefficient of energy i. The conversion coefficient and carbon 
emissions coefficient of standard coal are shown in Table 1. 
This paper obtained data on the energy consumption of cities 
from 2008 to 2018, including the consumption of raw coal, 
coke, gasoline, kerosene, diesel, fuel oil, heat, electricity, 
and natural gas, from statistical yearbooks. Then, standard 
coal was converted based on the reference coefficient of 
energy converted into standard coal, and the carbon emis-
sions were calculated by summing the carbon emissions 
coefficient provided by Zhao et al. (2016).

Control variables and data sources

Considering the theory of ecological economics and previ-
ous research results from studies on carbon emissions and 
urbanization, this paper selected the following core explana-
tory variables.

1.	 Population urbanization: The process of urbanization is 
accompanied by the transition of the population from 
low-carbon agricultural activities to high-carbon nona-
gricultural activities. Therefore, the proportion of the 
urban population, the urban population density, and the 
proportion of nonagricultural employees were com-
pressed into a whole group of variables by using the 
concept described by Wang et al. (2017).

2.	 Land urbanization: Land is an important carrier of popu-
lation and the economy. The process of urbanization has 
witnessed the transformation of land-use patterns, and 
it boosts carbon emissions. Therefore, three indicators 

(7)CE =
∑

(

Ei ∗ �i
)

were selected to compress: the per unit area fiscal rev-
enue, the proportion of the urban built-up area, and the 
per capita urban road area (Chen et al. 2020).

3.	 Economic urbanization: The economy is the driving 
force of urbanization, and it leads to changes in indus-
try, trade, and residents’ living standards, as well as an 
increase in carbon emissions (Ahmad and Zhao 2018). 
Therefore, for economic urbanization, per capita fiscal 
revenue, the proportion of fiscal revenue in GDP, and 
the level of regional trade openness were compressed.

4.	 Ecological urbanization: Urbanization has developed 
into a new era, and people’s requirements for the envi-
ronment have continued to increase. The expansion of 
ecological spaces with emission reduction effects has 
become a new trend in urbanization. Therefore, based on 
Shi (2020), the per capita park green area and the green 
coverage rate of the urban built-up area were selected.

In addition, the total population, per capita GDP, and 
energy intensity were introduced as control variables. All 
economic data were processed based on 2008 constant 
prices, and the regions involved in the administrative divi-
sion change in Anhui Province were processed based on the 
current economic proportion to ensure that the data were 
current and consistent. The data were all derived from statis-
tical yearbooks. The main variables in this paper are shown 
in Table 2.

Spatial and temporal evolution of carbon 
emissions in the Yangtze River Delta urban 
agglomeration

Analysis of temporal characteristics

The total carbon emissions and energy intensity of 27 pre-
fecture-level cities in the study area were calculated. As 
shown in Fig. 2, ① based on the change in carbon emissions 
from 2008 to 2018, the carbon emissions of the study area 
increased from approximately 4000 million tons to 5000 
million tons, showing an increasing trend, but the growth 
rate gradually slowed. ② Based on the change in energy 
intensity from 2008 to 2018, the energy intensity of the 
study area decreased from 0.8 to 0.4, showing a continuous 
decline. Notably, two rounds of sharp declines occurred in 
the 2009–2014 and 2017–2018 periods. The historical value 
shows that the carbon emissions of the study area are still 
increasing, but the continuous decline in energy intensity has 
shown a trend of carbon emissions reduction, allowing for 
optimism. This finding is mainly the result of the Yangtze 
River Delta’s active promotion of industrial structure optimi-
zation in recent years and the establishment of a diversified 
clean energy supply system.

Table 1   Conversion coefficients and carbon emissions coefficients of 
standard coal

Energy types Reference coefficient of 
standard coal

Carbon emis-
sions coef-
ficient

Raw coal 0.7143 0.7559
Coke 0.9714 0.8550
Gasoline 1.4714 0.5538
Kerosene 1.4714 0.5714
Diesel 1.4571 0.5921
Fuel oil 1.4286 0.6185
Heat 0.0341 0.2600
Electricity 1.2290 2.5255
Natural gas 1.3300 0.4483
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Analysis of spatial characteristics

The average carbon emissions of the study area in 2008, 
2012, 2015, and 2018 were calculated. Referring to the 
division standard described by Huang et al. (2019), which 
is 0.5, 1, and 1.5 times the average carbon emissions in 
the selected years, the carbon emissions of the 27 pre-
fecture-level cities were classified into the following four 
categories: a low carbon emissions area, medium carbon 
emissions area, relatively high carbon emissions area and 
high carbon emissions area. Figure 3 illustrates that the 
distribution of carbon emissions in the study area was not 
balanced and showed heterogeneity in the temporal and 
spatial dimensions. In general, from 2008 to 2018, the 
number of low carbon emissions areas decreased from 10 

in 2008 to 5 in 2018, the number of medium carbon emis-
sions areas increased from 9 in 2008 to 14 in 2018, and 
the number of relatively high carbon emissions areas and 
high carbon emissions areas were relatively stable, with 
values of 4 and 5, respectively. The low carbon emissions 
areas were mainly distributed in Anhui Province and scat-
tered in Jiangsu and Zhejiang Provinces. By 2015, there 
were no low carbon emissions areas in Jiangsu Province. 
The distribution of medium carbon emissions areas greatly 
changed, as they gradually spread from central Jiangsu 
and eastern Zhejiang to northern Zhejiang and central 
Anhui. The high carbon emissions areas were mainly in 
the central cities of the study area, including Shanghai, 
Suzhou, Nanjing, Wuxi, and Ningbo. The relatively high 
carbon emissions areas were most scattered around the 

Table 2   Indicators of each dimension

Variable types Dimensions Indexes Units

Control variables P Population size 104 persons
A Per capita GDP yuan
T Energy intensity tons of standard coal/104yuan

Independent variables Population urbanization Proportion of the urban population %
Urban population density persons/km2

Proportion of nonagricultural employees %
Land urbanization Per unit area fiscal revenue 108 yuan/km2

Proportion of urban built-up area %
Per capita urban road area m2

Economic urbanization Per capita fiscal revenue 108 yuan/104 persons
Proportion of fiscal revenue in GDP %
Regional trade openness %

Ecological urbanization Per capita park green area m2

Green coverage rate of urban built-up area %

Fig. 2   Changes in carbon emis-
sions and energy intensity of 
the Yangtze River Delta urban 
agglomeration spanning from 
2008 to 2018
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high carbon emissions areas, including Changzhou, Hang-
zhou, MaAnshan, and other cities.

From the provincial perspective, Shanghai has always 
been a high carbon emissions area because it has devel-
oped nonagricultural industries, a dense population, a high 

level of production, and high living energy consumption. 
Jiangsu Province was dominated by medium carbon emis-
sions areas, relatively high carbon emissions areas, and high 
carbon emissions areas. Only Yancheng was a low carbon 
emissions area. The medium carbon emissions areas were 

Fig. 3   Evolution of the spatial and temporal pattern of carbon emissions
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mainly concentrated in the three cities in central Jiangsu and 
Zhenjiang, the relatively high carbon emissions areas were 
mainly in Changzhou, and the high carbon emissions areas 
were mainly Wuxi, Nanjing, and Suzhou. Yancheng is rich 
in wetlands and other ecological resources, and the carbon 
sink effects are strong. The industries in central Jiangsu are 
relatively developed. Although energy-saving industries 
have achieved better energy conservation in recent years, 
the pressure for energy conservation is still heavy. There 
are many industrial areas in cities in southern Jiangsu, such 
as Suzhou and Wuxi. Most of the top 100 industrial coun-
ties in China are located here, and the carbon source effects 
are strong. Zhejiang Province was dominated by medium 
carbon emissions areas, especially in the three cities located 
in northern Zhejiang. Jinhua was the main low carbon emis-
sions area; Shaoxing, Taizhou, and Wenzhou were the main 
medium carbon emissions areas; Hangzhou was a relatively 
high carbon emissions area, and Ningbo was a high carbon 
emissions area. Jinhua has a large forest coverage rate and a 
significant effect as a green carbon sink. Shaoxing and other 
cities are important industrial cities in Zhejiang Province 
that consume more energy. Hangzhou and Ningbo are not 
only the industrial core cities of Zhejiang Province but also 
major population clusters facing both ecological risks and 
carbon emissions pressures. Anhui Province was dominated 
by low and medium carbon emissions areas. Only MaAn-
shan had a relatively high carbon emissions area, and there 
were no high carbon emissions areas. Since 2012, Hefei, 
Wuhu, and Tongling have gradually changed to medium car-
bon emissions areas, and Chuzhou, Chizhou, Anqing, and 
Xuancheng have always been low carbon emissions areas. 
In recent years, resource-based cities and industrial cities 
such as Chizhou and Chuzhou in Anhui Province have been 
actively seeking transformation and promoting the low-car-
bon development of the province’s economy. However, the 
transformation and upgrading of MaAnshan is relatively lag-
ging, and carbon emissions reduction is still an arduous task.

This paper used a spatial correlation analysis to test the 
spatial dependence of the carbon emissions of the study 
area. Table 3 reports the test results for the Moran’s I index. 
Moran’s I index was positive in each year from 2008 to 
2018 and was significant test at the 5% level, indicating that 
there was a positive spatial correlation in carbon emissions. 
Therefore, it was necessary to use the spatial econometric 
model to conduct follow-up research. From the perspective 
of the index trend, Moran’s I index was relatively stable, 
indicating that the spatial correlation of carbon emissions 
in the study area changed only minimally.

Based on the analysis of the Getis-Ord Gi* statistics 
(Fig. 4), the hotspot areas changed minimally from 2008 
to 2018 and were relatively concentrated. Shanghai and its 
surrounding cities were consistently hotspots, and Tongling 
was a cold spot in 2008; however, it was not significant in 

2018. From the provincial perspective, Shanghai has always 
been a hotspot. Suzhou, Wuxi, and Changzhou in Jiangsu 
Province and Huzhou and Jiaxing in Zhejiang Province have 
always been hotspots. Tongling in Anhui Province was a 
cold spot in 2008. This distribution is due to the developed 
nonagricultural industries in Shanghai and its surrounding 
areas, and the excessive concentration of factors such as 
population, which have become the main carbon sources.

Through a comprehensive comparison of the results 
obtained using various methods of spatiotemporal evolu-
tion analysis, we found that ① in the temporal dimension, the 
historical carbon emissions of the study area are increasing, 
but the amplitude is slowing. The number of low carbon 
emissions areas has significantly decreased, the number of 
medium carbon emissions areas has significantly increased, 
the number of relatively high carbon emissions areas and 
high carbon emissions areas has been relatively stable, and 
energy intensity continues to decline. ② In the spatial dimen-
sion, the historical carbon emissions of the study area have 
significant spatial dependence and heterogeneity. The low 
carbon emissions areas are mainly distributed in Anhui, the 
medium carbon emissions areas are gradually spreading 
from central and eastern Jiangsu to northern Zhejiang and 
central Anhui, the high carbon emissions areas are mainly 
in the regional central city, and the relatively high carbon 
emissions areas are distributed around the high carbon emis-
sions areas. Shanghai, Suzhou, and their surrounding cities 
have always been carbon emissions hotspots, while the low 
carbon emissions areas are mainly distributed in Tongling in 
Anhui Province. ③ From the provincial perspective, Shang-
hai has always been a high carbon emissions area. In Jiangsu 
Province, medium carbon emissions areas, relatively high 
carbon emissions areas, and high carbon emissions areas 
are dominant. In Zhejiang Province, medium carbon emis-
sions areas are dominant. Thus, the carbon emissions zoning 
situation greatly changes. In Anhui Province, low carbon 

Table 3   Moran’s I index test results from 2008 to 2018

Note: *p < 0.1, **p < 0.05, ***p < 0.01

Year I Z p

2008 0.301450** 2.426487 0.015246
2009 0.284982** 2.310147 0.020880
2010 0.312494** 2.476283 0.013276
2011 0.301079** 2.404716 0.016185
2012 0.318883** 2.537083 0.011178
2013 0.315984** 2.521992 0.011669
2014 0.335084*** 2.661712 0.007774
2015 0.266273** 2.169922 0.030013
2016 0.356559*** 2.826392 0.004708
2017 0.349479*** 2.769987 0.005606
2018 0.348623*** 2.770947 0.005589
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emissions areas and medium carbon emissions areas are 
dominant. Shanghai, Suzhou, Wuxi, and Changzhou in 
Jiangsu Province and Huzhou and Jiaxing in Zhejiang Prov-
ince have always been hotspots. Tongling in Anhui Province 
was a cold spot in 2008.

Analysis of the factors influencing carbon 
emissions in the Yangtze River Delta urban 
agglomeration

Spatial panel model settings

The analysis above showed that there was a significant spa-
tial correlation in carbon emissions in the study area. If this 
spatial correlation is ignored, the results could be biased, but 
the spatial econometric model can solve this problem. First, 
Lagrange multiplier (LM) and robust Lagrange multiplier 
(R-LM) tests were used to verify the need to use a spatial 
panel model. Then, the likelihood ratio (LR) test and Wald 
test were used to determine whether the SDM could degen-
erate into the SLM (spatial lag model) or SEM (spatial error 
model). The results reported in Table 4 show that the LR 
test and Wald test were significant; thus, the SDM could be 
used for the analysis. Furthermore, based on the results of 

the Hausman test, a fixed effect model was selected for the 
estimation (Hong et al. 2020).

Spatial econometric estimation and analysis 
of the results

Selection and estimation of spatial econometric models

First, ordinary least squares (OLS) estimation was used 
to estimate the four-dimensional models that did not 
include spatial effects. The results are shown in Table 5. 

Fig. 4   Analysis of carbon emissions hotspots of the study area in 2008 and 2018

Table 4   Model test results

Test Statistics p-value

LM test Spatial error 555.043 0.0000
Spatial lag 409.134 0.0000

R-LM test Spatial error 184.593 0.0000
Spatial lag 38.6840 0.0000

LR test Spatial error 15.120 0.0345
Spatial lag 13.630 0.0582

Wald test Spatial error 13.880 0.0534
Spatial lag 15.000 0.0360

Hausman test 19.020 0.0148
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By comparing the goodness-of-fit between the ordinary 
panel model and the SDM, we found that the fitting effect 
of the model was significantly improved after considering 
the spatial correlation of carbon emissions between cities, 
and the spatial lag term of the explanatory variable and the 
explained variable were significant at the 1% level, proving 
the need to use the spatial panel model. Table 5 shows that 
land urbanization had a significant positive driving effect 
on carbon emissions, population urbanization and ecologi-
cal urbanization had a negative impact on carbon emis-
sions, and economic urbanization had a positive impact on 
carbon emissions. However, the relationship between these 
three dimensions and carbon emissions were not statisti-
cally significant. In addition, the level of land urbanization 
had an impact only on a city’s carbon emissions and did 
not affect the adjacent areas; thus, there was no spatial 
spillover effect.

The SDM contains spatial lag variables and explained 
variables; therefore, this model cannot directly reflect the 
influence of the explanatory variables on the explained 
variables, but it can still obtain directional information 
from the results. In the case of significance at the 1% 
level, lnP, lnA, and lnT all had a significant positive driv-
ing effect on a city’s carbon emissions. Only lnA had a 
significant positive impact on carbon emissions in adjacent 
areas, and the other variables had no statistically signifi-
cant impact on carbon emissions in adjacent areas.

Direct effect, indirect effect, and total effect

The results show that the elasticity coefficient and direct 
effect value of each variable differed due to the feedback 
effect of the spatial lag term. Therefore, to measure the influ-
ence of the independent variables on dependent variables, it 
was necessary to further estimate the direct effect, indirect 
effect, feedback effect, and total effect of the model. The 
direct effect refers to the average value of the change in car-
bon emissions caused by changes in the factors influencing 
carbon emissions. The direct effect includes the feedback 
effect, one part of which is derived from the explained vari-
able of the spatial lag, while the other part is derived from 
the explained variable of the spatial lag that affects the car-
bon emissions of adjacent cities, which, in turn, will affect 
the carbon emissions of the local region. The indirect effect 
refers to the influence of local carbon emissions factors on 
the carbon emissions of adjacent areas. The total effect is the 
sum of the direct effect and indirect effect (Li et al. 2020; Liu 
et al. 2019) (Table 6).

Compared with the elasticity coefficients of the explana-
tory variables in the ordinary panel model shown in Table 5, 
the values of the direct effects reported in Table 6 are larger 
or smaller, indicating that the elastic coefficients of the 
ordinary panel model are overestimated or underestimated, 
respectively, because the spatial effects are not included in 
the ordinary panel model.

Table 5   Comparison of estimation results of two panel models

Variables Common panel model Spatial Durbin model

Population 
urbanization

Land urbanization Economic 
urbanization

Ecological 
urbanization

Population 
urbanization

Land urbanization Economic 
urbanization

Ecological 
urbaniza-
tion

lnU  − 0.0364 0.2319** 0.0586  − 0.0639*  − 0.0893 0.2048** 0.3193  − 0.0380
(0.0722) (0.0913) (0.3373) (0.0378) (0.0694) (0.0850) (0.3328) (0.0362)

lnP 0.3644*** 0.3887*** 0.3873*** 0.3726*** 0.2523** 0.3205*** 0.3159*** 0.3076***

(0.1070) (0.0961) (0.0973) (0.0971) (0.1045) (0.0922) (0.0932) (0.0932)
lnA 0.5879*** 0.4701*** 0.5864*** 0.5500*** 0.3678*** 0.2877*** 0.3638*** 0.3618***

(0.0530) (0.0693) (0.0530) (0.0567) (0.0829) (0.0899) (0.0852) (0.0838)
lnT 0.1835*** 0.1639*** 0.1864*** 0.1864*** 0.2137*** 0.2011*** 0.2176*** 0.2213***

(0.0429) (0.0428) (0.0425) (0.0421) (0.0415) (0.0412) (0.0406) (0.0406)
W·lnU 0.0496 0.0397 0.3329 0.0035

(0.1270) (0.1369) (0.3071) (0.0601)
W·lnP  − 0.0655  − 0.0891  − 0.0460  − 0.0798

(0.2278) (0.2232) (0.2309) (0.2259)
W·lnA 0.4538*** 0.3891*** 0.4423*** 0.4103***

(0.1299) (0.1507) (0.1252) (0.1319)
W·lnT 0.1219 0.1010 0.0932 0.0973

(0.0856) (0.0828) (0.0826) (0.0824)
R2 0.4483 0.4608 0.4478 0.4536 0.5130 0.6032 0.6068 0.6135
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(1)	 Dimension of population urbanization: ① From the per-
spective of the direct effect, for each 1% increase in the 
total population, per capita GDP, and energy intensity, 
the level of carbon emissions will increase by 0.2434%, 
0.3690%, and 0.2158%, respectively. Among these fac-
tors, per capita GDP has the most important effect on a 
city’s carbon emissions. ② From the perspective of the 
feedback effect, the feedback effect of the per capita 
GDP is − 0.0012%, accounting for 0.33% of the direct 
effect. This result is reflected in the fact that under 
certain conditions, a change in per capita GDP in this 
region will affect its carbon emissions by affecting the 
carbon emissions of adjacent regions. ③ From the per-
spective of the indirect effect, only per capita GDP has 
a spillover effect. Each 1% increase in per capita GDP 
has a 0.4317% impact on carbon emissions in neighbor-
ing areas.

(2)	 Dimension of land urbanization: ① From the perspec-
tive of the direct effect, for each 1% increase in the level 
of land urbanization, the total population, per capita 
GDP, and energy intensity, the level of carbon emis-
sions will increase by 0.2061%, 0.3117%, 0.2888%, and 
0.2033%, respectively. Among these factors, per capita 

GDP and the total population have the most important 
effects on carbon emissions in this region. ② From the 
perspective of the feedback effect, the feedback effect 
of per capita GDP is − 0.0011%, accounting for 0.38% 
of the direct effect. ③ From the perspective of the indi-
rect effect, only per capita GDP has a spillover effect. 
Each 1% increase in per capita GDP has a 0.3811% 
impact on carbon emissions in neighboring areas.

(3)	 Dimension of economic urbanization: ① From the per-
spective of the direct effect, for each 1% increase in 
the level of the total population, per capita GDP, and 
energy intensity, the level of carbon emissions will 
increase by 0.2061%, 0.3645%, and 0.2200%, respec-
tively. ② From the perspective of the feedback effect, 
the feedback effect of per capita GDP is − 0.0007%, 
accounting for 0.19% of the direct effects. ③ From the 
perspective of the indirect effect, only the per capita 
GDP has a spillover effect. Each 1% increase in per 
capita GDP has a 0.4104% impact on carbon emissions 
in neighboring areas.

(4)	 Dimension of ecological urbanization: ① From the per-
spective of the direct effect, for each 1% increase in 
the level of ecological urbanization, the total popula-

Table 6   Estimation results of 
spatial Durbin model

Variables Population 
urbanization

Land urbanization Economic 
urbanization

Ecological 
urbaniza-
tion

lnU Direct effect  − 0.0884 0.2061** 0.3203  − 0.0375
 − 0.0704  − 0.0861  − 0.3367  − 0.0366

Indirect effect 0.0296 0.0074 0.2544  − 0.0047
 − 0.1433  − 0.1598  − 0.3627  − 0.068

Total effect  − 0.0588 0.2135 0.5747  − 0.0421
 − 0.1513  − 0.1775  − 0.4699  − 0.0723

lnP Direct effect 0.2434*** 0.3117*** 0.3067*** 0.2982***

 − 0.0928  − 0.0783  − 0.0793  − 0.0792
Indirect effect  − 0.0755  − 0.0997  − 0.0552  − 0.0810

 − 0.211  − 0.2051  − 0.2132  − 0.2133
Total effect 0.1679 0.2120 0.2515 0.2172

 − 0.2077  − 0.2023  − 0.2078  − 0.2109
lnA Direct effect 0.3690*** 0.2888*** 0.3645*** 0.3644***

 − 0.0909  − 0.0904  − 0.0886  − 0.0923
Indirect effect 0.4317*** 0.3811** 0.4104*** 0.3813***

 − 0.1250  − 0.1506  − 0.1136  − 0.1254
Total effect 0.8007*** 0.6699*** 0.7749*** 0.7456***

 − 0.0903  − 0.1314  − 0.0848  − 0.1041
lnT Direct effect 0.2158*** 0.2033*** 0.2200*** 0.2239***

 − 0.045  − 0.0434  − 0.0436  − 0.0437
Indirect effect 0.1070 0.0875 0.0763 0.0828

 − 0.0804  − 0.0764  − 0.075  − 0.0755
Total effect 0.3229*** 0.2908*** 0.2963*** 0.3067***

 − 0.0845  − 0.0827  − 0.0814  − 0.0808
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tion, per capita GDP, and energy intensity, the level of 
carbon emissions will increase by 0.2982%, 0.3644%, 
and 0.2239%, respectively. Urbanization shows a non-
significant negative impact. ② From the perspective of 
the feedback effect, the feedback effect of per capita 
GDP is − 0.0026%, accounting for 0.71% of the direct 
effect. Among these factors, the total population has 
largest feedback effect, indicating that the population 
flow has an impact on carbon emissions. ③ From the 
perspective of the indirect effect, only per capita GDP 
has a spillover effect. Each 1% increase in per capita 
GDP has a 0.3813% impact on carbon emissions in 
neighboring areas.

Through this comparison, we found the following: ① 
Among the four dimensions of urbanization, only the level of 
land urbanization had a significant driving effect on carbon 
emissions, and there was no indirect effect. This shows that 
the urbanization development model of “development by 
land” in the past had a profound impact on carbon emissions. 
② Among the four dimensions, lnA had significant feedback 
and indirect effects (spatial spillover effects), and for every 
1% increase in the economic factor, the carbon emissions of 
neighboring areas will increase by 0.3811–0.4317%, reflect-
ing the important impact of regional economic ties on car-
bon emissions. This result also verifies that carbon emis-
sions reduction cannot be achieved in isolation, and regional 
linkages need to be integrated through a holistic approach. 
③ The elasticity coefficient of per capita GDP and energy 
intensity was the smallest among the four subdimensions of 
land urbanization, and the elasticity coefficient of the total 
population was the smallest among the four subdimensions 
of population urbanization.

Causes of the differences in the results of the spatial 
econometric analysis between urbanization and carbon 
emissions

Based on the estimation results of the SDM and the causal 
analysis, we found the following:

(1)	 Among the variables, lnP, lnA, and lnT had a signifi-
cant positive impact on carbon emissions in the local 
region, and only lnA had a significant positive impact 
on the carbon emissions in adjacent regions. This result 
may be due to the increasing demand for private and 
public infrastructure and energy due to the expansion of 
the population, which is consistent with most research 
conclusions. The increase in per capita GDP has caused 
an increase in carbon emissions in local region and its 
neighboring areas. One possible reason is that regional 
economic growth and its radiation effect have caused an 
increase in residents’ income levels and thus stimulated 

growth in consumption and the demand for energy, both 
of which play a driving role in carbon emissions. Fur-
thermore, economic growth attracts greater population 
migration and spatial agglomeration. Cross-regional 
population flow and the formation of economies of 
scale promote further economic growth. Furthermore, 
these factors exacerbate carbon emissions. Regarding 
energy intensity, the lower the energy intensity is, the 
lower the carbon emissions; thus, improving in the 
technology level will reduce carbon emissions because 
these regions are actively carrying out industrial trans-
formation, adopting cleaner production technology, 
continuously improving their energy efficiency, opti-
mizing their energy structure, and gradually establish-
ing a low-carbon energy consumption system.

(2)	 In the dimension of land urbanization, the urbanization 
level is positively correlated with carbon emissions. It 
may be that land urbanization is the process of trans-
ferring land-use types to nonagricultural industries. 
Compared with agriculture, nonagricultural industries 
consume more energy. However, in the past era of land-
based development, industrialization and urbanization 
were accompanied by an expansion of construction 
land. This expansion caused greater changes in the 
land management mode or carbon emissions driven by 
ecosystem carbon sinks and the anthropogenic carbon 
emissions carried by various land-use types.

(3)	 In the dimension of ecological urbanization, urbaniza-
tion and carbon emissions show a nonsignificant nega-
tive inhibitory effect. The reason is that the increase in 
greening and park areas provides more green carbon 
sinks for cities to absorb and fix carbon. However, eco-
logical urbanization has not yet produced the expected 
emission reduction effects.

(4)	 Through horizontal comparison, it can be found that 
the elasticity coefficient of per capita GDP and energy 
intensity is the smallest among the four subdimensions 
of land urbanization, and the elastic coefficient of the 
total population is the smallest among the four subdi-
mensions of population urbanization. This result may 
be because land urbanization carries some economic 
information and population urbanization carries some 
population information, decreasing the elasticity coef-
ficient of the variables related to carbon emissions.

Conclusions and suggestions

Conclusions

Using 2008–2018 data on the Yangtze River Delta urban 
agglomeration, this paper integrates the existing research 
indicators of green urbanization and environmental carrying 
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capacity into the dimension of ecological urbanization and 
constructs a STIRPAT model based on four dimensions 
of urbanization: population, economy, land, and ecology. 
Drawing upon the concept of using a whole set of variables, 
this paper constructs an SDM to estimate carbon dioxide 
emissions considering of spatial effect. The spatial depend-
ence of emissions and the spillover effect of the driving fac-
tors are analyzed. The main conclusions are as follows:

(1)	 In the temporal dimension, the historical carbon emis-
sions of the study area are increasing. However, the 
extent to which they are doing so is slowing. The 
number of low carbon emissions areas has been sig-
nificantly decreased, the number of medium carbon 
emissions areas has significantly increased, the number 
of relatively high and high carbon emissions areas has 
been mostly stable, and energy intensity continues to 
decline.

(2)	 In the spatial dimension, the carbon emissions of the 
study area have significant spatial dependence and 
spatial heterogeneity. Shanghai, Suzhou, and their 
surrounding cities are consistently carbon emissions 
hotspots, and the high and relatively high carbon emis-
sions areas are mainly concentrated in these cities. The 
low carbon emissions areas and cold spots are mainly 
distributed in Anhui Province. Medium carbon emis-
sions areas show a large temporal and spatial evolution 
and are distributed in all provinces, gradually spreading 
from central Jiangsu and eastern Zhejiang to northern 
Zhejiang and central Anhui.

(3)	 There is a significant positive spatial correlation of 
carbon emissions in the study area. If the spatial cor-
relation is ignored, the results could be biased. In the 
four dimensions of urbanization, per capita GDP will 
not only have an impact on carbon emissions in local 
region but also have a spatial spillover effect. For every 
1% increase in the economic factor, carbon emissions 
in neighboring regions will increase by 0.38–0.43%. 
However, the urbanization level, the total population, 
and energy intensity affect only the carbon emissions 
of the local region, and they show no spatial spillover 
effect. The total population, per capita GDP, and energy 
intensity have significant positive effects on carbon 
emissions, and per capita GDP is the most important 
factor. Based on the empirical study, population migra-
tion, spatial agglomeration and economic growth have 
driving effects on carbon emissions, while technologi-
cal progress has a restraining effect.

(4)	 In different urbanization dimensions, there are obvi-
ous heterogeneities in the impact of different factors 
on carbon emissions. The R2 of ecological urbaniza-
tion is significantly higher than that of the other three 
urbanization dimensions. The elasticity coefficient of 

per capita GDP and energy intensity is the smallest 
among the four dimensions of land urbanization, and 
the elasticity coefficient of the total population is the 
smallest among the four subdimensions of population 
urbanization. There is a positive correlation between 
the urbanization level and carbon emissions in the 
dimension of land urbanization, but the results are not 
significant in the other dimensions. Notably, urbani-
zation shows a statistically nonsignificant negative 
blocking effect on carbon emissions in the dimension 
of ecological urbanization. From the perspective of 
the feedback effect, only lnA has a significant positive 
driving effect on carbon emissions in adjacent areas, 
and there is a spatial spillover effect, reflecting that the 
impact of regional economic ties on carbon emissions 
cannot be ignored.

Suggestions

(1)	 The spatial correlation, heterogeneity, and spillover 
effects of carbon emissions and some driving factors 
should be considered. Thus, when formulating carbon 
emissions reduction policies, a platform and policy 
framework for regional environmental collaborative 
governance and holistic governance should be built 
under the framework of regional integration in the 
Yangtze River Delta. Information exchange and policy 
interaction should be promoted among city govern-
ments in environmental governance work. Additionally, 
regional policy exchanges and regional cooperation on 
carbon emissions reduction issues should be strength-
ened. It is also critical to give full play to the “demon-
stration effect” of energy conservation and emissions 
reduction in pilot cities such as Nanjing and to prevent 
marginal cities such as MaAnshan from competing in a 
race to the bottom and becoming a pollution paradise.

(2)	 The total population, per capita GDP and energy inten-
sity have significant impacts on carbon emissions. 
Therefore, when formulating low-carbon and carbon 
emissions reduction policies, China should first guide 
the reasonable migration of the population from high-
carbon areas with Shanghai as the core to small and 
medium-sized cities, grasp the appropriate population 
of large cities such as Suzhou and Hangzhou, and deter-
mine the optimal population size threshold. Second, 
China should consider changes in consumption modes, 
lifestyle, and production mode, improve the energy 
consumption structure of residents, and improve the 
efficiency of resource utilization. Third, China should 
give full play to the role of technological progress in 
reducing carbon emissions, advocate low-carbon liv-
ing concepts, promote environmental protection tech-
nologies, foster path dependence on cleaner production 
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technologies, and promote energy conservation and a 
reduction in consumption in industrial cities such as 
Wuxi and MaAnshan.

(3)	 Carbon emissions reduction involves many factors and 
subjects and should be treated from a holistic govern-
ance perspective. Holistic governance can overcome 
administrative barriers through coordination and inte-
gration mechanisms, promote the mutual enhancement 
of policy objectives and tools among regions, and real-
ize the overall interests of the system. Regarding car-
bon emissions reduction, China should not only pay 
attention to the differences in low-carbon policy design 
concepts between the eastern and western regions of 
the Yangtze River Delta and between core cities and 
their surrounding cities, but also consider the overlap 
and conflict in policy tools between provinces and cit-
ies. Information sharing and policy interaction can be 
achieved by establishing a joint meeting system for car-
bon neutrality in the Yangtze River Delta and a carbon 
emissions amplification data platform.

Notably, this paper attempts to classify based on the 
connotation of urbanization and introduces the dimension 
of ecological urbanization to research the relationship 
between carbon emissions and urbanization. Although 
there are some innovations in this research, there is still 
much room for improvement. Future research can further 
improve the richness of the ecological urbanization index 
from the perspective of carbon sources and carbon sinks 
and integrate indicators, such as the forest carbon seques-
tration capacity, into the research design.
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