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Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), has strong potential for daily exposure to humans and animals 
due to its persistence and widespread in the environment, so its effects directly concern public health. Although invertebrates 
represent important components of aquatic ecosystems and are at significant risk of exposure, there is little information about 
the biological effects of EDCs in these organisms. Astacus leptodactylus used in this study is one of the most consumed and 
exported freshwater species in Europe. In this study, the 96-h effect of BPA on A. leptodactylus was examined using various 
biomarkers. The LC50 value of BPA was determined as 96.45 mg L−1. After 96 h of exposure to BPA, there were increases 
in superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities and levels of malondialdehyde (MDA), 
and total oxidant status context (TOSC), and there were decreases in the activity of glutathione reductase (GR), carboxy-
lesterase (CaE), acetylcholinesterase (AChE), Na+/K+ ATPase, Mg2+ ATPase, Ca2+ ATPase, and total ATPase and the total 
antioxidant context (TAC). From the results of this study, it can be concluded that BPA has significant toxic effects on A. 
leptodactylus based on the selected biochemical parameters of antioxidant, cholinergic, detoxification, and metabolic systems 
in crayfish even at low doses. Thus, it can be said that BPA can seriously threaten the aquatic ecosystem and public health.
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Introduction

Endocrine-disrupting chemicals cause anxiety all over 
the world due to their destructive effects on organ-
isms following exposure. Bisphenol A (BPA), 2,2-
bis (4-hydroxyphenyl) propane, is one of the most 
endocrine-disrupting chemicals that has spread to the 
environment as a result of industrial and manufactur-
ing activities. BPA is widely used in the production 
of epoxy resins, polycarbonate plastics, detergents, and 
personal care product packages (Giulivo et al. 2016; 
Esteve et al. 2016). BPA acts as an endocrine-disrupting 

chemical and causes significant biochemical and physi-
ological changes in organisms by disrupting the func-
tions of tissues and organs, the structure of cells, and 
reproductive efficiency (Grasselli et al. 2010). Because 
BPAs have serious toxic and carcinogenic effects on 
organisms, their use has been banned in many countries 
and has been seriously controlled in others (Duan et al. 
2014). Many waterways contain significant amounts of 
BPA, so microorganisms, algae, invertebrates, and fish 
are exposed to this chemical, and humans may also be 
exposed via the consumption of food and water contam-
inated with BPA (Tsai 2006; Mikolajewska et al. 2015). 
BPA has high solubility in water (120–300 mg L−1) (Sta-
ples et al. 1998) and its concentration in surface waters 
has been determined in the range of 0.0005–0.41 μg L−1 
(Fromme et al. 2002). Since the median BPA concentra-
tion is very low in surface waters uncontaminated with 
BPA, it may not pose a risk to aquatic organisms, but 
in areas where BPA is discharged from various indus-
trial processes, aquatic organisms may be significantly 
affected (Bhandari et al., 2015). BPA concentrations 
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rise 10 times in areas susceptible to wastewater con-
tamination (Hohenblum et al., 2004) and more than 200 
times in areas affected by municipal landfills (Rudel 
et al., 1998). It is of concern that these concentrations 
are higher than ≤ 0.01  μg L−1 (0.04  nM), which has 
been found to cause adverse effects on aquatic wildlife 
and laboratory animals (Bhandari et al., 2015). While 
the mean lethal concentration (LC50) value of BPA for 
aquatic invertebrates is in the range of 960–2,700 μg 
L−1, this parameter is in the range of 6,800–17,900 μg 
L−1 for fish, so even the presence of BPA in water bod-
ies can cause fatal toxic effects on aquatic organisms 
(Mathieu-Denoncourt et al. 2016). Although BPA has a 
short half-life in the aquatic environment (in the range 
of 2.5 to 4 days) (Dorn et al. 1987; Rogers et al. 2013), 
it may have negative effects on the nervous system, his-
tological structure, biochemical variables, morphology, 
behavior, growth, and reproduction of fish (Kinch et al. 
2015; Hayashi et al. 2015).

Studies have documented that some invertebrates are 
very sensitive to even low concentrations of BPA, so inver-
tebrates are often used as bioindicators to investigate the 
toxic effects of endocrine-disrupting chemicals both in situ 
and in the laboratory (Oehlmann et al. 2006). Crayfish 
are one of the most suitable bioindicators for pollution-
monitoring studies due to their feeding habits in water 
bodies, so their biological response to environmental pol-
lution may reflect the health status of aquatic ecosystems 
(Hong et al. 2018). Astacus leptodactylus (Eschscholtz, 
1823), also known as the Turkish crayfish, Galician cray-
fish, or marsh or pond crayfish, is one of the most com-
mon freshwater species with the greatest potential for use 
in Europe and is also consumed as food (Harlıoğlu 2004; 
Ahn et al. 2006). A. leptodactylus is Turkey’s only indig-
enous freshwater crayfish and is issued regularly each year 
(Barim-Oz 2018).

Antioxidant parameters are important defense mech-
anisms that protect organisms against the effects of 
reactive oxygen species created by environmental pro-
oxidants (Tabrez and Ahmad 2009). Therefore, in eco-
toxicological studies, antioxidant enzymes and oxidative 
stress biomarkers are most often used to determine the 
early warning of the biological endpoint of a particular 
pollutant (Pandey et al. 2003). Many studies have been 
conducted on the induction of oxidative stress by BPA 
in fish (Hulak et al. 2013; Chepelev et al. 2013; Ge et al. 
2014; Kalb et al. 2016); hovewer, no studies have been 
found in the literature about the toxicity of BPA on A. 
leptodactylus.

This study was designed to determine the toxic effects 
of BPA on A. leptodactylus with some specific biochemi-
cal tests. The main aim was observing changes in enzyme 
activities responsible for detoxification (glutathione 

S-transferase (GST), carboxylesterase (CaE)), antioxi-
dant activities (glutathione peroxidase (GPx), superoxide 
dismutase (SOD), glutathione reductase (GR), malondi-
aldehyde (MDA), total antioxidant context (TAC), total 
oxidant status context (TOSC)), enzymes of the cholin-
ergic system (acetylcholin-esterase (AChE)), metabolic 
enzymes (alanine-aminotransferase (ALT), aspartate-
aminotransferase (AST), lactate-dehydrogenase (LDH)) 
in the hepatopancreas, and enzymes responsible for 
ion transfer in the cell (total ATPase, Na+/K+ ATPase, 
Mg2+ATPase, Ca2+ ATPase) in the gill and abdominal 
muscle of crayfish acutely (96 h) exposed to varying 
BPA concentrations.

Materials and methods

Experimental animals and test chemicals

The crayfish used in the study were obtained from the 
crayfish-growing ponds of Fırat University Faculty 
of Fisheries, Elazığ, Turkey. Adult crayfish weighing 
approximately 15 ± 5 g were used regardless of gender. 
BPA applications were made on crayfish placed in 40-L 
containers made of polypropylene material with dechlo-
rinated tap water rested for a week. The water used in the 
experiment was treated according to ASTM guidelines 
(ASTM 2014). The average values for pH, conductivity, 
temperature, and dissolved oxygen of dechlorinated tap 
water were 7.62 (7.53–7.71), 23.40 S cm−1 (20.82–25.98), 
22.6  °C (21.8–23.4), and 7.49  mg L−1 (7.20–7.78), 
respectively. During 96 h of application, crayfish were not 
fed and water in containers was replaced with fresh water 
with the same proportion of BPA every 24 h, so static 
regeneration was performed. The laboratory was at room 
temperature (25 ± 1 °C) and the lighting was provided by 
natural daylight (12-h light and 12-h dark). The ventila-
tion of the containers was done with an air pump. The 
pH values in all containers were recorded daily. Water 
samples from the control and application group (tempera-
ture, percent dissolved oxygen, pH and conductivity) were 
measured at the beginning of the experiment (0 h) using 
a multiparameter device (YSI Pro Plus Multi Parameter). 
The average values for pH, conductivity, temperature, and 
dissolved oxygen were 7.55 (7.44–7.67), 23.10 S cm−1 
(21.73–24.20), 24.4 °C (23.8–25.6), and 7.28 mg L−1 
(7.00–7.60), respectively. Bisphenol A with purity ≥ 99% 
was purchased from Sigma-Aldrich Chemical (St. Louis, 
MO, USA). A 5,000-mg L−1 stock solution was prepared 
from the BPA solution prepared in dimethyl sulfoxide 
(DMSO). No adverse effects on biomarkers were seen 
in the preliminary experiment using the DMSO control 
(0.001% DMSO (v/v)).
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Determination of 96 h LC50 value and experimental 
design

Concentrations of 0.25, 1, 4, 8, 16, 32, 64, 128, 512, and 
2048 mg L−1 BPA were used from the stock solution. Indi-
viduals with immobilized bodies were considered dead, 
separated from those who were alive at 24, 48, 72, and 96 h, 
and the LC50 value was determined by Probit analysis of the 
Statistical Package for Social Sciences (SPSS) (Anderson 
1982). Accordingly, the 96 h LC50 value of BPA was calcu-
lated as 96.45 mg L−1. Since there is no information in the 
literature about the maximum permissible limit of BPA for 
crayfish, three sub-lethal doses of this LC50 value (LC50/2, 
LC50/4, LC50/8) were applied to the animals.

Each container was designed to contain four animals and 
the study was performed in triplicate, so a total of 15 con-
tainers and 60 animals were used in five experimental groups 
as follows:

•	 Control: No dose was administered to the animals.
•	 Group LC50: 96.45 mg L−1 of BPA-treated animals.
•	 Group LC50/2: 48.23 mg L−1 of BPA treated animals.
•	 Group LC50/4: 24.11 mg L−1 of BPA treated animals.
•	 Group LC50/8: 12.06 mg L−1 of BPA treated animals.

BPA was applied to the animals by mixing with the water 
in the containers. At the end of 96 h of treatment, crayfish 
were dissected and hepatopancreas, muscle, and gill tissues 
were removed.

Biochemical analyses

The dissection of crayfish was done under anesthesia on an 
ice bath (Leksrisawat 2010). Approximately 60 mg of sam-
ples were taken from the tissues. In a volume 4 times the 
total weight (w/v), homogenization was performed for 30 s 
at 2,000 rpm in a refrigerated homogenization buffer (0.1 M, 
pH 7.4 in potassium phosphate buffer (0.5 M KH2PO4, 0.5 M 
K2HPO4, 0.15 M KCl, 1 mM ethylenediaminetetraacetic acid 
[EDTA], 1 mM dithiothreitol [DTT]) using a glass-Teflon 
homogenizer (MTOPS MS3040D 2021) in an ice container. 
The homogenates were then transferred to clean microcen-
trifuge tubes after homogenization. The homogenates were 
centrifuged at 16,000 × g for 20 min at 4 °C (Hettich 460 R). 
The supernatant was collected after centrifugation and trans-
ferred to the clean microcentrifuge tubes, and enzyme activ-
ity in postmitochondrial fractions was examined. Total pro-
tein content and enzyme activity readings were performed in 
four replicates using a microplate reader (Thermo Varioscan 
Flash 2000). Without refreezing the assay samples, all of the 
assays were completed on the same day.

Total protein analysis

Total protein analysis was done according to the Bradford 
method (Bradford 1976). Bovine serum albumin was used as 
the standard. The required total protein amounts (mg mL−1) 
to calculate enzyme activities and MDA levels were deter-
mined from 5 µL supernatant obtained after homogenization 
and centrifugation of each tissue of the animals used in the 
experiment, as mentioned above. Five microliters of sample 
and 250 µL Bradford solution were pipetted into a 96-well 
plate, and then incubated in the dark for 15 min. Total pro-
tein amounts were calculated by taking the absorbance value 
read at 595-nm wavelength. The protein amounts used for 
the determination of enzyme activity and MDA levels are 
shown in Tables 3 and 4.

Determination of activity and levels of enzymatic 
and non‑enzymatic biomarkers

Activities of AChE, GST, CaE, GR, SOD, GPx, ALT, AST, 
and LDH, and levels of MDA, TAC, and TOSC were per-
formed in hepatopancreas tissue. In gill and muscle tissues, 
adenosine triphosphatase activities (Na+/K+ ATPase, Mg2+ 
ATPase, Ca2+ATPase, total ATPase) were measured.

AChE activity  AChE activity was determined as the cholin-
ergic system enzyme. In AChE activity, the method devel-
oped by Ellman et al. (1961) in a spectrophotometer was 
adapted to a microplate (Ozmen et al. 2008). As the sub-
strate, acetylcholine iodide (ACTI) was used. Ten microliters 
of the supernatant obtained from the sample and 200 µL of a 
mixture of ACTI and DTNB prepared in Trizma buffer (pH 
8) was pipetted to the microplate wells. Specific enzyme 
activity was calculated according to the absorbance value 
at 412 nm.

GST activity  GST and CaE activities were measured as the 
enzymes responsible for the detoxification. In determining 
the GST activity, the method created by Habig et al. (1974) 
was used, adapted to a microplate reader. CDNB (1-chloro-
2,4-dinitrobenzene) and reduced glutathione were used as 
the substrate and cofactor, respectively. A mixture of 100 µL 
of GSH, 100 µL of phosphate buffer, 10 µL of CDNB, and 
10 µL of supernatant was pipetted into microplate wells and 
an absorbance reading was performed at 344 nm.

CaE activity  To measure the CaE activity, the protocol of 
Santhoshkumar and Shivanandappa (1999) was modified to 
work with a microplate reader. PNPA (p-nitrophenol acetate) 
was used as the substrate. Two hundred fifty microliters of 
Trizma buffer (pH 7.4) with 5 µL of sample were placed in 
microplate wells and and incubated at 25 °C for 3 min. Five 

25196 Environmental Science and Pollution Research  (2022) 29:25194–25208

1 3



microliters of PNPA was pipetted onto this mixture and the 
absorbance value at 405 nm was measured.

GR activity  A version of the method developed by Cribb 
et  al. (1989), modified to work in a microplate reader, 
was used to determine GR activity. Twenty microliters of 
GSSG was added to the reaction solution containing 150 
µL of DTNB (5,5′-dithiobis (2-nitrobenzoic acid)), 20 µL 
of NADPH (nicotinamide adenine dinucleotide phosphate), 
and 20 µL of sample. Specific GR activity was calculated 
from the absorbance values at 405 nm obtained by reducing 
the amount of DTNB during GSH formation from GSSG.

SOD activity  SOD activity was determined according to 
the method of Sun et al. (1988). In this method, nitroblue 
tetrazolium, reduced from the xanthine/xanthine oxidase 
reaction, was an indicator of the substrate superoxide. The 
color change created by these superoxide radicals by inter-
acting with nitroblue tetrazolium at 540 nm was recorded as 
absorbance value and enzyme activity was calculated.

GPx activity  GPx activity was determined by a method 
developed by Bell et al. (1985) that was adapted to a micro-
plate reader. Hydrogen peroxide (H2O2) and sodium azide 
(NaN3) were used as the substrate and catalase inhibitor, 
respectively. GPx activity was calculated by measuring the 
absorbance value at 340 nm.

MDA level  The hepatopancreas MDA level was measured 
based on the relative production of the reactive substances 
of thiobarbituric acid (TBA) according to the method devel-
oped by Placer et al. (1966). In this method, the color change 
of MDA in TBA was determined at a wavelength of 532 nm 
and the level of MDA was calculated as nanomoles/gram of 
wet tissue weight.

ALT, AST, and LDH activities  To evaluate the metabolic toxic-
ity, the activities of ALT, AST, and LDH were determined 
using commercial test kits (Biolabo 80,027, Biolabo 80,025 
and Biolabo 92,111, respectively).

TAC and TOSC levels/calculation of the OSI value  TAC and 
TOSC assays and calcultions were performed by using com-
mercial test kits by established Erel (Reel Assay Diagnos-
tics) (Erel 2005). The principle of the TAC analysis is based 
on the conversion of the dark blue-green stable 2,2′-azino-
di-3-ethylbenzthiazoline sulfonate (ABTS) radical to the 
colorless reduced ABTS form by the antioxidants in the 
sample. The amount of antioxidants in the sample correlates 
with the loss of this color. The assay is calibrated using a 
stable antioxidant standard solution, which is a vitamin E 
analog known as Trolox. TAC levels were calculated from 
absorbance values as a result of end-point measurement at 

660 and expressed as micromoles of Trolox equivalents L−1. 
The principle of the TOSC test is that the oxidants present 
in the sample oxidize the Fe2+ ion-chelator complex to the 
Fe3+ ion. In an acidic medium, Fe3+ ion forms a colored 
complex with chromogen and the color intensity is deter-
mined spectrophotometrically. The color density is propor-
tional to the total amount of oxidant molecules in the sam-
ple. The calibration for the determination was carried out 
with hydrogen peroxide. TOSC levels were calculated from 
absorbance values as a result of end-point measurement at 
530 nm and expressed as mmol H2O2 equivalents L−1. The 
following formula was used to calculate the oxidative stress 
index (OSI) (arbitrary unit: AU) and expressed as a percent-
age (Erel 2005).

ATPase activities  The activity of adenosine triphosphatase 
(ATPase), the enzyme responsible for ion transfer in gill and 
muscle tissues, was measured according to the of method 
Atlı and Canlı (Atlı and Canlı 2011). For the measurement 
of Na+/K+ ATPase and Mg2+ ATPase enzyme activities, 
70 µL of incubation mixture (pH 7.7) consisting of 1 mM 
ouabain, 40 mM Tris–HCl, 4 mM MgCl2, 20 mM KCl, and 
100 mM NaCl was added to 10 µL of supernatant. For the 
determination of Ca2+ ATPase activity, a mixture (pH 7.7) 
of 70 µL of 1 mM CaCl2, 40 mM Tris–HCl, 4 mM MgCl2, 
and 1 mM EGTA was added to 10 µL of the supernatant. 
Samples were pipetted into a 96-well plate and incubated 
at 37 °C for 5 min. After the first incubation, 15 µL of 
3 mM Na2ATP was added to the mixture to start the reac-
tion, which was incubated for an additional 30 min at 37 °C. 
Then, the reaction was stopped by adding 40 µL of ice-cold 
dH2O to the mixture. In addition, to serve as an ATP blank, 
ouabain-free medium, supernatant, and dH2O were added 
to a 96-well plate. To serve as a sample blank, ouabain-free 
medium, Na2ATP, and dH2O were added to a 96-well plate. 
The non-enzymatic hydrolysis of ATP was corrected using 
these blanks. During the incubation of the final reaction 
mixture, the inorganic phosphate (Pi) formed by the enzy-
matic/non-enzymatic hydrolysis reaction of 3 mM ATP was 
measured spectrophotometrically according to the protocol 
established by Atkinson et al. (1973). Following the com-
pletion of the reaction, 170 µL of the base mixture consist-
ing of 80 mM polyoxyethylene 10 lauryl ether and 16 mM 
ammonium molybdate was pipetted into 96-well plates. 
Then, the final reaction mixture was incubated for 10 min 
at 25–28 °C. After incubation, the inorganic phosphate (Pi) 
value was calculated from the absorbance value at 390 nm of 
the yellow compound formed by the main reagent (Atkinson 
et al. 1973). The activity of ATPase was measured in mol 
Pi mg protein−1 h−1.

OSI(AU) =

(

TOSC,�molH2O2Equivalent
)

(TAC,mmolTroloxEquivalent) × 10
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Na+/K+ ATPase value was found by subtracting Mg2+ 
ATPase activity (mixture not containing ouabain) from the 
total ATPase activity (mixture containing ouabain). The dif-
ference between the enzyme activities obtained depending 
on the presence or absence of CaCl2 and MgCl2 was used 
to measure the Ca2+ ATPase and Mg2+ ATPase activities, 
respectively.

Measurement of the actual BPA concentrations in test 
waters

The actual concentrations of BPA in the test waters were 
measured with the liquid chromatography tandem mass 
spectrometry (Shimadzu Prominence LC-20AD/XR LCMS-
8040) at Adıyaman University Central Research Labora-
tory. The standard of BPA with purity ≥ 99% was obtained 
from Sigma-Aldrich Chemical (St. Louis, MO, USA). The 
calibration curve was prepared in a standard concentration 
range of 50–500 µg L−1. The linearity (r2) for all analytes 
was > 0.999. The limit of detection (LOD) was 0.06 µg 
L−1 and the limit of quantification (LOQ) was 0.20 µg L−1. 
The recovery values were between 88.4 and 115.7%. The 
retention time of BPA was approximately 5 min. BPA was 
detected through the transitions 227.20 → 132.80 mass-to-
charge ratios (m/z) and 227.20 → 212.20 m/z. The instru-
mental conditions of LCMSMS are shown in Table 1.

Data analysis

The data were statistically analyzed using the computer soft-
ware program SPSS 22. The Shapiro–Wilk test (p < 0.05) 
was used to assess data normality. The Kruskal–Wallis test 
was used to compare biochemical data from different groups. 
To see whether there was a substantial difference between 
the classes, the Mann Whitney U test was used. p < 0.001 
was used as the standard for statistical significance.

The integrated biomarker response

Integrated biomarker response (IBR) was used to include 
all of the identified biochemical marker reactions into a sin-
gle overall stress index to assess the risk potential of BPA. 
The IBR indexes were calculated according to the method 
defined by Arzate-Cárdenas and Martínez-Jerónimo (2012). 
The mean and standard deviation (SD) for each exposure 
and each biomarker were used to calculate the IBR index. 
Each response’s average value was normalized individu-
ally using the formula Y = (X − m)/SD, where Y is the bio-
chemical marker’s standardized value, X is the average value 
of a biochemical marker for each treatment, and m is the 
average of the biochemical markers computed for the treat-
ments. Depending on the biological impact, the Z values 
were computed as Z = Y (inhibition) or Z =  − Y (activation). 
S =|min|+ Z, where S ≥ 0 and |min| represents the absolute 
value of the minimum of all application groups for each bio-
chemical marker used to calculate the score (S). The average 
of the scores at each biochemical parameter level was cal-
culated as (S1 × S2)/2 + (S2 × S3)/2 + … (Sn − 1 × Sn)/2 and 
used to calculate the IBR index, which was then normalized. 
The total number of biochemical markers was divided by 
the estimated values (Broeg and Lehtonen 2006; Kim et al. 
2014a; Samanta et al. 2018a). A star plot was used to show 
the average scores. Individual biomarker scores were utilized 
to show the star plot in the traditional IBR technique. IBR 
indexes were calculated as follows:

Results and discussion

The actual concentrations of BPA in test waters

BPA concentrations in test waters measured by LCMSMS 
are shown in Table 2. Actual concentrations of BPA detected 
in water before application were approximately 15% higher 
than nominal concentrations. After 24 h of exposure, the 
actual BPA concentrations detected in water were approxi-
mately 6% lower than the nominal concentrations. BPA is 
a moderately hydrophobic compound that is highly soluble 
in water (300 g m−3) because it contains functional groups 
sensitive to hydrolysis (USEPA 2010). The loss of BPA at 
the end of the application may be due to conversion of BPA 
into its metabolites as a result of hydrolysis, biodegrada-
tion, and photolysis (Im and Löffler 2016) or absorption/
matabolization of BPA by the crayfish (Iwano et al. 2018).

A
i
=

Si

2
sin�

(

S
i
cos� + S

i+1sin�
)

,where

� = Arctan

(

Si+1sin�

Si−Si+1cos�

)

and � =
2�

n
, S

n+1 = S1

Table 1   Instrumental conditions of LCMSMS

Instrument Shimadzu LCMSMS-8040

Mobil phase A 1 mM ammonium acetate in 100% water
Mobil phase B 100% methanol
Column Inertsil ODS-4 (2.1 mm I.D. × 50 mm L., 

3 μm)
Column oven temperature 40 °C
Flow rate 0.4 mL min−1

Interface current 4.5 kV
Spraying gas flow rate 3 mL min−1

Drying gas flow rate 15 mL min−1

DL temperature 250 °C
HB temperature 400 °C
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Toxicity assay

The LC50 value of BPA for A. leptodactylus was determined 
as 96.45 mg L−1. In other aquatic organisms, the 96 h LC50 
value of BPA was reported by some researchers at the fol-
lowing concentrations: for Xiphophorus helleri, 0.018 mg 
L−1 (Kwak et al. 2001); for Oreochromis niloticus, 0.013 mg 
L−1 (Hamed and Abdel-Tawwab 2017); for Ctenopharyn-
godon idella, 6.32 mg L−1 (Faheem and Lone 2017); for 
zebrafish larvae, 8.04 mg L−1 (Chan and Chan 2012); and 
for midges, 2.7 mg L−1 (Gulley et al. 1996). According to the 
review by Mathieu-Denoncourt et al. (2016), the LC50 value 
of BPA ranges from 960 to 2,700 μg L−1 for aquatic inver-
tebrates and 6,800 to 17,900 μg L−1 for fish. Compared to 
other aquatic invertebrates, A. leptodactylus showed higher 
tolerance to BPA, as supported by its high LC50 value. A 
similar situation was observed in a study for the marine 
rotifer Brachionus koreanus. The LC50 value determined 
for this species (20.924 mg/L) by Park et al. (2018) was 
found to be much higher than that of other aquatic inverte-
brates. The differences in the LC50 value reported for various 
aquatic organisms can be attributed to size, age, sex, spe-
cies sensitivity, animal physiology, genetic background of 
the organisms (Tatarazako et al. 2004), the physicochemical 
properties of the water, dose, and the duration of exposure 
(Kontogiannatos et al. 2015).

Biochemical responses

Waterborne BPA can bind to estrogen receptors (ERs) in fish 
(Gibert et al. 2011), producing more estrogenic effects and 
arousing oxidative stress and affecting antioxidant defense 
system parameters in many aquatic organisms (Kankaya 
et al. 2015; Xu et al. 2015). In this study, significant changes 
were observed in all biochemical parameters analyzed (oxi-
dative stress parameters, antioxidant enzymes, cholinergic 
system enzyme, metabolic enzymes, and ATPase activities) 
following short-term application of BPA to crayfish. The 
biochemical responses in the hepatopancreas are shown in 
Table 3. There have been studies on reproductive develop-
ment, endocrine disruption, and immunotoxicity of BPA on 
aquatic organisms in the literature, but there are few reports 

on biochemical toxic effects in invertebrates. Therefore, we 
were not able to compare our findings with another study on 
the biochemical toxicity of BPA on A. leptodactylus. How-
ever, the biochemical toxic effects of BPA on other inver-
tebrates depending on the exposure time and dose are dis-
cussed below according to the type of biochemical marker.

AChE is a serine protease responsible for the hydroly-
sis of neurotransmitter acetylcholine found in cholinergic 
synapses in the nervous system of animals (Orhan 2013; 
Hatami et  al. 2019). All administered BPA concentra-
tions significantly inhibited the AChE activity compared 
to the control. The lowest AChE activity was found as 
1.40 ± 0.07 nmol  min−1 mg protein−1 in LC50 dose with 
72% decrease compared to the control. Inhibition of AChE 
enzyme in BPA-treated crayfish can lead to accumulation of 
acetylcholine (ACh) in the nervous system, overstimulation 
of cholinergic synapses, and impairment of neuromuscular 
attachment and vital activities of the central nervous sys-
tem. Similar to our results, AChE inhibition was observed by 
various researchers as a result of BPA application in various 
fish species (Chen et al. 2017; Li et al. 2016; Hamed and 
Abdel-Tawwab 2017).

CaEs are cellular phase 1 metabolizing enzymes respon-
sible for the hydrolysis of carboxyesters to the correspond-
ing alcohol and carboxylic acid (Hatfield et al. 2016). In 
this study, CaE activity was inhibited without being dose-
dependent. Inhibition at all concentrations was statistically 
significant. The highest inhibition compared to the control 
was observed at a concentration of LC50/8 with a rate of 
about 56%. The inhibition rate in the LC50 concentration 
was also around 56%. Inhibition of CaE suggests that BPA 
exposure may affect the normal detoxification functions in 
crayfish.

GST is a phase II detoxification enzyme which performs 
the conjugation function that converts phase I detoxifica-
tion products into a more water-soluble form. In this way, it 
prevents reactive free radical accumulation and cellular dam-
age (Chahine and O’Donnell 2011). GST is a detoxifying 
enzyme that mostly functions in the liver and prevents the 
toxic effects of various pollutants (Jain et al. 2010; Hamed 
2015). In the present study, there was a non-dose-dependent 
increase in GST activity compared to control at all BPA 

Table 2   BPA concentrations 
measured by LCMSMS in test 
waters (actual concentrations 
expressed as mean ± standart 
error (n = 3))

Nominal concentra-
tions (mg L−1)

Actual concentrations (mg L−1 ± SE)

Before exposure Recovery (%) After 24 h exposure Recovery (%)

Control (0) 0 – 0 –
96.5 111.5 ± 1.95 115.6% 94.0 ± 0.07 97%
48.2 54.6 ± 0.45 113.3% 48.6 ± 1.93 100%
24.1 27.6 ± 0.75 110.4% 23.0 ± 0.92 95%
12.1 14.2 ± 0.10 115.7% 10.7 ± 0.20 88.4%
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concentrations. The highest increase was in the LC50/2 con-
centration as 387.24 ± 1.43 nmol min−1 mg protein−1 while 
this value was 171.87 ± 3.45 nmol min−1 mg protein−1 at 
control group. Similar results have been reported by many 
researchers (Wu et al. 2011a, b; Li et al. 2016; Kaya and 
Kaptaner 2016; Faheem and Lone 2017), i.e., that GST 
activity increased as a result of applying BPA in different 
concentrations in different fish species. GST is known to 
add the GSH group to xenobiotics or its metabolites, making 
them more soluble in water (Moorhouse and Casida 1992). 
Enhanced activity of GST may be thought to increase to 
detoxify BPA. If we want to evaluate this situation in inver-
tebrates, we can give an example of a study by Park et al. 
(2018), which showed that the marine rotifer Brachionus 
koreanus given 1, 5, or 10 mg L−1 BPA for 24 h showed 
significantly increased GST activity in a dose-dependent 
manner. This shows that GST activity increases with short-
term exposure to BPA. Moreover, GST activity was gen-
erally enhanced in marine invertebrate such as the bivalve 
mollusk (Mytilus gapploprovincialis), the freshwater snail 
(Bellamya purificata), or the water flea (Daphnia magna) 
exposed to BPA at various concentrations and durations (Wu 
et al. 2011a; Canesi et al. 2008; Jemec et al. 2012).

GR maintains reduced glutathione status by providing 
overall homeostatic oxido-reducing balance in the cell, 
and thus protects cells against reactive oxygen metabolites 
(Djordjevic et al. 2010). GR activity showed a significant 
dose-dependent decrease in all groups. In the LC50 and 
LC50/2 dose groups, significant inhibitions were observed at 
the rates of 64% and 59%, respectively. BPA is an endocrine 

disrupting agent and GR is inhibited due to oxidative stress 
occurring in organisms exposed to high concentrations of 
EDC. Glutathione reductase provides antioxidant protection 
to the cell by participating in the recycling of GSH from 
GSSG (Elia et al. 2003). With the effect of GR, the bal-
ance between GSH and GSSG inside the cell is maintained 
through the recycling of GSH (Schafer and Buettner 2001). 
Therefore, GSH, GSSG, and total glutathione contents are 
also reduced, so the glutathione-containing defense system 
remains weak against high doses of BPA exposure. Some 
researchers have reported a decrease in GSH content due to 
environmental oxidative stresses originating from xenobiot-
ics (Verma and Srivastava 2003; Carvan et al. 2001; Velisek 
et al. 2011; Stara et al. 2014). Conversely, when Seoane et al. 
(2021) applied different concentrations of BPA (3.75, 7.5, 
15, 30 mg L−1) to Asian clam Corbicula fluminea for 96 h, 
they observed significant dose-dependent increases in GR 
activity. In this study, although BPA was applied at the same 
time as ours, the doses applied were lower. This means that, 
at low doses of BPA exposure, GR activity first increases 
and is inhibited as the dose increases.

SOD is an important antioxidant enzyme that is involved 
in inhibiting the oxidant formation that occurs due to the 
proliferation of superoxide radicals in the cell (Zhang et al. 
2004). In this study, SOD activity increased in a dose-
dependent manner. Increases with LC50 and LC50/2, the 
highest concentrations, were statistically significant com-
pared to the control. There was a 47% increase in SOD activ-
ity at the LC50 dose compared to the control. Increased SOD 
activity may be due to increased O2− production, which is 

Table 3   Biochemical responses in the hepatopancreas of cray-
fish after 96  h BPA exposure (enzyme activities expressed as nmol 
min−1 mg protein−1 ± mean standard error. Total protein, MDA, TAC, 
and TOSC levels expressed as mg protein ml−1 ± mean standard 

error, nmol MDA mg protein−1 ± mean standard error, μmol Trolox 
Equiv./L and mmol H2O2 Equiv./L, respectively. OSI expressed as 
arbitrary unit (AU) (n = 12)

* p < 0.001 showed statistical importance compared with control group

Concentration

Biomarkers Control LC50/8 LC50/4 LC50/2 LC50

Total protein 5.74  ±  0.41 6.16  ±  0.17 7.21  ±  0.14 8.46  ±  0.07*↑ 9.33  ±  0.21*↑
AChE 4.99  ±  0.12 1.41  ±  0.04*↓ 1.61  ±  0.05*↓ 1.44  ±  0.04*↓ 1.40  ±  0.07*↓
CaE 5872.54  ±  182.51 2566.65  ±  80.23*↓ 3505.41  ±  92.02*↓ 3338.19  ±  37.88*↓ 2594.51  ±  94.37*↓
GST 171.87  ±  3.45 217.40  ±  10.58*↑ 365.29  ±  9.90*↑ 387.24  ±  1.43*↑ 309.29  ±  4.20*↑
GR 33.53  ±  0.37 24.92  ±  1.22*↓ 21.73  ±  0.83*↓ 13.87  ±  0.34*↓ 12.09  ±  0.51*↓
SOD 3.77  ±  0.06 4.03  ±  0.17 4.32  ±  0.24 6.19  ±  0.18*↑ 7.13  ±  0.18*↑
GPx 13.91  ±  0.37 14.38  ±  0.25 17.02  ±  0.25*↑ 19.68  ±  0.18*↑ 23.59  ±  0.41*↑
MDA 2.66  ±  0.17 2.65  ±  0.08 3.31  ±  0.04*↑ 4.35  ±  0.03*↑ 5.17  ±  0.07*↑
ALT 303.03  ±  21.57 373.76  ±  10.26 873.89  ±  18.09*↑ 1037.42  ±  8.44*↑ 957.74  ±  22.53*↑
AST 266.43  ±  17.05 383.27  ±  9.88*↑ 528.14  ±  12.77*↑ 482.62  ±  3.20*↑ 422.23  ±  9.40*↑
LDH 940.15  ±  6.38 1918.32  ±  52.88*↑ 1746.24  ±  41.19*↑ 1409.42  ±  7.07*↑ 1287.74  ±  31.38*↑
TAC​ 2.24  ±  0.09 1.38  ±  0.01*↓ 1.25  ±  0.01*↓ 0.93  ±  0.05*↓ 0.97  ±  0.03*↓
TOSC 7.07  ±  0.34 10.07  ±  0.61 16.68  ±  0.90*↑ 19.68  ±  0.17*↑ 30.46  ±  0.74*↑
OSI 0.32  ±  0.02 0.73  ±  0.04*↑ 1.33  ±  0.09*↑ 2.15  ±  0.12*↑ 3.13  ±  0.01*↑
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considered to be the first defense mechanism against oxi-
dative stress caused by xenobiotics. These results indicate 
that the antioxidant system is activated in response to BPA 
exposure (Clasen et al. 2014; Hemalatha et al. 2015).

GPx is an important antioxidant enzyme that plays a 
role in protecting organisms against the destructive effects 
of hydrogen peroxide (Orbea et al. 2002). In this study, 
GPx activity increased depending on the BPA concentra-
tion applied. The increase at the LC50/8 concentration was 
insignificant compared to the control, while the increase at 
the other concentrations was significant. GPx activity was 
highest in the LC50 group with a rate of approximately 70%. 
These results match with those of Wu et al. (2011a), who 
recorded significant increases in GPx activity in medaka 
(O. latipes) after treatment with BPA. These increases in 
GPx activity may be a function of the protective role of GPx 
against cell damage caused by oxidant production (El-Atti 
et al. 2019). In contrast, when Zhang et al. (2020) adminis-
tered 225 μg L−1 BPA to red swamp crayfish Procambarus 
clarkii for 1 week, they observed significant increases in 
ROS levels and inhibition of SOD and GPx activities in the 
hepatopancreas. The level of biomarkers associated with 
oxidative stress first increases against xenobiotic exposure 
and then decreases due to the occurrence of oxidative dam-
age (Rosenbaum et al. 2012). Therefore, we can attribute 
the inhibition of these enzymes in this study and their high 
activity in our study to our short-term application of BPA. 
Similarly, in the crab Charybdis japonica, SOD and GPx 
activities changed in response to 15 days of BPA adminis-
tration at 0.125, 0.25, 0.50, and 1.00 mg L−1 in hemocytes, 
showing increases at the beginning of exposure and then 
decreases in a dose- and time-dependent manner (Peng et al. 
2018).

MDA levels were significantly increased in a dose-
dependent manner in all groups except for LC50/8. The high-
est level was at the LC50 dose with a rate of about 49%. An 
increased MDA content is associated with increased lipid 
peroxidation, which can lead to loss of cell integrity, i.e., 
increased cell permeability and DNA damage (Dominguez‐
Rebolledo et al. 2010). Increasing MDA levels in this study 
may mean that oxidative stress had occurred as a result of 
BPA application (Chitra et al. 2003). In a study conducted by 
Abdel‐Tawwab and Hamed (2018), the MDA level increased 
significantly as a result of BPA application to Oreochromis 
niloticus for 6 weeks. The increase in the level of MDA can 
be attributed of a then-excessive production of ROS, which 
may be associated with the induction of oxidative stress after 
BPA exposure (Chitra et al. 2003).

ALT activity increased significantly compared to the con-
trol at all concentrations except for LC50/8. In terms of AST 
and LDH activities, a significant increase was observed at 
all BPA concentrations. These results coincide with a study 
by Eweda et al. (2020), who observed that hepatic ALT and 

AST values increased as a result of BPA administration to 
rats. Korkmaz et al. (2010) demonstrated that BPA treat-
ment increased liver ALT, AST, and LDH activities and 
caused marked defects in liver morphology. The LDH and 
transaminases (AST and ALT) can be used for the evalua-
tion of hepatotoxicity, and changes in AST and LDH activi-
ties may be considered an indicator of tissue damage under 
toxic substance stress (Rao 2006; Gholami-Seyedkolaei et al. 
2013). Considering these views, in our results, it can be said 
that the high transaminase activity is due to the pathological 
effects of BPA on crayfish, and the increase in LDH activ-
ity is due to the fact that BPA reduces ATP production by 
blocking oxidative phosphorylation in mitochondria, thus 
creating hypoxic conditions.

Oxidative stress is the disruption of the balance between 
the oxidant and antioxidant systems as a result of the oxidant 
capacity exceeding the antioxidant capacity. TAC, TOSC, 
and OSI are parameters that reflect the general oxidative 
stress state of the organism (Aslan et al. 2007). TAC induced 
by hydroxyl radicals refers to the total antioxidative effect 
against free radical reactions (Karsen et al. 2012). TOSC 
reflects the total amount of oxidant molecules a chemical 
inducer creates in the organism. In our study, the TAC level 
was found to be significantly lower than the control in all 
BPA-applied groups. The TOSC level increased significantly 
due to the dose increase of BPA, except for the LC50/8 dose. 
It has been reported that BPA binds to oxygen radicals, con-
verting them into various reactive metabolites that increase 
ROS production in the cell and inhibit antioxidant enzymes 
(Vahdati Hassani et al. 2018). It was observed that the TAC 
level in the colon, serum, and liver of BPA-treated mice 
was significantly lower than that in the control (Wang et al. 
2019). OSI is an indicator showing the relationship between 
free radical–forming agents that cause oxidative stress in 
the organism and antioxidant defense systems against them 
(Sayed and Khalil 2016). In our study, as the BPA concen-
tration applied increased, the OSI increased significantly 
compared to the control. Similar to our findings, in many 
animal studies in the literature, a number of BPA concen-
trations have been shown to significantly alter the total oxi-
dative stress status of various tissues and organs (Hassan 
et al. 2012; Kalb et al. 2016; Moghaddam et al. 2015). In 
the freshwater bivalve Unio tumidus, 14 days of exposure to 
200 ng L−1 BPA induced oxidative damage through exces-
sive ROS production and DNA instability (Gnatyshyna 
et al., 2019).

ATPases are membrane-bound enzymes that play a role 
in cellular volume, osmotic regulation, pressure, and mem-
brane permeability in fish (Sancho et al. 2003; Marshall and 
Grosell 2005). Fish gills play an important role in ion and 
acid–base homeostasis, gas exchange, filter feeding, and 
nitrogen excretion (Oğuz et al. 2018). Because the gill is 
the first organ to come into direct contact with water-soluble 
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toxic substances, it is more sensitive to water pollutants and 
toxic injuries (Mirghaed et al. 2018). BPA is lipophilic, so 
it passes into biological bodies through breathing and nutri-
tion then accumulates in fish through the gills and skin, so 
the gill is a potential target organ for BPA toxicity (Ismail 
et al. 2018). Na+/K+ ATPase, located on the gill membranes 
of fish, is responsible for the active transport of Na+ and 
K+ into and out of the cell; thus, the gill is the most suit-
able organ in which activity of Na+/K+ ATPase is observed 
(Li et al. 2011). Muscle tissue is the main consumable part 
of the fish and Ca2+ ATPase enzyme plays a role in ion 
metabolism in muscles (Saxena et al. 2000). For these rea-
sons, we thought that the gill and muscle tissues were the 
most suitable tissues for evaluating ATPase activities. To 
our knowledge, this is the first demonstration of the toxic 
effects of BPA on ATPase activity in the crayfish. ATPase 
activity values in the gill and muscle tissues are shown in 
Table 4. In this study, all ATPase activities in both gill and 
muscle tissues were significantly inhibited. When all BPA 
concentrations were compared, the highest ATPase inhibi-
tions were at the LC50 dose in both gill and muscle. Na+/
K+ ATPase activity in the gill was inhibited at approximate 
rates of 26% and 24%, respectively, at the LC50 and LC50/2 
doses. Activities of Mg2+ ATPase, Ca2+ ATPase, and total 
ATPase in the gill were inhibited in the rates of 46%, 39%, 
and 44%, respectively at the LC50 concentration. The inhibi-
tion rates of Na+/K+ ATPase, Mg2+ ATPase, Ca2+ ATPase, 
and total ATPase in the muscle were 36%, 48%, 43%, and 
29%, respectively, at the LC50 dose. Na+/K+ ATPase is the 
most important ATPase in fish osmoregulation (Dogan et al. 
2015).

Osmoregulator disruptions have been reported in fish 
exposed to EDC (McCormick et al. 2005). In this study, 
inhibition of Na+/K+ ATPase may mean that the transport of 
vital ions and nutrients is reduced due to the breakdown of 
cell membrane structure after BPA exposure (Begum 2011). 

Similar to our findings, Zhou et al. (2011) observed that 
activity of Na+/K+ ATPase decreased and oxidative damage 
occurred due to the disruption of cellular ionic homeosta-
sis as a result of exposure of abalone embryos to BPA. In 
another study, Krishnapriya et al. (2017) observed that Na+/
K+ ATPase activity decreased significantly in the gills of 
the carp Labeo rohita, after they applied BPA at sublethal 
concentrations. In the liver of Anabas testudineus, which 
was chronically exposed to BPA, Na+/K+ ATPase activity 
was inhibited, indicating decreased phosphorylation in the 
liver (Kumar and Sunny 2014). In this study, Ca2+ ATPase 
activity was significantly inhibited at all BPA concentra-
tions. Since Ca2+ ATPase is an enzyme localized in the sar-
coplasmic reticulum tubules that removes Ca2+ ions from the 
cytosol and lumen to balance Ca2+ levels in the cell, BPA 
application may have disrupted the intracellular ion balance 
by causing excessive accumulation of Ca2+ in the cell (Sax-
ena et al. 2000). Similar to our results, Jalal et al. (2018) 
reported that low doses of BPA disrupted the structure of 
the calcium channels of cells by inhibiting Ca2+ ATPase, 
so Ca2+ homeostasis could not be achieved normally. Mg2+ 
ATPase is an enzyme that plays an important role in oxida-
tive phosphorylation as well as transepithelial regulation of 
Mg2+ ions (Parvez et al. 2006). Since mitochondrial Mg2+ 
ATPase is an enzyme associated with energy metabolism, 
inhibition of this enzyme impairs oxidative phosphoryla-
tion (Dogan et al. 2015). Therefore, in our study, BPA may 
have disrupted the structure of mitochondrial membranes 
by inhibiting Mg2+ ATPase in gill and muscle tissues; thus, 
oxidative energy could not be converted into phosphate 
energy (Shwetha and Hosetti 2012). As can be seen from 
the inhibition rates, Na+/K+ ATPase inhibition was higher 
in muscle than in the gill, while the total ATPase rate was 
higher in the gill than in the muscle. Other inhibition rates 
were similar to each other. Comparing tissues in general, the 
results show that muscle tissue in crayfish is more sensitive 

Table 4   ATPase activity values in the gill and muscle tissues of crayfish after 96  h BPA exposure (Enzyme activities expressed as nmol Pi 
min−1 mg protein−1 ± mean standard error. Total protein levels expressed as mg protein ml−1 ± mean standard error, n = 12)

* p < 0.001 showed statistical importance compared with control group

Concentration

Biomarkers Control LC50/8 LC50/4 LC50/2 LC50

Gill Total protein 12.26  ±  0.38 10.98  ±  0.31 10.99  ±  0.55 9.65  ±  0.21*↓ 9.24  ±  0.19*↓
Na + /K + -ATPase 32.61  ±  0.63 30.15  ±  0.15*↓ 25.08  ±  0.25*↓ 24.64  ±  0.29*↓ 24.09  ±  0.47*↓
Ca2 + -ATPase 96.40  ±  1.48 68.07  ±  0.48*↓ 67.33  ±  0.53*↓ 68.04  ±  0.42*↓ 58.48  ±  0.20*↓
Mg2 + -ATPase 63.79  ±  1.31 37.91  ±  0.39*↓ 42.25  ±  0.48*↓ 43.41  ±  0.68*↓ 34.39  ±  0.55*↓
Total ATPase 101.97  ±  1.09 73.49  ±  0.63*↓ 70.35  ±  0.55*↓ 68.13  ±  0.86*↓ 57.38  ±  0.48*↓

Muscle Total protein 15.13  ±  0.87 12.37  ±  0.54 12.29  ±  0.45 11.05  ±  0.79 10.63  ±  0.7*↓
Na + /K + -ATPase 28.14  ±  0.55 23.98  ±  0.40*↓ 23.59  ±  0.45*↓ 19.29  ±  0.38*↓ 17.94  ±  0.46*↓
Ca2 + -ATPase 61.27  ±  1.08 52.14  ±  0.40*↓ 43.36  ±  0.37*↓ 37.31  ±  0.48*↓ 35.22  ±  0.29*↓
Mg2 + -ATPase 33.14  ±  0.67 28.16  ±  0.38*↓ 19.76  ±  0.35*↓ 18.02  ±  0.24*↓ 17.27  ±  0.35*↓
Total ATPase 61.91  ±  1.47 54.45  ±  0.65*↓ 48.88  ±  1.40*↓ 49.42  ±  1.06*↓ 43.86  ±  0.40*↓

25202 Environmental Science and Pollution Research  (2022) 29:25194–25208

1 3



to ATPase activity than gills. Supporting our findings, some 
researchers (Yoloğlu 2019; Uçkun and Öz 2020, 2021) have 
observed that ATPases are significantly altered in gill and 
muscle tissues as a result of pesticide exposure.

The IBR indices combining the responses of all biomark-
ers into a single overall stress index in the hepatopancreas, 
gill, and muscle are shown in Figs. 1, 2, and 3, respectively. 
IBR indices were computed using all biomarker data. There 
is no single biomarker response that can reveal the impact 
of a chemical on an organism without a doubt. To relate 
exposure to response and provide improved prediction tools 
for the evaluation of environmental exposure to pollutants, 
many biomarkers with various endpoints are required (Ven-
turino et al. 2003). Using a battery of biomarkers and IBR, 
which is computed by integrating numerous biomarkers 
into a single value, is a more practical tool (Güngördü et al. 
2016). Besides field studies, IBR has recently been used in 
laboratory research to determine the toxicological effects of 
xenobiotics on various species (Uçkun and Özmen 2021). 
The varying patterns of star plots in our IBR index figures 
reflect the integration profiles of multiple biochemical 
parameter responses in tissues (Kim and Jung 2016) exposed 
to different concentrations of BPA. Since the biomarkers 
analyzed in hepatopancreas were different from those in gill 
and muscle, different patterns of star plots were produced 
according to tissue type in the IBR index graphs. Hepato-
pancreatic IBR values with the LC50/4, LC50/2, and LC50 
treatments were 2.42, 2.86, and 3.91 times higher than con-
trol, respectively, suggesting that LC50 and LC50/2 doses of 
BPA are more toxic to crayfish. This can also be understood 
from the fact that biomarker responses in the hepatopan-
creas were mostly induced as the applied BPA concentration 
increases, as can be seen in Table 4. The correlation between 
BPA concentration and IBR values shows that the hepato-
pancreas is significantly affected by BPA toxicity due to its 
detoxification function. In the gill and muscle tissues, as the 
concentration of BPA increased, the IBR values decreased 
compared to the control, and it was completely suppressed 

at the LC50 dose. In muscle, the LC50/8, LC50/4, LC50/2, and 
LC50 doses caused approximately 2.55-, 9.28-, 54.69-, and 
100-fold decreases in the IBR values compared to the con-
trol, respectively. For the gills, these inhibition values were 
8.91-, 21.18-, 22.95-, and 100-fold, respectively. Inhibitory 
effects in these tissues can be attributed to the increased 
toxic effects of BPA and inadequate individual biomarker 
responses (Kim and Jung 2016). Findings similar to ours 
regarding the IBR index were observed by Demirci et al. 
(2018) as a result of the application of various pesticides 
to Gammarus kischineffensis. Many researchers (Kim et al. 
2013, 2014b; Kim and Jung 2016; Samanta et al. 2018a, b; 
Uçkun et al. 2021) have suggested that the IBR index is a 
useful tool for the integrative quantification of the molecular 
and biochemical biomarker responses in a short-term expo-
sure to xenobiotics and a powerful tool to monitor aquatic 
pollution in situ. Kim et al. (2013) applied various concen-
trations of copper and benzo[a]pyrene to freshwater pale 
chub Zacco platypus and used the IBR index to compare 
their toxicity; they reported that IBR values correlated well 
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Fig. 1   The IBR index of hepatopancreas
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Fig. 2   The IBR index of gill
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Fig. 3   The IBR index of muscle

25203Environmental Science and Pollution Research  (2022) 29:25194–25208

1 3



with copper and benzo[a]pyrene concentrations. In another 
study, the same researchers reported that the integration of 
multilevel biomarker responses at the molecular, biochemi-
cal, and physiological levels was highly correlated with cad-
mium and benzo[k]fluoranthene concentrations (Kim et al. 
2014a). Kim and Jung (2016) reported that several multi-
level biomarker responses from IBR values in pale chub (Z. 
platypus) were significantly associated with metals accumu-
lated in Z. platypus.

Conclusion

While there is extensive information about the toxic effects 
of BPA on many fish species in the literature, its effect has 
not been studied in Astacus leptodactylus (determining the 
LC50 value and selected biomarkers for the first time in this 
organism), an economically important consumed organ-
ism in fresh waters, pointing to the originality of this study. 
The A. leptodactylus species used in this study are exported 
regularly every year, so the toxic effects of BPA, an EDC 
commonly found in aquatic environments on this species, 
have contributed greatly to the literature. In this study, it can 
be concluded that short-term application of BPA to cray-
fish significantly affects the activities of cholinergic system 
enzymes (AChE), detoxification enzymes (GST, CaE), meta-
bolic enzymes (ALT, AST, LDH, ATPases), and oxidative 
stress/antioxydant markers (SOD, GPx, GR, MDA, TAC, 
TOSC). In conclusion, Astacus leptodactylus and selected 
biomarkers are useful indicators in the assessment of BPA 
toxicity on non-target organisms in aquatic environments.
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