
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11356-021-17852-1

RESEARCH ARTICLE

Improving generalisation capability of artificial intelligence‑based 
solar radiation estimator models using a bio‑inspired optimisation 
algorithm and multi‑model approach

Roozbeh Moazenzadeh1  · Babak Mohammadi2 · Zheng Duan2 · Mahdi Delghandi1

Received: 14 July 2021 / Accepted: 25 November 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
One way of reducing environmental pollution is to reduce our dependence on fossil fuels by replacing them with solar radia-
tion (Rs), which is one of the main sources of clean and renewable energy. In this study, daily Rs values at seven meteoro-
logical stations in Iran (Ahvaz, Isfahan, Kermanshah, Mashhad, Bandar Abbas, Kerman and Tabriz) over 2010–2019 were 
estimated using empirical models, support vector machine (SVM), SVM coupled with cuckoo search algorithm (SVM-CSA) 
and multi-model approach in the form of two structures. In structure 1, data from each station were divided into training 
and testing sets. In structure 2, data from the former four stations were used for model training, and those from the latter 
three stations were used to test the models. The results showed that using meteorological parameters improved estimation 
accuracy compared with the use of geographical parameters for both SVM and SVM-CSA models. Coupling the CSA to 
SVM did improve the accuracy of radiation estimates, reducing RMSE by up to 38% (Kermanshah station) and 36% (Tabriz 
station) for the first structure and about 42.4% (Tabriz station) for the second. Performance analysis of the models over 
three intervals including, the first, middle and last third of measured radiation values at each station showed that for both 
structures (except at Tabriz station), the best model performance in under- and over-estimation sets of radiation values was 
obtained, respectively, in the first third interval (first structure, Mashhad station, RMSE = 28.39 J.cm−2.day−1) and the last 
third interval (first structure, Bandar Abbas station, RMSE = 12.23 J.cm−2.day−1). Determining the effects of climate change 
on Rs estimation and using remotely sensed data as inputs of the models could be considered as  future works.

Keywords Cuckoo search algorithm · Generalisation capability · Meteorological parameters · Renewable energy · Support 
vector machine

Introduction

Rapid economic growth in developing countries has high-
lighted the dependence on energy sources. Meanwhile, 
burning fossil fuels can have adverse environmental conse-
quences, leading to air pollution and contamination of soil 
and water resources. It also leads to increased carbon dioxide 
emissions and eventually to global warming, which is par-
ticularly important in developing countries, including Iran. 
Rising sea levels, melting glaciers, sharper droughts and 
increasing heat waves, powerful storms and floods, changing 
ecosystems, growing and spreading agricultural pest popula-
tions and diseases and reduced food security are some of the 
most important sequels of climate change, accelerated by the 
use of fossil fuels. These threats have united governments 
towards taking management decisions regarding reduction 
and control of fossil fuel consumption and carbon dioxide 
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emissions, which are enforced through the annual Climate 
Change Conference.

Rs is one of the main sources of clean, renewable and 
accessible energy and can be an alternative to fossil fuels. 
Particularly, there is tremendous potential in such a country 
as Iran, with an arid to semi-arid climate and more than 13 h 
of sunshine per day in some areas. Rs is the primary driving 
force in agriculture and impacts many key processes such as 
photosynthesis, evapotranspiration and irrigation schedul-
ing. It is also very useful from an industrial standpoint, play-
ing a role in the design of solar panels and urban facilities 
and in photovoltaic power generation.

Rs can be directly measured at meteorological stations by 
pyranometers. In many developing countries, however, not 
all meteorological stations are equipped with these instru-
ments, and incidentally they are costly to maintain. There-
fore, either there are no recorded data for this parameter or 
the available data are not wholly credible. In recent years, 
accordingly, researchers have tried to estimate this param-
eter by various methods. Empirical models and artificial 
intelligence (AI) models are some of the main tools for Rs 
estimation.

Empirical models

Empirical models can be divided into four categories: tem-
perature-based (i.e. Hargreaves-Samani (1982); Annandale 
et al. (2002)), sunshine-based (Angstrom-Prescott (1940); 
Feng et al. (2018a, 2018b)), day of the year-based (Quej 
et al. (2017); Zang et al. (2018)) and hybrid models (Wu 
et al. (2007); Jahani et al. (2017)).

Adaramola (2012) investigated the performance of seven 
empirical models in estimating monthly Rs in Nigeria and 
showed that Angstrom-Prescott model exhibited the best 
performance (RMSE of 0.257 kWh.m−2.day−1). Quej et al. 
(2017) studied the performance of five empirical day of 
the year-based models (four existing, and one proposed 
model) and reported RMSEs ranging between 0.975 MJ.
m−2.day−1 (proposed model) and 2.197 MJ.m−2.day−1 (sine 
wave model). Jamil and Akhtar (2017) estimated monthly 
mean diffuse Rs using 16 proposed models categorised into 
two groups in a humid subtropical climatic region of India. 
RMSEs for the first group ranged from 1.29 to 1.47 MJ.m−2.
day−1, and those of the second group from 1.29 to 1.47 MJ.
m−2.day−1. Performance of two proposed models based 
on sunshine duration and relative humidity and 14 exist-
ing models in estimating daily Rs in Turkey was studied by 
Yildirim et al. (2018). Qin et al. (2018) used MODIS atmos-
pheric and land products as well as daily meteorological data 
recorded at 837 meteorological stations in China as inputs of 
Yang’s hybrid model (YHM), an efficient physically based 
model (EPP), an hourly solar radiation model (HSRM) and 
a neural network model (ANNM) for estimation of solar 

radiation, and reported YHM as providing better estimates 
compared to EPP, ANNM and HSRM, with mean daily val-
ues   of 2.414, 2.535, 2.855 and 3.645 MJ.m−2.day−1, respec-
tively. Performance of 97 available models in literature and 
5 newly established models for estimating diffuse Rs at 17 
stations over China was evaluated by Wang et al. (2019). 
Their results showed that the proposed model with clearness 
index and relative sunshine duration as inputs, produced the 
highest accuracy. The results showed superiority of proposed 
models (with RMSEs of 0.947 MJ.m−2 at Adana station, 
1.086 MJ.m−2 at Göksun station, 1.074 MJ.m−2 at Tarsus 
station) over existing models. Mohammadi and Moazenza-
deh (2021) evaluated the performance of existing and pro-
posed empirical models in estimating daily Rs at 13 weather 
stations of Peru. According to the RMSEs, the worst and best 
results are achieved at San Martin station (RMSE = 509 J.
cm−2.day−1) and Tacna station (RMSE = 223 J.cm−2.day−1), 
respectively.

AI‑based models

Cao  and Cao (2006) improved the accuracy of daily Rs esti-
mates by combining wavelet analysis with a back propaga-
tion training algorithm, with the error rate reduced from 2.82 
to approximately 0.72 MJ.m−2.day−1. Various combinations 
of day of the year, temperature and relative humidity were 
used by Rehman and Mohandes (2008) as input variables 
of ANN models for estimation Rs in Saudi Arabia, with 
MAPEs of 4.49 and 11.8 for different scenarios. Using main 
meteorological parameters, evaporation and soil tempera-
ture, Asl et al. (2011) estimated daily Rs in Dezful, Iran, 
by multi-layer perceptron (MLP) neural networks with an 
MAPE of 6.08. Wang et al. (2016a, 2016b) evaluated the 
performance of three neural network models including gen-
eralised regression neural network (GRNN), MLP and radial 
basis neural network (RBNN) in estimating daily Rs. The 
results of their study showed that MLP outperformed the 
other models, with RMSEs ranging from 1.94 to 3.27 MJ.
m−2.day−1.

Three types of AI-based models including ANFIS-GP, 
ANFIS-SC and M5Tree were evaluated for estimating Rs 
at 21 stations over China by Wang et al. (2016a, 2016b) 
and a general tendency to under-estimation of high radia-
tion values in some stations is reported. An experimental 
model named “Iqbal” and four AI-based models, including 
extreme learning machine (ELM), back-propagation neural 
networks optimised by genetic algorithm (GANN), random 
forests (RF) and GRNN were compared by Feng et al. (2017) 
in terms of estimating diffuse Rs. The results showed that 
GANN at Beijing station (RRMSE = 17.1%) and Zhengzhou 
station (RRMSE = 13.4%) had the best performance. Hal-
abi et al. (2018) assessed the performance of four models, 
including ANFIS and its hybrids with three optimisation 
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algorithms — particle swamp optimisation (PSO), genetic 
algorithm (GA) and differential evolution (DE) — in esti-
mating monthly Rs in Malaysia, concluding that ANFIS-
PSO (RMSE = 0.3065) has outperformed other models. Per-
formance of back propagation (BP) and radial basis function 
(RBF) models and a new hybrid model, “ensemble empirical 
mode decomposition and self-organising map-back propa-
gation hybrid neural networks” (EEMD-SOM-BP)  was   
studied by Lan et al. (2018) in estimating seasonal Rs in 
China, with the proposed model leading to the best results in 
spring, summer, autumn and winter with RMSEs of 137.85, 
123.58, 72.84 and 135.42 W.m−2, respectively. Among dif-
ferent models applied for modeling daily photosyntheti-
cally active radiation (Feng et al. (2018a, 2018b)), genetic 
model outperformed with lowest RMSE (0.5 MJ.m−2.day−1). 
Kuhe et al. (2019) evaluated the performance of three ANN 
models including feed-forward back-propagation neural 
network (FFNN), radial basis function network (RBFN) 
and GRNN in estimating monthly Rs in Makurdi, Nigeria. 
All models had acceptable accuracies, with R2 = 0.998 and 
MSE = 0.0142 (MJ.  m−2.day−1) on average. Performance 
of SVM-FA, Copula-based nonlinear quantile regression 
(CNQR) and empirical models in estimating daily diffuse 
Rs at four stations in China was studied by Liu et al. (2020). 
Their findings showed that CNQR and SVM-FA were much 
better than empirical models. SVM-FA results were slightly 
better than those of CNQR, resulting in a 0.67% decrease 
in MABE.

Given the vast surface area of Iran and its arid and semi-
arid climate, and since many parts of the country receive 
long hours of sunshine, the present study aimed at (i) evalu-
ating the effect of input parameters (geographical and mete-
orological) on estimating Rs, (ii) proposing a novel strategy 
based on multi-model approach by combining either sup-
port vector machine (SVM) or SVM boosted by the cuckoo 
search algorithm (SVM-CSA) with multi-layer perceptron 
and (iii) discussing the generalisation capability of proposed 
models using local and external analysis. Considering a 
data-fusion approach via multi-layer perceptron model for 
combining the advantages of empirical and AI models for 
estimating Rs and discussing the potential of proposed mod-
els in three different intervals are the main novelty aspects 
of the present study. Meteorological data and measured 
Rs values recorded at seven weather stations in Iran over 
2010–2019 were used for this purpose.

Materials and methods

Study area

With an area of 1,648,000  km2, Iran extends between lon-
gitudes 44° and 63° east and between latitudes 25° and 40° 

north (Fig. 1). The country’s climate is generally arid or 
semi-arid (Aghelpour et al., 2019), with maximum sunshine 
hours of about 14 h per day in some regions, which is a high 
figure. Iran characterised by hot summers and cold winters 
and different type of climates, from arid (most part of Iran) 
to humid region (north of Iran). The average of annual pre-
cipitation is about 250 mm. Iran is a developing country and 
inevitably utilises various energy sources. However, fossil 
fuel consumption can cause irreparable damage to the envi-
ronment in the long term. Studies on clean and renewable 
sources of energy such as Rs, and its proper estimation, can 
therefore be of great help in reducing the country’s depend-
ence on fossil fuels. In the present study, geographical and 
meteorological parameters recorded at seven weather sta-
tions in Iran were used for estimating daily Rs. Statisti-
cal indices of the meteorological parameters are given in 
Table 1.

Rs estimation

In the present study, two different structures were used for 
Rs estimation, flowcharts of which are shown in Fig. 2. In 
structure 1 (local analysis), data from each of the seven sta-
tions were divided into two sets (training and testing), and 
performance of each method at each station was evaluated 
separately. In structure 2 (external analysis), data from four 
stations (Ahvaz, Isfahan, Kermanshah, and Mashhad) were 
used for the training, and the data from three other stations 
(Bandar Abbas, Kerman, and Tabriz) were used for testing. 
In fact, in structure 2 an attempt was made to examine the 
generalisation capability of the models through rendering 
the data of the two sets (training and testing set) dissimilar, 
from two perspectives, including the distance between sta-
tions and climatic differences between stations. In this study, 
inputs of Rs simulator models were divided into two cat-
egories, geographical and meteorological inputs, so that in 
addition to evaluating model performance, the effect of input 
type could also be examined. A summary of model input 
data can be seen in Table 2. The quality of meteorological 
data (inputs) and solar radiation (output) was checked before 
applying in the modeling processes. For this aim, outliers 
and missing data were found and time series without noise 
data were considered for modeling.

Empirical models

In this study, performance of empirical models based on 
temperature (6 models) or sunshine hours (2 models) as 
well as 3 hybrid models in estimating Rs over 2010–2019 
was studied based on meteorological data recorded at seven 
weather stations (Table 3).
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Support vector machine (SVM)

SVM was introduced by Vapnik (1995) as a supervised 
learning algorithm and a statistical learning technique 
which can be used for solving classification, regression 
and forecasting problems. SVM employs kernel func-
tions to transform the data from input space into a higher 
dimensional feature space in order to simplify classifica-
tion problems. In addition, the “ε” insensitive loss func-
tion enables SVM to solve nonlinear regression problems. 
For non-separable classes, where an exact separating 
hyperplane cannot be found, the input space is mapped 
to a higher-dimensional feature space using nonlinear 
functions called feature functions (∅) and kernels, thus 
enabling SVM to form nonlinear boundaries and model 
highly complex problems (Raghavendra and Deka, 2014). 
SVM has been used for simulating evaporation (Goyal 
et al., 2014; Moazenzadeh et al., 2018), reference evapo-
transpiration (Kisi and Cimen, 2009; Mohammadi and 
Mehdizadeh, 2020), estimation of lake water level fluc-
tuations (Cimen and Kisi, 2009), streamflow simulation 

(Mohammadi et al., 2021), drought forecasting (Deo et al., 
2017), soil temperature (Moazenzadeh and Mohammadi, 
2019), velocity prediction (Ebtehaj and Bonakdari, 2016), 
prediction of discharge coefficient and depth around bridge 
piers (Sharafi et al., 2016; Azimi et al., 2019) and soil 
saturated hydraulic conductivity (Kashani et al., 2020) 
estimation.

Cuckoo search algorithm (CSA)

This algorithm is based on the following assumptions:

a. Each cuckoo randomly selects a nest and lays a single 
egg in it.

b. The nests with the highest quality of eggs (that is, solu-
tions to the problem) are carried over to the next genera-
tion.

c. The number of the available nests is fixed. Original own-
ers of the nests are able to recognise cuckoo eggs with a 
probability Pa ∈ [0, 1].

Fig. 1  Iran (the study area), neighbouring countries and locations of weather stations
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Upon learning that an alien egg is laid in its nest, the host 
bird will either discard that egg or desert the nest and build 
a new one. The last assumption can be approximated by a 
fraction Pa of the n nests being replaced by new nests (with 
new random solutions at new locations). For maximisation 
problems, the fitness of a solution can be proportional to the 
objective function. For details and background information 
about CSA, see Yang and Deb (2009) and Gandomi et al. 
(2013). In the present study, CSA was used to determine the 
best parameters and weights for SVM in the form of hybrid 
models. Previous studies have confirmed that such coupled 
CSA optimisation approach via AI models can produce a 
capable hybrid model (Liu and Fu 2014; He et al., 2018; 
Puspaningrum et al., 2020). Figure 3 shows the modelling 

flowchart for the base SVM and SVM coupled with CSA 
(SVM-CSA) as used in this study.

Multi‑model approach

A new approach based on the multi-model concept was 
developed, tested and compared with the empirical and AI 
models for estimation of daily Rs. In this approach, outputs 
of empirical and SVM/SVM-CSA models under the best 
scenarios were used as inputs to the multi-model, structure 
of which was based on MLP. Multi-model outputs were 
named SVM-MLP and SVM-CSA-MLP. Figure 4 outlines 
the multi-model approach employed in our study.

Table 1  Geographical locations 
of the stations and statistical 
indices of meteorological 
parameters used in this study

Station Latitude Longitude Altitude Parameter Min Max Mean SD CV

Ahvaz 31° 20′ N 48° 40′ E 22.5 m Tmin (°C) -0.6 35.6 19.46 8.51 0.44
Tmax (°C) 6.6 52.2 34 10.9 0.32
RH (%) 7.6 95.3 38.79 19.71 0.51
n/N 0.02 1.0 0.75 0.21 0.28
Rs (J.cm−2.day−1) 220 3089 1837.7 612.6 0.33

Bandar Abbas 27° 13′ N 56° 22′ E 9.8 m Tmin 3.9 33.2 21.9 6.9 0.31
Tmax 16.2 46.5 32.56 5.83 0.18
RH 7.6 93.4 63.39 12.18 0.19
n/N 0.007 0.99 0.74 0.16 0.22
Rs (J.cm−2.day−1) 646 2938 1895.2 459.5 0.24

Isfahan 32° 37′ N 51° 40′ E 1550.4 m Tmin -14.4 28.8 9.87 8.93 0.9
Tmax -3.0 43 25.2 10.0 0.39
RH 8.5 96.6 32.49 16.64 0.51
n/N 0.04 0.99 0.8 0.17 0.22
Rs (J.cm−2.day−1) 712 3184 2077.8 639.7 0.31

Kerman 30° 15′ N 56° 58′ E 1753.8 m Tmin  − 15.2 26.6 8.27 8.18 0.99
Tmax  − 1.2 41.0 26.45 8.76 0.33
RH 8.9 89.1 29.6 15.6 0.52
n/N 0.01 1.0 0.79 0.19 0.25
Rs (J.cm−2.day−1) 553 3424 2248.3 639.6 0.28

Kermanshah 34° 21′ N 47° 09′ E 1318.6 m Tmin  − 18.3 27.6 7.64 8.0 1.05
Tmax  − 4.0 43.1 25.04 11.07 0.44
RH 9.8 95.6 41.24 21.5 0.52
n/N 0.007 0.99 0.69 0.23 0.34
Rs (J.cm−2.day−1) 461 3221 1829.5 673.2 0.36

Mashhad 36° 16′ N 59° 38′ E 999.2 m Tmin  − 18.2 27.4 10.33 8.33 0.8
Tmax  − 8.2 41.6 24.18 9.82 0.4
RH 10.5 96.9 45.24 19.68 0.43
n/N 0.01 0.97 0.74 0.2 0.27
Rs (J.cm−2.day−1) 483 3523 2088 692.3 0.33

Tabriz 38° 05′ N 46° 17′ E 1361 m Tmin  − 16.8 27.6 8.15 9.43 1.15
Tmax  − 7.9 41 19.76 11.02 0.55
RH 13.9 95.1 48.89 16.55 0.34
n/N 0.007 0.99 0.67 0.25 0.36
Rs (J.cm−2.day−1) 360 3088 1546.9 683 0.44
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Evaluation indices

Performance of the developed Rs estimator models was 
evaluated using three statistical indices including RMSE, 
mean absolute percentage error (MAPE) and relative root 
mean square error (RRMSE), calculated using Eqs. 1, 2, 3, 
respectively. Ertekin and Yaldiz (2000) proposed the fol-
lowing categories for rating models according to accuracy: 
A model is excellent if its RRMSE is below 10%, good if 

10% < RRMSE < 20%, fair if 20% < RRMSE < 30%, and 
poor if the RRMSE is higher than 30%.

(1)RMSE =

[∑n

i=1

(
Rs(i,obs) − Rs(i,est)

)2
÷ n

]0.5

(2)MAPE =

[(∑n

i=1

||
|

(
Rs(i,est) − Rs(i,obs)

)
÷ Rs(i,obs)

||
|

)
÷ n

]

Fig. 2  Two structures used for 
estimating daily Rs. Structure 
1: dataset (n) from each station 
is divided into training and test-
ing sets. Structure 2: datasets 
from four stations are used for 
training of the models, and the 
results are validated separately 
against data from each of the 
other three stations

Table 2  Rs estimator models and their inputs categorised as geographical or meteorological parameters

DOY day of the year; DOM day of the month; NOM number of months; ELE station’s elevation (m); LON station’s longitude; LAT station’s 
latitude; Tmax, Tmin, Tdew, Twet, and Tdry represent maximum, minimum, dew point, wet, and dry temperature (°C), respectively; RH relative 
humidity; n actual sunshine hours (hr); N maximum possible sunshine hours (hr); CC cloud cover; Ra extraterrestrial radiation (J.cm−2.day−1)

Model inputs Parameter SVM SVM-CSA Multiple model

Geographical DOY SVM1G SVM1G-CSA (SVMG,SVMM,empirical)best-MLP; 
(SVMG-CSA,SVMM-CSA,empirical)best-
MLP

DOY,DOM SVM2G SVM2G-CSA
DOY,DOM,NOM SVM3G SVM3G-CSA
DOY,DOM,NOM,ELE SVM4G SVM4G-CSA
DOY,DOM,NOM,ELE,LON SVM5G SVM5G-CSA
DOY,DOM,NOM,ELE,LON,LAT SVM6G SVM6G-CSA

Meteorological Tmax SVM1M SVM1M-CSA
Tmax,Tmin SVM2M SVM2M-CSA
Tmax,Tmin,Tdew SVM3M SVM3M-CSA
Tmax,Tmin,Tdew,Twet SVM4M SVM4M-CSA
Tmax,Tmin,Tdew,Twet,Tdry SVM5M SVM5M-CSA
Tmax,Tmin,Tdew,Twet,Tdry,RH SVM6M SVM6M-CSA
Tmax,Tmin,Tdew,Twet,Tdry,RH,n SVM7M SVM7M-CSA
Tmax,Tmin,Tdew,Twet,Tdry,RH,n,N SVM8M SVM8M-CSA
Tmax,Tmin,Tdew,Twet,Tdry,RH,n,N,CC SVM9M SVM9M-CSA
Tmax,Tmin,Tdew,Twet,Tdry,RH,n,N,CC,Ra SVM10M SVM10M-CSA
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where Rsi,obs and Rsi,est are observed and estimated solar 
radiation values and n refers to the number of data points.

Results

Local performance of the models (structure 1)

For this structure, we divided the data from each station into 
two parts (training and testing). Results of the best empirical 

(3)RRMSE =

[
RMSE ÷

(
1

n

∑n

i=1
Rs(i,obs)

)] model, SVM, SVM-CSA and the multi-model approach 
under the best scenarios at each station are plotted in Fig. 5.

Ahvaz station

The use of meteorological data as model inputs greatly 
improved the accuracy of radiation estimates, to the extent 
that RMSEs of the SVM10M and SVM10M-CSA models 
(best scenarios with meteorological inputs) were approxi-
mately 49% and 60% lower than those of SVM1G and 
SVM1G-CSA (best scenarios with geographical inputs), 
respectively. Coupling the CSA to the SVM model was effec-
tive and reduced RMSE from 153.21 to 114.22. Garj-Garj 

Table 3  Empirical models used 
for estimating Rs

Wat =

[
RH

(
4.7923 + 0.3647Ta + 0.0055

(
Ta
)3)]

where ∆T is the difference between minimum and maximum temperatures (°C), Z is station’s altitude (m), 
ΔTdw is the difference between dry and wet bulb air temperatures (°C), Wat is the amount of water vapour 
per unit volume of air, and Ta is air temperature (°C).

Model type Model’s name Equation

Temperature-based Hargreaves-Samani Rs = Raa(ΔT)
0.5

Samani Rs = Ra

[
c1ΔT

2.5 + c2ΔT
1.5 + c3ΔT

0.5
]

Annandale et al Rs = Rad
(
1 + 2.7 ∗ 10

−6Z
)
ΔT0.5

Chen et al Rs = Ra

(
e1 + e2Ln(ΔT)

)

Jahani et al. 1 Rs = Ra

(
�1 + �2ΔT + �3ΔT

2 + �4ΔT
3
)

Jahani et al. 2 Rs = Ra

(
�1 + �2ΔT

0.5 + �3ΔT
1.5 + �4ΔT

2.5
)

Sunshine-based Angstrom-Prescott Rs = Ra

(
f1 + f2(n∕N)

)

Bahel Rs = Ra

(
g1 + g2(n∕N) + g3(n∕N)

2
+ g4(n∕N)

3
)

Hybrid Jahani et al. 3 Rs = Ra

(
�1 + �2(n∕N) + �3ΔT

0.5 + �4ΔTdw

)

Abdalla Rs = Ra(b1 + b2(n∕N) + b3(RH) + b4(Tmean)

Garj-Garj Rs = Ra(h1 + h2(n∕N) + h3(Wat)

Fig. 3  Flowchart of the hybrid 
model (SVM-CSA) used in the 
present study
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model exhibited the best performance among the empirical 
models, with RMSE = 166.97 J.cm−2.day−1. Examination 
of the results showed that the RMSE of the multi-model 
approach has been 4 and 2% lower compared to the base 
SVM and SVM-CSA, respectively. However, the difference 
is insignificant and the use of the multi-model approach is 
not recommended.

Bandar Abbas station

The results, under the best scenarios, of SVM, SVM-CSA, 
the best empirical model and the multi-model approach are 
represented in Fig. 5, indicating that the use of meteorologi-
cal rather than geographical parameters as inputs of SVM 
and SVM-CSA has reduced RMSEs by about 21 and 28 per 
cent, respectively (Table 4). Among the empirical models, 
Garj-Garj (RMSE = 220.24  J.cm−2.day−1) outperformed 
SVM, but its performance was inferior to SVM-CSA with 
meteorological parameters. Also, the SVM8M-CSA scenario 
reduced estimation error by 31% compared to SVM8M, 
which highlights the importance of coupling the CSA to the 
base SVM model.

Isfahan station

Using meteorological rather than geographical param-
eters has greatly improved the performance of SVM 
and SVM-CSA, reducing their estimation errors by 
about 56 and 47%, respectively. Comparing the outputs 
of SVM (RMSE = 125.31  J.cm−2.day−1), SVM-CSA 
(RMSE = 125.86 J.cm−2.day−1) and Garj-Garj empirical 
model (RMSE = 125.87 J.cm−2.day−1) shows that appli-
cation of the CSA to the base SVM model has failed to 
improve the results, and the empirical Garj-Garj model is 
recommended according to its ease of use compared to the 
more complex AI models. Performance of 42 different SVM 
structures in estimating daily Rs in Ghardaia, Algeria, was 

studied by Belaid and Mellit (2016). Daily RMSE values for 
the four selected structures of SVM ranged between 2.777 
and 2.807 MJ.m−2, whereas for the MLP model, the range 
of RMSEs increased to 2.788–3.047.

Kerman station

At this station, Abdalla’s model outperformed all other 
empirical models, with an error rate similar to that of SVM. 
However, application of the CSA to the base SVM model 
reduced estimation error by 15%. Examination of the results 
also shows that application of the multi-model approach to 
outputs of SVM and SVM-CSA has only slightly improved 
the results, reducing RMSEs by about 7 and 2%, respectively.

Kermanshah station

Coupling the CSA to SVM base model has improved radia-
tion estimates, with the SVM9-M-CSA scenario reduc-
ing RMSE by about 30% and 38% compared to the best 
empirical model (third model of Jahani et  al.) and the 
best SVM scenario (SVM9-M), respectively. Applica-
tion of the multi-model approach to SVM outputs reduced 
the RMSE by 9%. Kim et al. (2018) evaluated the perfor-
mance of single soft computing models, including MLP, 
SVM, ANFIS and MARS (multivariate adaptive regression 
spline) in estimating daily Rs. With various inputs, the best 
performance was obtained for SVM (RMSE = 4.399) and 
MARS (RMSE = 4.207) at Big Bend and Incheon stations, 
respectively.

Mashhad station

The results showed that replacing geographical parameters 
with meteorological parameters as inputs of SVM and SVM-
CSA reduced RMSEs by 45 and 25%, respectively. Both the 
base SVM and SVM coupled with CSA effectively estimated 

Fig. 4  Flowchart of the multi-
model strategy used for estimat-
ing Rs
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Rs, with RMSEs reduced by about 11% and 37%, respec-
tively, compared to the best empirical model (Abdalla’s 
model).

Tabriz station

The results indicate that although the use of SVM model has 
failed to improve radiation estimation in comparison with 
the best empirical model (the first model of Jahani et al., 
RMSE = 366.88 J.cm−2.day−1), SVM coupled with CSA has 
reduced the RMSE by 14% compared to the best empirical 
model. Application of the multi-model approach to outputs 
of the best scenarios of SVM and SVM-CSA was effective, 
reducing error rates by 7% and 16%, respectively.

External performance of the models (structure 2)

We defined this structure in order to examine the possibil-
ity of generalising the performance of radiation estimator 
models at stations which had not played a role in model 
training process. For this purpose, radiation data from four 
stations (Ahvaz, Isfahan, Kermanshah and Mashhad) were 
used to train the models, and performance of the models was 
tested on radiation data from the other three stations (Bandar 
Abbas, Kerman and Tabriz). Figure 6 depicts the results of 
the best empirical model, SVM, SVM-CSA and the multi-
model approach under the best scenarios.

Bandar Abbas station

According to the results, although SVM has not led to lower 
estimation errors in comparison with the best empirical 
model (Abdalla model), application of CSA has reduced the 
error rate by 10%. The results also show that application of 
the multi-model approach to outputs of SVM and SVM-CSA 
has failed to improve radiation estimates.

Kerman station

At this station, application of meteorological rather than 
geographical parameters greatly improved Rs estimates, to 
the extent that RMSEs were reduced by 49 and 48% for SVM 
and SVM-CSA, respectively. Although the best empirical 
model (Garj-Garj) slightly outperformed the best scenario of 
SVM, coupling the CSA to the base SVM reduced RMSEs 
by 29% and 18% compared to SVM and Garj-Garj models, 
respectively. Application of the multi-model approach to 
both SVM and SVM-CSA led to better radiation estimates; 
but this improvement was negligible in both cases, especially 
for SVM-CSA.

Tabriz station

Application of CSA to the base SVM model has reduced 
the error rate by 25% compared to the best empirical model, 
testifying to the importance of coupling the optimisation 
algorithm to SVM. Unlike other stations, application of the 
multi-model approach to outputs of both SVM and SVM-
CSA was effective, reducing error rates by about 24% (SVM-
MLP) and 27% (SVM-CSA-MLP), respectively.

Discussion

Local performance of the models (structure 1)

Results of the best scenarios — in terms of under- or over-
estimation of radiation amounts — and model accuracies, 
respectively, over the three discussed intervals (first, middle 
and last third of measured radiation values) are depicted in 
Figs. 7 and 8. Statistical indices including RMSE, MAPE 
and RRMSE are also listed in Table 4.

Ahvaz station

Apart from SVM-G and SVM-G-CSA, whose perfor-
mances were “good” according to their RRMSE indices, 
performance of all other models was excellent, indicating 
the reliable performance of Garj-Garj model, superiority of 
meteorological variables over geographical variables and the 
importance of coupling the CSA to the base SVM model 
(Table 4).

Hassan et al. (2017) evaluated the performance of three 
different machine-learning algorithms as well as a pro-
posed algorithm titled “decision trees” in estimating Rs 
in Cairo, Egypt. Among day of the year-based models, the 
proposed decision trees model exhibited the best perfor-
mance (RMSE = 2.0489). Zang et al. (2018) studied the 
performance of 14 empirical models, five ANFIS-based 
models and GPR and SVR models, in estimating daily Rs 
in China. RMSEs varied from 1.39 to 3.065 MJ.m−2.day−1 
for the empirical models, from 1.379 to 2.976 for SVR, 
from 1.287 to 2.711 for GPR and between 1.203 and 2.721 
for ANFIS-based models. Application of the multi-model 
approach to the SVM-CSA (SVM-CSA-MLP) led to more 
accurate results in over-estimation set. The results showed 
that SVM-CSA-MLP has estimated Rs with the lowest 
error rates in under- and over-estimation sets in the first 
third interval (RMSE = 103.86) and the last third interval 
(RMSE = 41.64), respectively.
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Bandar Abbas station

The results presented in Table 4 show that except SVM-
M-CSA and SVM-CSA-MLP, which have RRMSEs in the 
“excellent” category and highlight the role of coupling the 
optimisation algorithm to the base SVM model and the 
importance of employing the multi-model approach in radia-
tion estimation, respectively; other models are “good” with 
RRMSEs ranging between 10 and 20%. Performance of two 
empirical models as well as eight existing hybrid models 
and four proposed hybrid models in China was evaluated by 
Fan et al. (2018). According to their findings, Bahel model 
was recommended for cases where only sunshine hours data 
were available. Sanz et al. (2018) investigated the perfor-
mance of four models including extreme learning machine 
(ELM), SVR, multiple linear regression (MLR) and mul-
tivariate adaptive regression spline (MARS), either alone 
or coupled with two optimisation algorithms, CRO (coral 
reefs optimisation) and GGA (grouping genetic algorithm), 
in Australia. The four base models had error rates (MJ.m−2) 
varying from 4.224 (ELM) to 4.289 (MARS), whereas cou-
pling GGA and CRO algorithms to them led to error rates 
ranging from 4.246 (GGA-ELM) to 4.533 (GGA-MLR) and 
from 4.21 (CRO-ELM) to 4.468 (CRO-SVR), respectively.

As shown in Fig. 8, the best performance of all models 
in under- and over-estimation sets is obtained in the first 
third interval (measured radiation values below 1675 J.cm−2.
day−1) and the last third interval (measured radiation values 
above 2241 J.cm−2.day−1), respectively. In under-estimation 
set, SVM-CSA-MLP in the first third (RMSE = 102.84 J.
cm−2.day−1) and SVM-G in the last third (RMSE = 375.25 J.
cm−2.day−1) had the best and the poorest performance, 
respectively. The best and poorest models in over-estimation 
set were 12.23 (last third, the best empirical model) and 
412.88 (first third, SVM-G-CSA), respectively. Similar to 
what happened to most models at this station in the last third 
interval, Wang et al. (2016a, 2016b) showed in a study on 
12 Chinese stations that ANN models under-estimated high 
radiation amounts at some stations.

Isfahan station

With the exception of SVM-G-CSA, which has performed 
better in over-estimation set with an RMSE of 190.97 J.
cm−2.day−1, accuracy of the other models has been higher 
in under-estimation set. Similar to the previous two stations, 
although all models have performed best in under- and over-
estimation sets in the first third (measured radiation values 

below 1675  J.cm−2.day−1) and the last third (measured 
radiation values above 2415 J.cm−2.day−1), respectively, 
the difference between estimation errors in the first third 
(under-estimation set) and the last third (over-estimation 
set) is much less compared to the previous two stations. In 
under-estimation set, SVM-M-CSA in the first third interval 
(RMSE = 96.66 J.cm−2.day−1) and SVM-G in the last third 
interval (RMSE = 231.8 J.cm−2.day−1) demonstrated the 
best and the poorest performance, respectively. For the over-
estimation set, corresponding values were 76.06 (last third, 
the SVM-MLP model) and 425.31 (first third, the SVM-G 
model), respectively.

Kerman station

According to the results from Isfahan and Kerman stations 
(Table 4) and in confirmation of high RMSEs for SVM-G 
and SVM-G-CSA, RRMSEs of these two models are above 
10% compared to the other models, placing them in “good” 
category; and this denotes the subordinate role of geographi-
cal parameters in estimating radiation, even in case of using 
an AI model solely or its coupling with the CSA. This find-
ing is important in that employing the AI model will not 
necessarily lead to a proper estimation of radiation, and care 
must be taken when selecting model inputs. Meenal and Sla-
vakumar (2018) studied the performance of 16 empirical 
models, 16 different structures of the SVM, and 3 struc-
tures of the ANN, at four stations in India. According to the 
results, the lowest RMSEs for empirical models were 0.638, 
1.15 and 0.744 MJ.m−2.day−1, for sunshine-based, temper-
ature-based and hybrid models, respectively, and the lowest 
RMSEs for ANN and SVM were 0.581 and 0.42 MJ.m−2.
day−1, respectively. Zou et al. (2017) introduced improved 
forms of two empirical models (Bristow-Campbell’s and 
Yang’s hybrid model) and an ANFIS-based model for esti-
mating daily Rs in China. Their results indicated that ANFIS 
had the lowest RMSEs and MAEs, ranging from 0.59 to 1.6 
and from 0.42 to 1.21 MJ.m−2.day−1, respectively.

The lowest and highest differences in error rates between 
under- and over-estimation sets were 7.38 and 164.72 J.
cm−2.day−1 for Abdalla’s empirical model and SVM-G-
CSA, respectively (Fig. 8). In under-estimation set, except 
for SVM-M-CSA and SVM-CSA-MLP which had their 
lowest error rates in the middle third interval (measured 
radiation values above 1887 and below 2590 J.cm−2.day−1), 
the best performance of the other models occurred in the 
first third interval (measured radiation values below 1887 J.
cm−2.day−1). In over-estimation set, all models performed 
noticeably better in the last third compared to the other two 
intervals. According to the results, the minimum and maxi-
mum estimation errors were 69.44 J.cm−2.day−1 (last third 
of over-estimation set, SVM-M model) and 540.06 J.cm−2.
day−1 (first third of over-estimation set, SVM-G model).

Fig. 5  Measured versus estimated radiation values under the best 
empirical model, the best scenarios of SVM and SVM-CSA (with 
either geographical or meteorological inputs) and the multi-model 
approach at each station (local analysis: structure 1)

◂
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Kermanshah station

Aside from SVM-M-CSA and SVM-CSA-MLP, which 
demonstrated a slightly better performance in over-esti-
mation set (RMSE = 161.64 and RMSE = 161.47, respec-
tively), all other models exhibited their best performance 
in under-estimation set. In under-estimation set, all seven 
models exhibited their best performance in the first third 
interval (measured radiation values below 1352 J.cm−2.
day−1), with the lowest and highest differences in error 
rates being ΔRMSE = 36.11  J.cm−2.day−1 (between the 
first and the last third intervals, SVM-CSA-MLP model) 
and ΔRMSE = 185.56 J.cm−2.day−1 (between the first and 
the last third intervals, the best empirical model), respec-
tively (Fig. 7). The minimum and maximum estimation 
errors in over-estimation set were RMSE = 76.34 and 
RMSE = 523.65 J.cm−2.day−1, for the last third interval 
of SVM-M-CSA and the first third interval of SVM-G, 
respectively.

Mashhad station

According to the results presented in Table 4, only RRMSEs 
of SVM-M-CSA and SVM-CSA-MLP are below 10% 
(“excellent”), which, in confirmation of RMSEs, point 
to the importance of using meteorological parameters, 
application of the optimisation algorithm and employ-
ment of the multi-model approach in estimating Rs at 
Kermanshah and Mashhad stations. Using air tempera-
ture as the sole input data, Feng et  al. (2019) reported 
RMSEs in the ranges (3.309–3.375), (3.834–4.021), 
(3.379–3.406) and (3.811–4.053) MJ.m−2 for empirical 
models and (2.814–3.103), (3.715–3.939), (3.35–3.491) 
and (3.54–3.866) for machine learning models at Turpan, 
Yinchuan, Dunhuang and Xilingol stations in China, respec-
tively. Performance of an empirical model and four AI mod-
els in estimating daily Rs in Zhengzhou region, China, was 
investigated by Xue and Zhou (2019). According to RMSE 
values, which ranged from 0.7524 to 1.9632 MJ.m−2.day−1 
for the 5 models, PSO-LSSVM and the empirical model had 
the best and the poorest performance, respectively.

Overall, all the seven models performed better in under-
estimation compared to over-estimation set; and the low-
est and highest differences in error rates between the 
two sets were observed for the SVM-CSA-MLP model 

Table 4  Performance evaluation indices for the best empirical model, 
SVM, SVM-CSA, and the multi-model approach for structure 1 (local 
analysis). G and M denote geographical and meteorological inputs, 
respectively

Station: Ahvaz

Models RMSE (J.cm−2.
day−1)

MAPE RRMSE (%)

Best empirical 
model

166.97 0.09 9.05

SVM-G (M) 301.09 (153.21) 0.175 (0.07) 16.32 (8.3)
SVM-G-CSA (M) 287.56 (114.22) 0.16 (0.05) 15.59 (6.18)
SVM-MLP 146.49 0.07 7.94
SVM-CSA-MLP 111.75 0.05 6.06
Station: Bandar Abbas
Best empirical 

model
220.24 0.1 11.29

SVM-G (M) 318.12 (250.62) 0.14 (0.11) 16.3 (12.93)
SVM-G-CSA (M) 241.76 (173.42) 0.1 (0.06) 12.39 (8.89)
SVM-MLP 230.84 0.1 11.83
SVM-CSA-MLP 171.08 0.06 8.77
Station: Isfahan
Best empirical 

model
125.87 0.05 6.24

SVM-G (M) 282.85 (125.31) 0.13 (0.05) 14.01 (6.21)
SVM-G-CSA (M) 236.29 (125.86) 0.1 (0.05) 11.71 (6.24)
SVM-MLP 125.72 0.05 6.23
SVM-CSA-MLP 126.59 0.05 6.27
Station: Kerman
Best empirical 

model
178.35 0.07 8.03

SVM-G (M) 348.69 (175.91) 0.15 (0.07) 15.7 (7.92)
SVM-G-CSA (M) 302.64 (148.75) 0.13 (0.06) 13.63 (6.7)
SVM-MLP 163.8 0.06 7.38
SVM-CSA-MLP 145.97 0.06 6.57
Station: Kermanshah
Best empirical 

model
237.97 0.12 13.89

SVM-G (M) 364.45 (267.5) 0.22 (0.14) 21.28 (15.62)
SVM-G-CSA (M) 306.53 (165.76) 0.18 (0.09) 17.9 (9.68)
SVM-MLP 243.02 0.13 14.19
SVM-CSA-MLP 165.21 0.08 9.65
Station:Mashhad
Best empirical 

model
241 0.13 12.38

SVM-G (M) 386.38 (214.2) 0.21 (0.12) 19.85 (11.01)
SVM-G-CSA (M) 202.48 (151.76) 0.1 (0.07) 10.4 (7.8)
SVM-MLP 207.25 0.12 10.65
SVM-CSA-MLP 153.14 0.07 7.87
Station: Tabriz
Best empirical 

model
366.88 0.2 19.61

SVM-G (M) 539.22 (493.45) 0.27 (0.22) 28.82 (26.37)
SVM-G-CSA (M) 319.93 (316.05) 0.17 (0.14) 17.1 (16.89)
SVM-MLP 458.68 0.22 24.51

Table 4  (continued)

Station: Ahvaz

Models RMSE (J.cm−2.
day−1)

MAPE RRMSE (%)

SVM-CSA-MLP 264.93 0.13 14.16
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(ΔRMSE = 29.06  J.cm−2.day−1) and the SVM-G model 
(ΔRMSE = 277.76 J.cm−2.day−1), respectively. The best 
performances of all models in under- and over-estimation 
sets were obtained in the first third interval (measured radi-
ation values below 1518 J.cm−2.day−1) and the last third 
interval (measured radiation values above 2466 J.cm−2.
day−1), respectively (Fig. 8). Abdalla’s empirical model 
in the first third of under-estimation set (RMSE = 28.39 J.
cm−2.day−1) and SVM-G in the first third of over-estima-
tion set (RMSE = 573.39 J.cm−2.day−1) exhibited the best 
and the poorest performance in estimating solar radiation, 
respectively.

Tabriz station

In confirmation of the higher RMSEs compared to the other 
stations, performance of the best empirical model, SVM-
CSA and SVM-CSA-MLP  were “good” (10–20%) and that 
of the other models were “fair” (20–30%), according to the 
RRMSE. These findings are indicative of the fine perfor-
mance of the first model of Jahani et al. and the noticeable 

superiority of SVM-CSA over the stand-alone SVM model. 
A critical review of the various types of solar radiation 
estimator models was undertaken by Zhang et al. (2017). 
Their results showed that RMSEs have been ranging from 
1.11 to 4.5 MJ.m−2 for sunshine-based models, from 2.05 
to 4.7 MJ.m−2 for non-sunshine-based models, and from 
1.24 to 4.2 MJ.m−2 for ANN models. Ghimire et al. (2019) 
compared the performance of various models at 5 sites in 
Australia and reported that ANN (with a mean RMSE of 
(1.715–2.27) MJ.m−2.day−1) has outperformed the other 
models (RMSE = 2.14–5.9). Hou et al. (2018) compared the 
performance of ELM integrated with variable forgetting fac-
tor (FOS-ELM) and classical ELM in estimating Rs in Bur-
kina Faso. The results showed that FOS-ELM has reduced 
RMSE and MAE by (68.8–79.8)% compared to ELM.

The smallest differences in error rates between under- 
and over-estimation sets were observed for the first model 
of Jahani et al. (ΔRMSE = 43.09 J.cm−2.day−1) and the 
SVM-G-CSA model (ΔRMSE = 86.8  J.cm−2.day−1), 
respectively. In under-estimation set, all seven models 
exhibited their best performance in the first third interval, 

Fig. 6  Measured versus estimated radiation values under the best empirical model, the best scenarios of SVM and SVM-CSA (with either geo-
graphical or meteorological inputs) and the multi-model approach at each station (external analysis: structure 2)

27731Environmental Science and Pollution Research (2022) 29:27719–27737



1 3

and error rates were rising from the first third to the last 
third interval (Fig. 7). Accordingly, the minimum and max-
imum error rates in under-estimation set were 163.99 J.
cm−2.day−1 (first third interval, SVM-G-CSA model) and 
725.28 J.cm−2.day−1 (last third interval, SVM-G). Unlike 
under-estimation set, the lowest error rates in over-estima-
tion set did not occur in a single interval: SVM-M, SVM-
M-CSA and SVM-MLP exhibited their best performance 
in the first third interval (measurement radiation values 
below 1386 J.cm−2.day−1); SVM-G performed best in the 
middle third interval (1386 ≤ Rs ≤ 2431); and the best per-
formance of SVM-G-CSA, the first model of Jahani et al., 
and SVM-CSA-MLP was obtained in the last third interval 
(measured radiation values above 2431 J.cm−2.day−1). In 

over-estimation set, the lowest and highest error rates were 
approximately 106.85 (last third interval, the first model 
of Jahani et al.) and 497.04 (last third interval, SVM-G-
CSA), respectively.

External performance of the models (structure 2)

Results of the best scenarios — in terms of under- or over-
estimation of radiation amounts — and model accuracies, 
respectively, over the three discussed intervals (first, mid-
dle, and last third of measured radiation values) are shown 
in Figs. 9 and 10. Statistical indices including RMSE, 
MAPE and RRMSE are also listed in Table 5.

Fig. 7  Under-estimated (yellow circles) and over-estimated (purple circles) radiation values under the best model at each station. Vertical lines 
divide measured radiation data points (ranked by magnitude) into three numerically equal groups (local analysis: structure 1)
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Fig. 8  RMSEs in the first, 
middle and last third intervals 
of estimated radiation amounts 
under the best model, in under- 
and over-estimation sets; at each 
station (local analysis: structure 
1)

Fig. 9  Under-estimated (yellow circles) and over-estimated (purple circles) radiation values under the best model at each station. Vertical lines 
divide measured radiation data points (ranked by magnitude) into three numerically equal groups (structure 2)
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Bandar Abbas station

The ranges of RRMSE variations are given in Table 5, show-
ing that all models have had a “good” performance; the low-
est and highest RRMSEs (11.39 and 19.28%) are those of 
SVM-G-CSA and SVM-G, respectively. This finding under-
lines the importance of coupling the CSA with the base 
SVM and is confirmed by comparison of RMSEs of these 
two models. Marzo et al. (2017) evaluated the performance 
of the ANN in estimating daily Rs in desert areas, using data 
from several stations in Chile to train the network and data 
from other stations to validate the results (RRMSD = 6.6%). 

Also, data from two other stations in Chile and four in Israel, 
South Africa, Saudi Arabia and Australia were used to test 
the generalisation capability of the proposed model to other 
desert regions of the world, with RRMSD values ranging 
from 8.1% (one of the stations in Chile) to 22.9% (the Aus-
tralian station).

Overall, of the seven models studied, only SVM-M-CSA 
and SVM-CSA-MLP performed better in over-estimation 
set compared to the under-estimation set. However, the dif-
ference in error rates between under- and over-estimation 
sets for Abdalla’s empirical model, SVM-M and SVM-MLP 
were about 7, 23 and 31 J.cm−2.day−1, respectively, which 
are negligible and indicative of comparable performance of 
these models in the two sets. In under- and over-estimation 
sets, the best performance of all seven models occurred in 
the first third interval (measured radiation values below 
1646 J.cm−2.day−1) and the last third interval (measured 
values above 2171 J.cm−2.day−1), respectively. The mini-
mum and maximum estimation errors in under-estimation 
set were 126.51 and 315.02 J.cm−2.day−1 for SVM-G-CSA 
and SVM-G models, respectively; whereas corresponding 
values in over-estimation set were 77.94 and 675.34 for the 
SVM-M-CSA and SVM-G models, respectively, indicating 
that the differences in performance of all models between the 
one-third intervals have been greater in over-estimation set.

Kerman station

Comparison of RRMSEs (Table 5) shows that Garj-Garj 
model, SVM-M-CSA and the multi-model approach have 
had an “excellent” performance, with RRMSEs below 10%. 
Hassan et al. (2016) assessed the generalisation capability 
of their proposed empirical models with application on the 
ten separate stations and showed that RMSEs were in the 
range (0.7035–2.447).

From the viewpoint of model performance over differ-
ent one-third intervals, all models have estimated radiation 
amounts with the lowest error rates in the first third inter-
val (measured radiation values below 1928 J.cm−2.day−1) 
in the under-estimation set and in the last third interval 
(measured radiation values above 2652 J.cm−2.day−1) in the 

Fig. 10  RMSEs in the first, middle and last third intervals of estimated radiation amounts under the best model, in under- and over-estimation 
sets, at each station (structure 2)

Table 5  Performance evaluation indices for the best empirical model, 
SVM, SVM-CSA, and the multi-model approach for structure 2 
(external analysis). G and M denote geographical and meteorological 
inputs, respectively

Station: Bandar Abbas

Models RMSE (J.cm−2.
day−1)

MAPE RRMSE (%)

Best empirical 
model

250.83 0.1 13.23

SVM-G (M) 365.45 (267.89) 0.17 (0.11) 19.28 (14.14)
SVM-G-CSA (M) 215.83 (225.5) 0.09 (0.11) 11.39 (11.9)
SVM-MLP 268.16 0.11 14.15
SVM-CSA-MLP 230.97 0.11 12.19
Station: Kerman
Best empirical 

model
203.96 0.07 9.07

SVM-G (M) 459.13 (234.18) 0.2 (0.09) 20.42 (10.42)
SVM-G-CSA (M) 322.39 (167.25) 0.13 (0.06) 14.34 (7.44)
SVM-MLP 219.32 0.09 9.75
SVM-CSA-MLP 165.12 0.06 7.34
Station: Tabriz
Best empirical 

model
336.86 0.2 21.78

SVM-G (M) 529.69 (436.2) 0.43 (0.27) 34.24 (28.2)
SVM-G-CSA (M) 286.18 (251.26) 0.19 (0.15) 18.5 (16.24)
SVM-MLP 331.22 0.2 21.41
SVM-CSA-MLP 184.31 0.11 11.91
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over-estimation set (Figs. 9 and 10). According to the results, 
only SVM-G-CSA and SVM-M have had lower error rates in 
under-estimation set. All other models have estimated radia-
tion values more accurately in over-estimation set, although 
the differences in error rates between the two sets are negligi-
ble for SVM-G and SVM-MLP (approximately 3.2 and 1.6 J.
cm−2.day−1, respectively), indicating consistent performance 
of these models in under- and over-estimation sets. In under-
estimation set, SVM-M-CSA and SVM-CSA-MLP were the 
most accurate models, with RMSEs of 131.27 and 133.26 J.
cm−2.day−1, respectively (both in the first third interval); 
and SVM-G had the lowest accuracy with RMSE = 500.71 J.
cm−2.day−1 (in the last third interval). In over-estimation 
set, SVM-G (RMSE = 56.38 J.cm−2.day−1 in the last third 
interval) and SVM-G-CSA (RMSE = 567.5 J.cm−2.day−1 in 
the first third interval) had the highest and lowest accura-
cies in estimating Rs, respectively. Maximal variations in 
estimation error over the three one-third intervals occurred 
in over-estimation set and for the SVM-G model, from first 
interval to middle interval (46% error reduction) and from 
middle interval to last interval (81% error reduction), and for 
the SVM-G-CSA model, first to middle interval (42% error 
reduction) and middle to last interval (62% error reduction).

Tabriz station

According to the results (Table 5), the most challenging 
attempt at generalisation of the models to stations with 
no role in model training has been the one at Tabriz sta-
tion. Although SVM-G (a “poor” model) and SVM-M, 
SVM-MLP and the first model of Jahani et al. (“fair”) did 
not perform well in estimating radiation at this station, 
SVM-CSA with meteorological or geographical inputs 
had “good” RRMSEs of 16.24 and 18.5%, respectively. 
The results show that the multi-model approach has been 
effective and efficient in generalising radiation estima-
tion at a station that has played no role in its training, 
with RRMSE = 11.91%, which is very close to the bor-
derline value separating “excellent” and “good” catego-
ries (10%). Almost all models have performed noticeably 
better in under-estimation set compared to over-estima-
tion set, with the minimum and maximum differences in 
error rates between the two sets being 49.39 J.cm−2.day−1 
(the first model of Jahani et al.) and 314.17 J.cm−2.day−1 
(SVM-G model). In under-estimation set, the lowest and 
highest error rates were 28.93 J.cm−2.day−1 (SVM-G, first 
third interval) and 420.69 J.cm−2.day−1 (the first model of 
Jahani et al., last third interval), respectively. An impor-
tant point worth mentioning about the under-estimation 
set is the relatively low error rates in the first third inter-
val, with all models except the first model of Jahani et al. 
having estimation errors below 90 J.cm−2.day−1. In over-
estimation set, there is almost no consistency in error rates 

between the three intervals. The lowest errors rates of 
SVM-G, SVM-G-CSA and the first model of Jahani et al. 
occurred in the last third interval; whereas for SVM-M, 
SVM-M-CSA, SVM-MLP and SVM-CSA-MLP the lowest 
error rates occurred in the first third interval. SVM-G-CSA 
(RMSE = 160.4), SVM-CSA-MLP (RMSE = 164.74) and 
the first model of Jahani et al. (RMSE = 165.99) exhibited 
the best performance, and SVM-G (RMSE = 666.17) had 
the poorest performance in over-estimation set.

Conclusions

In the current research, we evaluated the performance of 
empirical models, two AI models (SVM and SVM-CSA), 
and the novel “multi-model” approach, in estimating daily 
Rs values at seven Iranian meteorological stations over 
2010–2019. For the first structure, model performances 
were examined separately at each station and in training 
and testing sets (local analysis). For the second structure 
(external analysis), an attempt was made to examine the 
generalisation capability of the models by separating the 
data used for model training (Ahvaz, Isfahan, Kermanshah 
and Mashhad stations) from those used for testing (Bandar 
Abbas, Kerman and Tabriz stations). The results showed 
that overall, meteorological parameters have played a more 
effective role in estimating radiation compared to geo-
graphical parameters. Considering the atmospheric condi-
tions including energy transferring and sunshine duration, 
is one of the main advantages of meteorological compared 
to geographical parameters. SVM-CSA significantly 
improved radiation estimates at all stations except Isfa-
han, where Garj-Garj empirical model performed equally 
well and was comparable to SVM-CSA. All models except 
SVM-G at Bandar Abbas station, Garj-Garj model, SVM-
M-CSA and the multi-model approach at Kerman station 
and SVM-CSA-MLP at Tabriz station could be effectively 
and efficiently generalised to stations that played no role 
in training those models (second structure). Although the 
multi-model approach demonstrated a much better perfor-
mance under both structures and at most stations compared 
with empirical models and the base SVM, it is not prefer-
able to the SVM-CSA model given that its superiority over 
SVM-CSA is negligible at most stations (except Tabriz) 
on the one hand, and it requires longer and more complex 
computations on the other hand. Using meteorological as 
well as geographical inputs and considering the ability 
of multi-model approach beside AI-based models are the 
main advantages of the proposed models in the present 
study. It appears that further studies at climatically diverse 
stations are needed before recommending the use of the 
multi-model approach for radiation estimation.
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