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Abstract
Bisphenol analogues (BPs) including bisphenol a (BPA) have been broadly utilized as industrial feedstocks and unavoid-
ably discharged into water bodies. However, there is little published data on the occurrence, distribution, and environmental 
risks of other BPs in surface water. In this study, ten BPs besides BPA were analyzed in surface water from the Pearl River, 
South China. Among these detected BPs, BPA, bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol S (BPS) were the 
most frequently detected compounds. The median concentrations of the measured BPs were ranked in the order of BPA 
(34.9 ng/L) > BPS (24.8 ng/L) > BPAF (10.1 ng/L) > bisphenol F (BPF) (9.0 ng/L) > bisphenol B (BPB) (7.6 ng/L) > bisphe-
nol C (BPC) (1.2 ng/L). Among them, BPA and BPS were predominant BPs, contributing 68% of the total ten BPs in surface 
water of the Pearl River. These results demonstrated that BPA and BPS were the most extensively utilized and manufactured 
BPs in this region. The source analysis of BPs suggested that the BPs may be originated from domestic wastewater, waste-
water treatment plant (WWTP) effluent, and the leaching of microplastic in surface water of the Pearl River. The calculated 
BP-derived estrogenic activity exhibited low to medium risks in surface water, but their combined estrogenic effects with 
other endocrine disrupting compounds should not be ignored.
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Introduction

Bisphenol A (BPA) is a high-yield chemical, primarily uti-
lized as an industrial feedstock to produce epoxy resins and 
polycarbonate plastics (Huang et al. 2012). Numerous stud-
ies have documented the various toxicities of BPA, covering 
reproductive toxicity, genotoxicity, neurotoxicity, embryotox-
icity, and endocrine disruption (Chen et al. 2016; Rochester 
and Bolden 2015; Huang et al. 2018; Vandenberg et al. 2007; 
Gu et al. 2022). Therefore, considering the harmful health 
effects of BPA, countries like China, Canada, Japan, and the 
European Union have banned its usage in some consumer 
products (Huang et al. 2017; Wang et al. 2019). To further 
restrict the risk of BPA, Canada has proposed a BPA discharge 
standard of 1.75 μg/L for treated wastewater since 2009, and 
new regulations were proposed in 2010 requiring facilities to 
develop and implement plans to limit environmental release of 
BPA, which became the first country that tried to reduce BPA 
risk for human, wildlife, and ecosystem (Flint et al. 2012). 
To further protect human’s health, BPA has been regulated in 
National Drinking Water Quality Standard of China, Japan, 
and European Union (Yuan et al. 2016; 2018; Liu et al. 2021).
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To fulfill the market demand, bisphenol analogues with 
chemical structures similar to BPA have been widely used, 
and some of them are gradually being used as substitutes for 
BPA (Chen et al. 2016; Delfosse et al. 2012; Liao et al. 2012; 
Xue et al. 2015; Banderakhshan et al. 2022). Bisphenol F 
(BPF), bisphenol S (BPS), and bisphenol AF (BPAF) are the 
major alternatives of BPA in the manufacture of epoxy res-
ins and polycarbonate plastics. BPF has a variety of usages, 
such as adhesives, liners, varnishes, and plumbing, as well 
as in food packaging and dental sealants. BPS is usually 
applied in thermal papers, can coatings, and dye additives. 
BPAF is used in electronics, optical fibers, waveguides, and 
high-performance monomers. Because of the broad use of 
basic applications extending from food packaging to thermal 
papers, high quantities of BPs are inevitably emitted into 
the water bodies through various routes such as industrial 
effluent and domestic sewage (Erjavec et al. 2016; Yan et al. 
2017; Chiriac et al. 2021).

BPA analogues have also been proven to be detrimental to 
human health and associated with cardiovascular diseases, 
cancer, obesity, fertility, and allergies. BPS was demon-
strated to promote breast cancer progression by altering the 
level of DNA methylation in the promoter regions of breast 
cancer–related genes (Huang et al. 2019). Urinary levels of 
BPAF and BPS were suggested to be significantly associated 
with type-2 diabetes mellitus (T2DM) (Duan et al. 2018). 
Moreover, the positive association between urinary BPF and 
asthma was primarily found in adults, while the correlation 
between asthma and BPS was only observed in men (Mendy 
et al. 2020). Overall, these findings have indicated that BPA 
analogues are not necessarily safe as the replacement com-
pounds of BPA (Helies-Toussaint et al. 2014; Kitamura et al. 
2005; Svajger et al. 2016). Thus, it is important to analyze 
the occurrence of BPs in surface water bodies for their envi-
ronmental protection and administration (Xie et al. 2022).

The Pearl River Delta is one of the most economically 
prosperous and populated regions in China. The Pearl Rivers 
are the critical source of potable water for Guangzhou and 
its nearby towns. Moreover, this region has been the hub for 
manufacturing and other industries with a high consumption 
of BPs in the past decades (Chen et al. 2019). However, to 
the best of our knowledge, there are only three related pub-
lications on the occurrence, distribution, and environmental 
risks of BPs in the aquatic environment of this region (Zhao 
et al. 2019; Chen et al. 2020; Huang et al 2020). Among these, 
the main purpose of Zhao et al. (2019) was to investigate the 
concentration of BPs in sea and estuary water, while Chen 
et al. (2020) only collected 10 water samples of the Pearl River 
to check the river water’s safety to swimmers. In the work 
of Huang et al. (2020), as many as 38 river water samples 
were collected, in which urban rainfall runoff was proven to 
be an important source to receiving water. However, the spa-
tial distribution of BPs in the Pearl River remains unknown, 

especially in long dry season without influence of rainfall run-
off. Therefore, the main purpose of this study was to investi-
gate the spatial distribution of ten BPs in the surface water of 
the Pearl River without influence of rainwater runoff, along 
which possible sources of BPs were analyzed.

Materials and methods

Chemicals and reagents

A total of ten BPs were chosen as the target chemicals, 
including BPA, BPB, BPC, BPE, BPF, BPP, BPS, BPZ, 
BPAF, and BPAP. Some fundamental information on these 
ten BPs is shown in Table S1. Deuterated bisphenol A (BPA-
d16) was applied as the internal standard (IS). Information 
for the purity of each BP and supplies is available in our 
previous study (Wang et al. 2021).

Study area and sample collection

The Pearl River system is highly complicated, and the river 
networks are intertwined (Fig. 1). Generally, the river flows 
across Guangzhou city with a population of about 15 million 
(China Statistics Bureau 2020). The Pearl River branches 
into two tributaries at the turning point of S4, flowing 
through Guangzhou city and then converging into one river 
at Huangpu Port. Liuxi Reservoir is located in the northeast-
ern of Guangzhou city that belongs to Liuxi National Forest 
Park. The Pearl River is a crucial potable water resource for 
Guangzhou city and its nearby townships.

In total, 25 sites were selected in the Pearl River, includ-
ing 17 mainstream sites, 7 tributary sites, and 1 control site 
(Liuxi reservoir, S0) (Table S2). The sample sites were the 
same as our previous work (Tang et al. 2021a) and only one 
water sample was collected in each site. At each site, grab 
samples (2 L) were gathered from 0.5 m below the water sur-
face in amber glass bottles. Water samples were immediately 
delivered on ice to the laboratory and kept at − 20 °C before 
pretreatment. The collected water samples were usually 
treated using solid phase extraction (SPE) within 48 h. All 
water samples were obtained in December of 2020, which 
was the dry season in South China and there had been no 
evident precipitations for at least one month before water 
sample collection.

Chemical analysis

Extraction, derivatization, and GC–MS analysis

The methods for extraction, derivatization, and instrumen-
tal analysis were performed following our previous study 
(Wang et al. 2020). In brief, water samples were filtered 
through 0.45-μm glass fiber filters and spiked with the 
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internal standard (50 μL of 1 mg/L each). The filtered water 
samples were then loaded onto an Oasis HLB SPE cartridge 
(225 mg, Waters, USA) with an AQUA Loader 3 (GL Sci-
ence, Japan) at a flow rate of 10 mL/min. After the sample 
loading, the cartridges were dried under a vacuum and then 
eluted with 5 mL methanol. The eluates were dried under 

a mild stream of N2 in preparation for derivatization. BPs 
were analyzed by GC–MS, using an Agilent 7890B series 
gas chromatograph with a 5977B single quadrupole mass 
spectrometer (Agilent, USA). Detailed descriptions about 
the derivatization steps and instrumental analysis of BPs are 
provided in the Supporting Information.

Fig. 1   Location map of sampling sites in the Pearl River
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Quality assurance and quality control

A procedure blank, solvent blank, and 100 ng/mL mixed 
standard sample were performed sequentially every 12 injec-
tions during the testing of each batch of samples to check out 
background contaminants, residues, and instrument proper-
ties. The calibration curve was prepared using the 7-point 
quadratic regression ranging from 5 to 200 μg/L. The coef-
ficients of determination (R2) > 0.993 showed the excellent 
linearity for the standard calibration curve. Quantification 
of BPs was determined by an internal standard method. For 
each target compound, limits of detection (LODs) and limits 
of quantification (LOQs) were obtained by the standard devi-
ation (SD) of triple and tenfold the seven replicate injections 
of the lowest concentration of the standard calibration curve. 
The method recoveries were obtained by spiking standards 
at 20, 100, and 200 ng/L into the river water sample. Detail 
recoveries, LODs, and LOQs of target bisphenol analogues 
are described in Table 1

Risk assessment

Estrogenic activity assessment

Since the Pearl River is the primary supply of potable water 
for the population and BPs induce similar estrogenic effects, 
estrogen equivalent (EEQ) is also employed to assess the 
risk of BPs in water bodies (Eldridge et al. 2007; Konkel 
2013). The chemically calculated EEQ of the target ten BPs 
is calculated with Eq. (1). Pollutants are considered to be 
harmful to the endocrine systems of organisms in the aquatic 
environment when EEQ is greater than 1.0 ng E2/L (Yan 
et al. 2017; Tang et al. 2021a, b).

where Ci indicates the levels of the target BPs in water 
samples and EEFi represents the proportion of the median 

(1)EEQ =
∑

(

C
i
× EEF

i

)

effective concentration (EC50) of each chemical to the EC50 
of 17β-estradiol. As shown in Table S1, each BP has differ-
ent estradiol equivalency factors and varied considerably. 
Hence, the choice of estradiol equivalency factor may be 
significantly different. In the present study, the maximum 
reported estradiol equivalency factor was employed for each 
target chemical.

Eco‑toxicity assessment

The risk quotient (RQ) method was used to assess the eco-
toxicity of the selected BPs in the water bodies (Xiong et al. 
2016; Yan et al. 2017; Zhao et al. 2015). RQi value is the 
proportion of the maximum measured environmental con-
centration (MECi) to the predicted no-effect concentration 
(PNECi), depicted in the following equation.

The ΣRQ was the sum of RQ of each separately measured 
contaminant (RQi) at each sampling site (Eq. (2)). Generally, 
environmental risks are classified as high risk (RQ > 1.0), 
medium risk (0.1 < RQ < 1.0), and low risk (0.01 < RQ < 0.1) 
(Blair et al. 2013; Palma et al. 2014). The PNEC values 
are usually obtained from dividing the minimum toxicity 
value (i.e., lowest short-term L(E)C50 or long-term NOEC 
value) in the literature by an assessment factor (AF) of 1000, 
100, 50, or 10. The toxicity values of the present study were 
derived from published studies, as shown in Table S4.

Data analysis

In the statistical analysis, the concentrations of BPs below 
their LODs were set one-half of their corresponding LODs 
(Luo et al. 2018, 2020). Statistical analyses were performed 
with SPSS version 17.0 software package. All of the plots 
were created with Origin version 8.1. The statistical signifi-
cance was set at p < 0.05 or below.

(2)
∑

RQ =
∑

RQ
i
=
∑

MEC
i

/

PNEC
i

Table 1   Calibration curve, R2, 
recovery (%, mean ± standard 
derivation, n = 3), method limits 
of detection (LODs), and limits 
of quantitation (LOQs) of target 
bisphenol analogues in surface 
water by GC–MS (ng/L)

Calibration curve R2 Recovery LOD LOQ

20 100 200

BPA y = 1.4067x − 0.1391 0.998 76.3 ± 4.2 84.3 ± 6.4 83.2 ± 0.93 5.2 17.5
BPB y = 1.4587x − 0.2084 0.998 117.4 ± 2.9 89.0 ± 4.3 84.3 ± 0.49 1.5 5.9
BPC y = 1.0184x − 0.1752 0.998 83.0 ± 2.1 91.9 ± 6.5 90.8 ± 0.20 2.4 7.9
BPE y = 0.4953x + 0.0307 0.993 113.9 ± 6.3 104.6 ± 2.9 80.8 ± 5.3 5.4 17.9
BPF y = 0.5841x − 0.0891 0.998 92.5 ± 3.8 91.5 ± 3.9 95.7 ± 0.48 2.4 6.1
BPP y = 0.0582x − 0.0082 0.999 73.7 ± 5.4 79.6 ± 3.0 97.6 ± 1.3 5.6 18.7
BPS y = 0.072x − 0.0175 0.989 98.2 ± 3.8 73.4 ± 1.1 74.3 ± 3.1 5.4 19.3
BPZ y = 0.2108x − 0.0304 0.998 67.8 ± 5.8 100.0 ± 5.7 104.1 ± 1.2 2.6 8.7
BPAP y = 0.4004x − 0.0648 0.998 126.4 ± 5.3 124.6 ± 6.9 74.6 ± 4.1 3.6 12.1
BPAF y = 0.5051x − 0.0646 0.995 92.1 ± 1.6 91.5 ± 3.9 92.3 ± 0.18 2.2 5.6
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Result and discussion

Concentrations of bisphenol analogues in Pearl 
River

Table 2 shows the range, mean, median, and detection fre-
quency of each BP in the Pearl River water. At least one 
BP was detected in each water sample. The levels of the 
total ten BPs (ΣBPs) in the Pearl River water varied from 
36.6 to 261.8 ng/L with mean (median) concentration of 
114.0 (89.8) ng/L. Among the determined ten BPs, BPA, 
BPAF, BPF, and BPS were widely detected with detec-
tion frequencies of 100%, 92%, 84%, and 72%, respec-
tively, while the respective detection frequencies of BPB, 

BPC, BPZ, and BPAP were 52%, 44%, 4%, and 4%. BPE 
and BPP were not detected in any water sample. Among 
the detected BPs, the median concentration was ranked in 
the order of BPA (34.9 ng/L) > BPS (24.8 ng/L) > BPAF 
(10.1 ng/L) > BPF (9.0 ng/L) > BPB (7.6 ng/L) > BPC 
(2.7 ng/L). However, BPZ and BPAP were only detected 
in one water sample with the concentration approaching 
their LOQs. Though their usage data are hardly available, 
the detected results of this work suggested that BPs were 
widely used in Guangzhou, leading to their wide distribu-
tion in the Pearl River.

Figure 2 shows the concentration contribution ratio of 
each BP to the ΣBPs. Based on their median concentration, 
BPA contributed about 39%, followed by BPS with a con-
tribution ratio of 27%, BPAF (11%), and BPF (10%), while 

Table 2   Concentrations of target compounds in surface water from the Pearl River*

a Standard deviation; bdetection frequency; crelative standard deviation; *in many samples, the BP concentrations were above LOD but below 
LOQ; however, their ratios of the signal to noise were all above 10; thus, their concentrations were all given; n.d: not detected

Site BPA BPB BPC BPE BPF BPP BPS BPZ BPAP BPAF ΣBPs

S0 29.0 ± 1.1 7.7 ± 0.07 n.d n.d 8.4 ± 0.2 n.d 29.5 ± 0.9 n.d n.d 14.1 ± 1.4 89.8
S1 18.9 ± 0.5 n.d 9.0 ± 0.0 n.d n.d n.d n.d n.d n.d 9.9 ± 0.2 42.9
S2 13.9 ± 0.4 n.d 9.0 ± 0.0 n.d n.d n.d n.d n.d n.d 9.7 ± 0.1 36.6
S3 18.9 ± 0.4 n.d 9.1 ± 0.0 n.d n.d n.d n.d n.d n.d 11.2 ± 0.5 48.6
S4 16.9 ± 0.7 7.7 ± 0.0 8.8 ± 0.0 n.d n.d n.d n.d n.d n.d n.d 40.1
S5 19.9 ± 0.5 7.6 ± 0.1 9.1 ± 0.1 n.d 9.1 ± 0.1 n.d n.d n.d n.d 25.5 ± 1.3 71.2
S6 39.1 ± 1.1 n.d n.d n.d 8.9 ± 0.2 n.d 21.6 ± 0.3 n.d n.d 9.3 ± 0.5 80.1
S7 28.2 ± 0.3 7.7 ± 0.7 n.d n.d 9.0 ± 0.3 n.d 24.6 ± 0.6 n.d n.d 10.3 ± 0.7 81.0
S8 26.1 ± 0.6 n.d n.d n.d 9.5 ± 0.1 n.d 12.2 ± 0.0 n.d n.d 13.5 ± 0.5 64.0
S9 29.1 ± 0.7 n.d 9.0 ± 0.0 n.d 8.7 ± 0.3 n.d n.d n.d n.d 16.3 ± 0.4 70.3
S10 17.1 ± 0.3 7.8 ± 0.2 8.8 ± 0.0 n.d 9.0 ± 0.3 n.d n.d n.d n.d 11.2 ± 0.1 53.8
S11 36.0 ± 0.9 8.7 ± 0.1 9.0 ± 0.0 n.d 11.6 ± 0.3 n.d 115.9 ± 5.8 n.d n.d 9.1 ± 0.2 194.1
S12 40.0 ± 2.2 8.8 ± 0.1 9.1 ± 0.0 n.d 13.1 ± 0.4 n.d 118.3 ± 7.3 n.d n.d 9.4 ± 0.8 201.3
S13 64.7 ± 0.7 8.5 ± 0.2 n.d n.d 12.4 ± 0.3 n.d 124.4 ± 6.2 n.d n.d n.d 214.3
S14 41.4 ± 1.7 8.3 ± 0.1 n.d n.d 10.5 ± 0.28 n.d 57.8 ± 2.7 n.d n.d 8.6 ± 0.1 127.8
S15 37.8 ± 0.5 8.7 ± 0.2 n.d n.d 10.0 ± 0.4 n.d 79.8 ± 5.0 n.d n.d 9.3 ± 0.5 146.8
S16 34.9 ± 2.7 7.6 ± 0.1 n.d n.d 9.5 ± 0.1 n.d 39.2 ± 3.3 n.d n.d 8.0 ± 0.1 101.9
S17 31.8 ± 3.0 7.6 ± 0.1 n.d n.d 9.0 ± 0.1 n.d 28.2 ± 2.5 n.d n.d 8.5 ± 0.4 87.7
S18 36.3 ± 0.3 n.d 9.4 ± 0.1 n.d 8.6 ± 0.1 n.d 18.7 ± 0.5 8.0 ± 0.3 8.9 ± 0.0 15.4 ± 0.2 107.9
S19 25.8 ± 1.4 n.d n.d n.d 9.2 ± 0.1 n.d 24.8 ± 3.2 n.d n.d 11.3 ± 2.5 73.8
S20 40.5 ± 1.06 7.7 ± 0.0 9.3 ± 0.2 n.d 9.8 ± 0.2 n.d 53.7 ± 2.0 n.d n.d 123.1 ± 2.8 246.8
S21 52.8 ± 2.2 8.2 ± 0.1 n.d n.d 9.7 ± 0.2 n.d 48.2 ± 2.1 n.d n.d 87.5 ± 1.4 211.5
S22 53.1 ± 1.9 n.d n.d n.d 9.0 ± 0.2 n.d 31.8 ± 2.5 n.d n.d 8.8 ± 0.3 103.4
S23 126.0 ± 1.4 n.d n.d n.d 9.7 ± 0.5 n.d 110.8 ± 13.2 n.d n.d 10.1 ± 0.5 261.8
S24 44.7 ± 3.3 n.d n.d n.d 9.0 ± 0.2 n.d 23.1 ± 2.0 n.d n.d 17.0 ± 0.1 93.8
Range 13.9–126.0 0–8.8 0–9.4 0–2.7 0–13.1 0–2.8 0.0–124.4 0–8.0 0–8.9 0–123.1 36.6–261.8
Mean 36.9 4.6 4.3 1.5 8.3 0.2 38.7 0.5 0.65 18.3 114.0
Median 34.9 7.6 1.2 2.7 9.0 0 24.8 0 0 10.1 89.8
SDa 22.4 4.0 4.3 1.4 3.4 0.8 40.6 1.6 1.8 27.1 68.0
RSDC 60.7% 87.0% 100.0% 93.3% 41.0% 400% 104.9% 320.0% 276.9% 148.1% 59.6%
DFb 100 52 44 0 84 0 72 4 4 92 -
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the total contribution ratio of BPA, BPS, and BPAF was 
over 70%. The contribution ratio of BPS was close to that 
of BPA, which suggested that usage of BPS has been rapidly 
increased in Guangzhou city in recent years, since  BPs i 
are structurally similar to BPA, and numerous studies have 
confirmed the BPs as an kind of EDCs (Van Leeuwen et al. 
2019). Hence, the environmental risks of BPs in  surface 
water should be paid more attention.

Concentration comparison with previous studies

Recently, the levels of BPs in river water have been investi-
gated in several regions, especially for BPA, and these stud-
ies were in comparison with the current work (Table 3). 
The concentrations of BPA in this research were less than 
those in previous studies in the Pearl River system (Huang 
et  al. 2020), but comparable to those in water samples 
from the Hunhe River (40 ng/L), Haihe River (42 ng/L), 
Liaohe River (47 ng/L), West River (43 ng/L), and Yellow 
River (33/44 ng/L) in China (Jin and Zhu 2016; Patrolecco 
et al. 2006; Yamazaki et al. 2015; Zhao et al. 2020). Mean 
BP concentrations (39  ng/L) in this work were greater 
than those reported from China and Japan (Huang et al. 
2020; Yamazaki et al. 2015), but lower than those in India 
(Yamazaki et al. 2015). The mean levels of BPAF (18 ng/L) 
in the present study were less than those found from the Yel-
low River (40/24 ng/L; dry/wet season) (Zhao et al. 2020), 
but higher than those of other previous studies (Huang et al. 
2020; Jin and Zhu 2016). Other BPs were detected with low 
levels in this work, comparable to those of other studies from 
China (Huang et al. 2020; Jin and Zhu 2016). In comparison 
with the concentrations of BPA, BPS, and BPF in the Pearl 
River in 2015, recorded by Huang et al. (2020), the levels of 

BPA have been decreased dramatically. Still, the concentra-
tions of BPS and BPF were basically unchanged. This may 
be attributed to the ban on related applications of BPA in 
China (Qiu et al. 2021).

Spatial distribution and potential sources of BPs

The spatial distribution of BPs in this region (Table 2) 
showed that the ΣBPs in the Pearl River water varied con-
siderably in the range of 37–262 ng/L with mean levels of 
90 ng/L. For the Pearl River, the higher levels for BPA, BPS, 
and BPAF occurred at sites S11-S13, S20-S21, and S23, 
while the greatest levels of BPA (126.0 ng/L) was found at 
site S23, the maximum concentrations of BPS (124.4 ng/L) 
was observed at site S13, with the largest concentrations of 
BPAF (123.1 ng/L) was measured at site S20. These sites 
are located in the branches of the Pearl River, adjacent to 
industrial zones, resulting in large quantities of industrial 
wastewater being released into the river with incomplete 
removal. Compared to other sites, the levels of BPs are 
well-distributed in surface water of the Pearl River, and the 
main contribution of BPs may be from domestic pollution. 
Unexpectedly, trace amounts of BPs were detected at site 
S0, which is an essential potable water source, raising con-
cerns about the risk of human exposure. Exposure to these 
compounds may result in estrogenic effects and reproduc-
tive effects, or jeopardize the cognitive abilities of children 
(McDonough et al. 2021). We speculate that some of the BPs 
in site S0 may come from various sources, involving photo-/
microbial degradation from parent chemicals, existing as 
industrial additives in consumer products.

WWTP effluents are considered to be the potential source 
of BPs in the aquatic environment. To confirm this, the 
selected BPs in the upstream and downstream river waters 
of the seven municipal WWTPs were further compared. As 
shown in Fig. 3, the levels of BPA, BPS, and ΣBPs in the 
downstream river waters of XT WWTP were significantly 
higher than that of the upstream river water. However, the 
concentration of ΣBPs between the upstream and down-
stream river waters of other WWTPs has no obvious sta-
tistical relationship. In South China, industrial wastewater 
is initially processed in factory sewage treatment facilities 
and then further treated in WWTPs. The XT WWTP in the 
present study received both industrial and domestic sewage, 
while other WWTPs only received domestic sewage. There-
fore, the XT WWTP effluent may have a higher concentra-
tion of BPs, leading to elevated concentrations of BPs in 
downtown water. The study of Huang et al. (2020) reported 
higher concentrations of BPs in the XT WWTP effluent than 
those of the other WWTPs. The results seemed to suggest 
that the WWTP effluent is an essential potential source of 
BPs. However, the concentrations of the total BPs between 
the upstream and downstream river waters of the other 

Fig. 2   Compositional profiles of detected bisphenol analogues in the 
surface water from the Pearl River based on their median concentra-
tions
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Fig. 3   The total concentrations of ten BPs in the Pearl River waters collected at the upstream and downstream of seven WWTPs
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WWTPs have no obvious statistical relationship (p>0.05). 
There are several possible reasons for this, including the low 
concentration of BPs in WWTP effluent and the different 
half-life of BPs.

BPs are extensively applied in household products and 
urban infrastructure. As a result, BPs will be unavoidably dis-
charged into the receiving streams through the urban rainfall 
runoff. A previous study suggested that the daily mass load 
of BPA in runoff was 2.7 times greater than that in WWTP 
effluents in the UK (Wilkinson et al. 2016), indicating that 
rainfall runoff was an important source of BPA. Consistently, 
other monitoring results also suggested that rainfall runoff 
was the main source of pharmaceuticals and personal care 
products (PPCPs) in the rivers. In spite of the diluting effect, 
PPCP levels were increased in the receiving rivers (Liu et al. 
2018; Mei et al. 2018). In this study, sampling was collected 
during the dry season, and it has not rained for more than a 

month. Thus, the BPs entering rivers through rainfall runoff 
were unlikely to be the critical source in this study.

In addition to WWTP effluent and rainfall runoff, 
microplastics may be potential sources for BPs in surface 
water due to the release of monomers during the aging 
process. Numerous studies have shown that BPA will be 
available for leaching from microplastics in seawater and 
surface water (Notardonato et al. 2019; Sajiki and Yonekubo 
2004; Xu et al., 2020) Meanwhile, some available studies 
have investigated the presence of microplastics in surface 
water in China, including Yongjiang River, Pearl River, 
Hanjiang River, and Yangtze River (Zhang et al. 2020; Lin 
et al. 2018; Wang et al. 2017), with the abundance ranges of 
379–8920 items/m3. Thus, microplastics may contribute to 
BPs in surface water, although more knowledge is needed to 
verify the hypothesis.

As shown in Table 4, the correlations between the levels 
of these BPs were also performed. In the Pearl River, the cor-
relation analysis suggested that there was a significant posi-
tive relationship between BPA and BPF (R = 0.440, p < 0.05), 
as well as BPA and BPS (R = 0.662, p < 0.01). All of these 
results indicated that they had shared similar contamination 
sources. The positive correlations between BPBand BPF, as 
well as BPB and BPS (R > 0.4, p < 0.05) were observed. BPF 
has significant positive relationships with BPS (R = 0.652, 
p < 0.01), and BPZ has significant positive relationships with 
BPAP (R = 0.898, p < 0.01).

Based on the distribution of residential regions and indus-
trial zones around the Pearl River, principal component analy-
sis (PCA) was used to analyze the BPs in the Pearl River to 
determine their sources. In the Pearl River, the clustering could 
be recognized at least in the score plot of PCA: (1) S2 and S3, 
which had the minimum levels of BPA; S1, S4, and S9, which 
had the lowest levels of BPAF; S18, which contained the high-
est concentration of BPZ and BPAP; and (4) all of the other 
sampling sites.

Table 4   Pairwise correlation (R) between the concentrations of ten bisphenol analogues in surface water from the Pearl River

* : p < 0.05; **: p < 0.01

Compounds BPA BPB BPC BPE BPF BPP BPS BPZ BPAP BPAF

BPA 1
BPB  − 0.038 1
BPC  − 0.440* 0.001 1
BPE 0.063  − 0.141 0.257 1
BPF 0.440* 0.418*  − 0.399*  − 0.117 1
BPP  − 0.275  − 0.341 0.329  − 0.036  − 0.637** 1
BPS 0.662** 0.435*  − 0.210 0.068 0.652**  − 0.277 1
BPZ 0.031  − 0.173 0.265 0.228 0.030  − 0.098 0.009 1
BPAP 0.158  − 0.241 0.253 0.236  − 0.002  − 0.106  − 0.015 0.898** 1
BPAF 0.078 0.194 0.148 0.236 0.137  − 0.087 0.019 0.019  − 0.091 1

Fig. 4   Score plot of principal component analysis of bisphenol ana-
logues in surface water from the Pearl River

27360 Environmental Science and Pollution Research  (2022) 29:27352–27365

1 3



Estrogenic activities and ecological risk assessment

Estrogenic activity assessment

The BP-derived EEQ and the sum of EEQ for each sam-
pling point were calculated (Fig. 4). For the Pearl River, 
ΣEEQ varied from 0.050 to 0.284 ng E2/L. Recent research 
reported that the ranges of ΣEEQ were 0.004–0.18 and 
0.005–0.11 ng E2/L for surface water in the Pearl River 
system in wet and dry seasons, which were similar to the 
current results (Huang et al. 2020). These ΣEEQ were well 
below 1.0 ng E2/L, suggesting that there was no detectable 
estrogenic risk for BPs in surface water of the Pearl River. 
In addition to BPs, numerous other chemicals in the surface 
water, such as alkylphenols, phthalates, and polychlorinated 

biphenyls, as well as natural and synthetic estrogens (E1, E2, 
and EE2), have estrogenic effects (Tang et al. 2020; Zhao 
et al. 2021). Consequently, BPs may contribute only a por-
tion of the total estrogenic activity in surface water (Fig. 5).

Eco‑toxicity assessment

The risk quotient (RQ) method was applied to evaluate 
the eco-toxicity of BPs in the Pearl River. The total RQ 
of each BP was computed to investigate the potential inte-
grated impact of these contaminants. For the Pearl River, 
the range of ΣRQ was 0.011–0.148. The results showed 
that none of the sampling sites in the Pearl River had high 
risks to aquatic organisms (ΣRQ < 1.0), and only 12% of 
the monitored water samples presented moderate risks to 

Fig. 6   RQ of target bisphenol 
analogues in water samples

Fig. 5   Estradiol equivalency 
quantities of the target com-
pounds in the surface water 
from the Pearl River
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the river ecosystem. Among the ten BPs, BPC had a com-
paratively greater RQ value for all the samples sites with 
the highest contribution of 39%. Previous studies have 
demonstrated that some BPs, i.e., BPF, BPS, and BPAF, 
etc., had similar estrogenic effects and anti-androgenic 
effects to that of BPA (Van Leeuwen et al. 2019). Mean-
time, risks may be significantly enhanced due to their 
elevated combined effects of complex estrogenic contami-
nants in the aquatic environment (Li et al. 2018). There-
fore, it is vital to take more effective actions to decrease 
the discharge of BPs (Fig. 6).

Conclusion

Since BPA has been restricted in many countries for food-
contact-related products, several BPs, including BPF, 
BPS, and BPAF, have been widely used. A large number 
of BPs were found in surface water of the Pearl River. The 
predominant BPs were BPA, BPF, BPS, and BPAF. The 
results of the study on the spatial distribution and possi-
ble sources of BPs suggested that the distribution of BPs 
was comparatively uniform in surface water. This study 
also demonstrated no high risk of BPs in surface water 
samples, but their combined estrogenic effects with other 
EDCs should not be ignored. Further research is recom-
mended to clearly understand the combined estrogenic 
effects in surface water, which would provide valuable 
information to understand the fate of BPs in the aquatic 
environment.
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